用户名: 密码: 验证码:
镁合金上单宁酸系转化膜和钙系磷化膜的制备和性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学转化技术是镁合金表面处理的重要分支,它工艺简单,成本低,转化膜与后续的涂层结合力好。长久以来铬酸盐转化膜广泛的应用在工业生产中,但由于铬酸盐转化液中含有有毒的六价铬离子,受到环保的严格限制,各种无铬化学转化膜迅速发展起来,但是这些转化膜主要是针对工业生产中的应用,很少考虑到镁可以作为生物材料的应用。我们尝试在镁合金上引入有机性质的转化膜,提高镁合金的耐蚀性,使镁合金既可以应用在工业生产中,也可以作为生物材料用于生物医学。基于这种考虑我们制备了不同的有机性质的化学转化膜,并对它们的性质进行了研究。对镁合金在生物医学材料上的应用,作了有益的前期探索。我们首次在AZ91D镁合金上制备了无毒无污染单宁酸化学转化膜,转化膜致密,与基体的结合力强,耐蚀性高于传统的铬酸盐转化膜。获得的单宁酸转化膜成本低廉,在工业上的应用必然会取得极大的经济效益。同时我们首次在AM60镁合金上形成钙系磷化膜,钙系磷化膜致密,晶粒细化,耐蚀性高。首次用简单的水溶液处理的方法获得羟基磷酸钙膜,它在模拟生物体液中的耐蚀性远远高于镁合金基体。
Advantageous properties of magnesium alloy makes them be required of a sharp increase in the amount, especially in the aerospace industry, automotive industry, telecommunications industry and other industries in the lightweight. Magnesium is seen as an important strategic material in the 21st century. Magnesium is an important metal element in human body, magnesium density and is similar to bone mineral density of the human body. Activity of magnesium in the body plays a beneficial promoting role: magnesium can promote the formation of bone cells and accelerate bone healing; Magnesium did not inhibit for the growth of bone marrow cells. These characteristics make magnesium have potential to be applied to the biomedical area, but the chemical properties of magnesium alloy in all industries alloys is the most active, and poor corrosion resistance limits its further application, thus improving the corrosion resistance of magnesium alloys becomes the hotspot of magnesium reseach in recent years. Chemical conversion technology was widely applied for its advantage: simple process, low cost and coating having adhesion. Chromate conversion coatings with excellent performance have been used to improve corrosion resistance of magnesium alloy, but in recent year it was strictly limited for toxic hexavalent chromium ions. Thus various non-chrome chemical conversion films came into being.
     Today, with the further development of magnesium alloys, magnesium is used as a biological implant material again. We try to introduce organic conversion coating to on the magnesium alloy surface to improve corrosion resistance of magnesium alloy, which has no harm to human body, and we do early exploration on the magnesium alloy applications in the biomedical area. Based on this consideration, we prepared and studied two different organic conversion coating on different magnesium alloy surface. One is tannic acid based conversion coating on the AZ91D magnesium alloy substrate and the other is calcium phosphate coating on the AM60 magnesium alloy surface, the main works include:
     (1) Prepared a dense tannic acid conversion coating: The components of the coating with surface density are Zr(HPO4)2 at the bottom of the coating and the tannic acid - magnesium chelate upper part ofthe coating, as well as a small amount of MgF2. There is no clear dividing line between the two layers and the close integration between the deposition of particles, this may result from the hydrogen bonds of Zr(HPO4)2 and OH in the tannic acid-magnesium complex form intermolecular hydrogen bonds. Corrosion resistance is superior to the traditional chromate Dow-7 coating.
     (2) Determined favorable production condition to obtain good tannic acid conversion coating: When pH value is in range of 3.9~4.5, we can get good coating with higher corrosion resistance. Inorganic acid has no effect on the coating forming, but the organic phytic acid have a strong complexing ability with the metal ions, but they could not deposit in the tannic acid based solution and it frustrated deposition of chelate complex of the magnesium and tannic acid.
     We can obtain good coating by treated magnesium alloy in the tannic acid based solution for 5min. When we prolonged treatment time to 10min, we get thick coating with the highest corrosion resistance. But at this time the micro cracks formed on the coating surface and self-body of coating does not crack. The coating and the substrate have good adhesion; meanwhile the porosity of the coating is small. The gap is smaller than the volume of deposited particles themselves. When the time exceeds 600s, surface of the coating became rough and corrosion resistance decreased.
     When the temperature of tannic acid based solution is in range of 10~35℃, we can get high-quality coating with higher corrosion resistance.
     If the temperature of tannic acid based solution is too low, the caoting can not form.However ultra-high temperature leads to corrosion product of magnesium accumulating on the surface of magnesium alloy.
     (3) High efficiency of tannic acid based solution: We can get 4.08m2 area of coating with high corrosion resistance on magnesium alloy in one litre of the tannic acid based solution, Less consumption of chemical improve the applicability of industrial production.
     (4) Raised the tannic acid chemical conversion coating forming mechanism of film: After being soaked in tannic acid for around 50s, magnesium alloy start to corrode and magnesium ofαphase became magnesiun ion. K2ZrF6 in the trestment solution decomposed to Zr ion, which react with HPO42- ion to form Zr(HPO4)2 deposited on theβphase. In the next period of time the first layer deposit continously and the amount of Zr(HPO4)2 increased. In the acidic circumstance, tannic acid hydrolyzes to gallic acid and glucose. The oxygen ions of gallic acid reacted with Mg to form the bond of tannic-magnesium organic complex, which deposited on the Zr(HPO4)2 layer. The composition of TBC (tannic acid based conversion) coating treated for 600s is the same as the coating for 300s, but only differs in thickness of the coating. This suggests that thickness increases from 300s to 600s. Organic complex uniform distributs on the magnesium alloy surface. The coating-forming process can be divided into three stages: the dissolution of Mg, Zr(HPO4)2 formation and the organic chelate complex layer formation.
     (5) Prepared calcium-phosphate coating: pH value had a great impact on the coating-forming. When pH value of phosphate solution is 2.45, we can receive calcium phosphate coating with the dense and uniform surface. The main components are Ca(HPO4)2 and Ca(HPO4)2·H2O. The corrosion resistance of coating is higher than that of substrate in the 3% NaCl solution.
     (6) Function of three different additives: It promotes the formation phosphate film. Calcium nitrate can refine the grains to prevent their local growth. The m-nitrobenzene sulfonic sodium can increase the amount of nucleation activation points on the magnesium alloy surface, so that phosphate coating distributes uniformly on the surface. The concentration of sodium molybdate has no impact on the formation of calcium-phosphate coating.
     (7) Prepared hydroxyl phosphate calcium coating: The hydroxyl phosphate calcium coating obtained by treated in alkaline liquor for 1hour is dense and has high corrosion resistance in a simulated biological fluid.
引文
[1]刘正,张奎,曾小勤著.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社, 2002.
    [2] POLMEAR I J. Light Alloys, metallurgy of the light metals[M]. Edward Arnold, Sevenoaks: UK 1989, 2nd ed.: 5-10.
    [3] MCINTYRE N S, Chen C. Role of impurities on Mg surfaces under ambient exposure conditions[J]. Corrosion Science, 1998, 40(10): 1697-1709.
    [4] GEBERT A, WOLFF U, JOHN A, ECKERT J. Corrosion behaviour of Mg65Y10Cu25 metallic glass[J]. Scripta materials, 2000, 43: 279-283.
    [5] INOUE H, SUGAHARA K, YANANOTO A, TSUBAKINO H. Corrosion rate of magnesium and its alloys in buffered chloride solutions[J]. Corrosion Science, 2002, 44: 603-610.
    [6]叶宏,冯燕熹,王希山.镁合金化学镀镍工艺研究[J].表面技术, 2002, 31(6): 32-36.
    [7]张大顺. TL-2化学镀Ni-P合金工艺研究[J].表面技术, 1999, 4: 12-16.
    [8]曾爱平,薛颖,钱宇峰,等.镁合金的化学表面处理[J].腐蚀与防护, 2000, 21(2): 55-56.
    [9]宋光铃.镁合金的腐蚀与防护[M].北京:化学工业出版社,2006
    [10] DECKER R F. The renaissance in magnesium[J]. Advanced Materials & Processes, 1998, 9: 31-33.
    [11] RATTANA B, YUKIO M, YOSHIHARU M. Dissimilar material laser welding between magnesium alloy AZ31B and aluminum alloy A5052-O[J]. Science and Technology of Advanced Materials, 2005, 6: 199-204.
    [12] LANDKOF B. Magnesium Applications in the electronic industries Magnesium[J]. Israeli, 2000, 50-56.
    [13] EDGAR R L. Global overview on demand and applications for magnesium alloys, magnesium alloys and their applications[M]. New York, 2000, 3-8.
    [14] FRIEDRIEH H, SCHUMANN S. The second age of magnesium research strategies to bring the automotive industry's vision to reality, magnesium alloys and their applications[M]. New York, 2000, 9-26.
    [15] BROWN R E. Application of magnesium alloy[J]. Light Metal Age, 1991, 49(7-8):6-9.
    [16]蒋百灵,张淑芬,吴国建.镁合金微弧氧化陶瓷层显微缺陷与相组成及其耐蚀性[J].中国有色金属学报, 2002, 12(3): 454-457.
    [17] WATANABE H, MUKAI T, ISHIKAWA K. Differential speed rolling of an AZ31 magnesium alloy and the resulting mechanical properties[J]. Journal of Materials Science, 2004, 39: 1477-1480.
    [18]李玉兰,刘江,彭晓东.镁合金压铸件在汽车上的应用[J].特种铸造及有色合金, 1999, 1: 120-122.
    [19]郭洪飞,刘生发,黄尚宇.镁合金在汽车中的应用与发展[J].汽车工艺与材料, 2001, 10: 34-36.
    [20] WANG K K, KANG Y L, ZHANG K. Effects of rare earth elements on the microstructure and properties of magnesium alloy AZ91D[J]. Journal of University of Science and Technology Beijing, 2002, 9(5): 363-366.
    [21] ???EK L, GREGER M, PAWLICA L, DOBRZA?SKI L A, TA?SKI T. Study of selected properties of magnesium alloy AZ91 after heat treatment and forming[J]. Journal of Materials Processing Technology, 2004, 157-158: 466-471.
    [22] SVOBODA M, PAHUTOVáM, KUCHAROVáK, SKLENIKA V, LANGDON T G. The role of matrix microstructure in the creep behaviour of discontinuous fiber-reinforced AZ91 magnesium alloy[J]. Materials Science and Engineering A, 2002, 324(1-2): 151-156.
    [23] LINDEMANN A, SCHMIDT J, TODTE M, ZEUNER T. Thermal analytical investigations of the magnesium alloys AM60 and AZ91 including the melting range[J]. Thermochimica Acta, 2002, 382(1-20): 269-275.
    [24] WANG R M, ELIEZER A, GUTMAN E M. An investigation on the microstructure of an AM50 magnesium alloy[J]. Materials Science and Engineering A, 2003, 355: 201-207.
    [25]胡庆福.镁化合物生产应用[M].北京:化学工业出版社, 2004.
    [26]吴秀铭.中国镁工业的现状与展望[G]//2001年中国国际镁业研讨会论文集,北京: 2001, 11, P1-4.
    [27]王玉辉,孔强玉.柴达木镁资源的开发现状与前景[G]//2001年全国镁行业年会论文集,北京: 2001, 10: 12-15.
    [28] SONG G L, Atrens A. Corrosion mechanism of magnesium alloys[J]. AdvanceEngineer Materials, 1999, 1(1): 11-33.
    [29] AVEDESIAN M M, BAKER H. Magnesium and Magnesium Alloys-ASM Specialty Handbook.ASM international[M]. The Materials Information Society,1999,
    [30] ALEX J Z, DUANE E B. Anodized Coatings for Magnesium Alloys[J]. Metal Finishing, 1994, 92(3): 39-44.
    [31] SONG G L, JOHANNESSON B, HAPUGODA S, STJOHN D. Galvanic corrosion of magnesium alloy AZ91D in contact with an aluminium alloy, steel and zinc[J]. Corrosion Science, 2004, 46: 955-977.
    [32] MCINTYRE N S, CHEN C. Role of impuritie so Mg surfaces under ambient exposure conditions[J]. Corrosion Science, 1998, 40 (10): 1697-1709.
    [33] BARIL G, PEBERE N. The corrosion of pure Magnesium in aerated and deaerated sodium sulphate solutions[J]. Corrosion Science, 2001, 43: 471- 484.
    [34] MORDIKE B L, EBERT T. Magnesium: properties application potential[J]. Materials Science and Engineering A, 2001, 302: 37-45.
    [35]谢希文,过梅丽.材料工程基础[M].北京:北京航空航天大学出版社, 1999.
    [36] MAKAR G L, KRUGER J. Corrosion of magnesium[J]. International Material Reviews, 1993, 38(3): 138-153.
    [37] SONG G L, ATRENS A, WU X L, ZHANG B. Corrosion Behaviour of AZ21, AZ501and AZ91 in Sodium Chloride[J]. Corrosion Science, 1998, 40(10): 1769-1791.
    [38] LUNDER O, AUNE T K R, NISANCIOGLU K. Effect of Mn Additions on the Corosion Behavior of Mould-Cast Magnesium ASRM AZ91[J]. Corrosion, 1987, 43(5): 29-295.
    [39] GODARD H P, JEPSON W B. The Corrosion of Light Metals[M]. NY: John Wiley & Sons, Inc, 1967, 259.
    [40] HAMPEL C A. The Encyclypedia of Electrochemistry[M]. New Rork:Reinhold,1964.
    [41] SHIGEMATSU I, NAKAMURA M, SAITOU N, SHIMOJIMA K. Surface treatment of AZ91D magnesium alloy by aluminum diffusion coating[J]. Journal Of Materials Science Letters, 2000, 19: 473-475.
    [42] WANG A H, XIA H B, WANG W Y, BAI Z K, ZHU X C, XIE C S. Laser cladding of homogenous coating onto magnesium alloy[J]. Materials Letters, 2006, 60: 850-853.
    [43] MAJUMDAR J D, CHANDRA B R, MORDIKE B L, GALUN R, MANNA I. Laser surface engineering of a magnesium alloy with Al+Al2O3[J]. Surface and Coatings Technology, 2004, 179: 297-305.
    [44] IGNAT S, SALLAMAND P, GREVEY D, LAMBERTIN M. Magnesium alloys laser (Nd: YAG) cladding and alloying with side injection of aluminium powder, Applied Surface Science[J]. 2004, 225: 124-134.
    [45] ZHENG B J, CHEN X M, LIAN J S. Microstructure and wear property of laser cladding Al+SiC powders on AZ91D magnesium alloy[J]. Optics and Lasers in Engineering 2010, 48(5): 526-532.
    [46] LIN C S, LIN H C, LIN K M, LAI W C. Formation and properties of stannate conversion coatings on AZ61 magnesium alloys[J]. Corrosion Science, 2006, 48: 93-109.
    [47]李光玉,连建设,牛丽媛,江中浩,蒋青. AZ91D镁合金上钼改性锌系磷化膜的制备与研究[J].高等学校化学学报, 2006, 27(5): 817-820.
    [48] HOCHE H, SCHROEDER H J, SCHEERER H, BROSZEIT E, BERGER C. Tribological studies of CrN coated magnesium AZ91 at temperatures up to 250°C[J]. Advanced Engineering Materials, 2002, 4(1-2): 42-51.
    [49] HOLLSTEIN F, WIEDEMANN R, SCHOLZ J. Characteristics of PVD-coatings on AZ31hp magnesium alloys[J]. Surface and Coatings Technology, 2003, 162: 261-268.
    [50] GARCéS G, CRISTINA M C, TORRALBA M, ADEVA P. Texture of magnesium alloy films growth by physical vapour deposition (PVD) [J]. Journal of Alloys and Compounds, 2000, 309: 229-238.
    [51]谭昌瑶,王钧石.实用表面工程技术[M].北京:新时代出版社, 1998.
    [52] JIANG Y F, GUO X W. Corrosion protection of polypyrrole electrodeposion on AZ91 magnesium alloys in alkaline solutions[J]. Synthetic Metals, 2003, 139: 335-339.
    [53] TRUONG V T, LAI P K, MOORE B T. Corrosion protection of magnesium by electroactive polypyrrole paint coatings[J]. Synthetic Metals, 2000, 110: 7-15.
    [54] YUKIO Y, MAKOTO F, NAOHARU M. Formation of highly corrosion resistant coating film on magnesium alloy material[P]. JP Pat, 7204577, 1995.
    [55] MORI K, HIRAHARA H, OISHI Y. Effect of triazine dithiols on the polymer plating of magnesium alloys[J]. Materials Science Forum, 2000, 350: 223-234.
    [56] DEL ARNO B, RORNAGNOLI R, VETERE V F, HERNANDEZ I S. Study of the anticorrosive properties of zinc phosphate in vinyl paints, Progress in Organic Coatings[J]. 1998, 33: 28-35.
    [57] FEDRIZZI L, DEFLORIAN F, ROSSI S, FAMBRI L, BONORA P L. Study of the corrosion behaviour of phosphatized and painted industrial water heaters[J]. Progressin Organic Coatings, 2001, 42: 65-74.
    [58] SHARMA A K, SURESH M R, BHOJRAJ H, NARAYANAMURTHY H, SAHU R P. Electroless Nickel Plating on Magnesium Alloy[J]. Metal Finishing, 1998, 3: 10-18.
    [59] RAJAN AMBAT, ZHOU W. Electroless nickel-plating on AZ91D magnesium alloy: effect of substrate microstructure and plating parameters[J]. Surface and Coatings Technology, 2004, 179: 124- 134.
    [60]叶宏,冯燕熹,王希山.镁合金化学镀镍工艺研究[J].表面技术, 2002, 31(6): 32-36.
    [61] GRAY J E, LUAN B. Protective coatings on magnesium and its alloys-a critical review[J]. Journal of Alloys and Compounds, 2002, 336(1-2): 88- 113.
    [62]刘怀新,宫远平,郝献超,王晓民,周婉秋.挤压态AZ31D镁合金化学镀镍工艺及镀层性能研究[J].沈阳师范大学学报(自然科学版), 2005, 23(2):190- 192.
    [63] XIANG Y H. A study on surface state during the oretreatment of electroless nickel plating on magnesium alloys[J]. Transactions of the Institute of Metal Finishing, 2001, 79(1): 30-35.
    [64] GU C D, LIAN J S, LI G Y, et al. Direct electroless nickel plating on AZ91D magnesium alloy from a sulfate solution and its deposition mechanism[J]. Transactions of Materials and Heat Treatment, 2004, 25(5): 1098-1101.
    [65] HUO H W, LI Y. WANG F H. Corrosion of AZ91D magnesium alloy with a chemical conversion coating and electroless nickel laye[J]. Corrosion Science, 2004, 46: 1467- 1477.
    [66]牛丽媛,李光玉,江中浩,孙丽萍,韩冬,连建设.镁合金镀镍磷合金及无铬前处理工艺的研究[J].吉林大学学报(工学版), 2006, 36(2): 148- 152.
    [67] LIAN J S, LI G Y, NIU LY, GU C D, JIANG Z H, JIANG Q. Electroless Ni-P deposition plus zinc phosphate coating on AZ91D magnesium alloy[J]. Surface and Coatings Technology, 2006, 200: 5956- 5962.
    [68]陈长军,王东生,郭文渊,王茂才.镁合金激光表面改性研究进展[J].材料保护, 2003, 36(1): 25 - 26.
    [69]赵文轸,王汉功.国外铝合金激光表面改性研究进展[J].表面工程, 1996, 1: 43-47.
    [70]陈宝清.离子镀及溅射技术[M].国防工业出版社出版,北京, 1990, 11, 259-263.
    [71] VILARIGUES M, ALVES L C, NOGUEIRA I D. Characterisation of corrosion products in Cr implanted Mg surfaces[J]. Surface and Coatings Technology, 2002,158-159, 328-333.
    [72] TIAN X B, WEI C B, YANG S Q, FU R K Y, CHU P K. Corrosion resistance improvement of magnesium alloy using nitrogen plasma ion implantation[J]. Surface and Coatings Technology, 2005, 198, 454-458.
    [73]陈学定,韩文政.表面涂层技术[M].机械工业出版社出版,北京, 1994年5月, 147-150.
    [74] HILLIS J E. Surface Engineering of Magnesium Alloys[J]. Matrials Park, OH: ASM International, 1994, 819-834.
    [75]江田弘.传感器应用[J].传感器技术, 1990, 10(8): 34-36.
    [76] GU C D, LIAN J S, LI G Y, NIU L Y, JIANG Z H. Electroless Ni-P plating on AZ91D magnesium alloy from a sulfate solution[J]. Journal of Alloys and Compounds, 2005, 391, 104-109.
    [77] UMEHARA H, TAKAYA M, TERAUCHI S. Chrome-free surface treatments for magnesium alloy[J]. Surface and Coatings Technology, 2003, 169-170: 666-669.
    [78] CONZALEZ-NUNEZ M A, NUNEZ-LOPEZ C A, SKELDON P, THOMPSON G E, KARIMZADEH H, LYON P, WILKS T E. A non-chromate conversion coating for magnesium alloys and magnesium-based metal matrix composites[J]. Corrosion Science, 1995, 37(11): 1763-1772.
    [79] ZHANG Y J, YAN C W, WANG F H, LOU H Y, CAO C N. Study on the environmentally friendly anodizing of AZ91D magnesium alloy[J]. Surface and Coatings Technology, 2002, 161: 36-43.
    [80] Chen X M, Li G Y, Lian J S, Jiang Q. An organic chromium-free conversion coating on AZ91D magnesium alloy[J]. Applied Surface Science 2008, 255: 2322–2328.
    [81]郭洪飞,安茂忠,刘荣娟.镁及其合金表面化学转化处理技术[J].轻合金加工技术, 2003, 31(8): 35-38.
    [82] NIU LY, JIANG Z H, LI G Y, GU C D, LIAN J S. A study and application of zinc phosphate coating on AZ91D magnesium alloy[J]. Surface and Coatings Technology, 2006, 200, 3021-3026.
    [83]杨宁,龙晋明.稀土钝化-金属防腐蚀表面处理新技术[J].稀土, 2002, 23(2): 55-62.
    [84] FUMIHIROS, YOSHIHIKO A, TAKENORI N. Corrosion Behavior of Magnesium Alloys with Different Surface Treatments[J]. Journal of Japan Institute of Light Metals, 1992, 42(12): 752-758.
    [85]张洪生.植酸在金属表面防护处理中的应用[J].材料保护, 2000, 33(3): 18-22.
    [86]张洪生.无毒植酸在金属防护中的应用[J].电镀与精饰, 1999, 18(4): 38-41.
    [87]陈洪希.肌醇六磷酸酯在低温磷化液中的应用[J].四川化工与腐蚀制, 2000, 3(4): 7-10.
    [88] DABALáM, BRUNELLI K, NAPOLITANI E, MAGRINI M. Cerium-based chemical conversion coating on AZ63 magnesium alloy[J]. Surface and Coatings Technology, 2003, 172: 227-232.
    [89] BRUNELLI K, DABALA M, CALLIARI I, MAGRINI M. Effect of HCl pretreatment on corrosion resistance of cerium-based conversion coatings on magnesium and magnesium alloys[J]. Corrosion Science, 2005, 47: 989-1000.
    [90]张勇,许越,周德瑞.稀土铈对AZ91镁合金表面腐蚀性能的影响[J].哈尔滨工业大学学报, 2002, 34(3): 376-378.
    [91] BERNAL S, BOTANA F J, CALVINO J J, MARCOS M, PéREZ-OMIL J A, VIDAL H. Lanthanide salts as alternative corrosion inhibitors[J]. Catalysts and other application, 1995, 225(1-2): 638-641.
    [92]张丽丽,王桂香,董国君,郭艳.镁合金双稀土转化膜的耐蚀性能研究[J].材料保护,2009,12: 30-34.
    [93] RUDD A L, BRESLIN C B, Mansfeld F. The corrosion protection afforded by rare earth conversion coatings applied to Magnesium[J]. Corrosion Science, 2000, 42(2): 275-288.
    [94] HAWKE D, ALBRIGHT D L. A Pbosphate-Permanganate Conversion Coating for Magnesium[J]. Metal Finishing, 1995, 10: 34-38.
    [95] KWO Z C. Conversion-coating Treatment for Magnesium Alloys by a Permanganate-phosphate Solution[J]. Materials Chemistry and Physics, 2003, 80, 191-200.
    [96]赵明,吴树森,罗吉荣.镁合金无铬表面处理现状和前景[J].铸造, 2003, 35(7): 462-465.
    [97]尹延红,佟国栋,刘海峰.压铸镁合金表面处理工艺研究[J].特种铸造及有色合金, 2004, 1: 53-54.
    [98]张永君,严川伟.压铸镁合金AZ91D环保型阳极氧化电解液配方研究[J].腐蚀与防护, 2002, 23(4): 148-151.
    [99]周婉秋,单大勇,韩恩厚.镁合金无铬化学转化膜的耐蚀性能研究[J].材料保护,2002, 35(2): 12-14.
    [100] HEMINGWAY R, LAKES P. Plant Polyphenols[M]. New York: Plenum Press, 1992.
    [101] LINDERT A, MAURER J I. "New Polymeric Materials for Metal Conversion Coating Applications," ACS Symposium Series[C], ISSN 0097-6156, 322, 1937, 209-215.
    [102] KULICK L, SAAD K I. Protective coatings metals and other surfaces[P]. U.S. Patent. 3,975,214, 1976.
    [103] DOLLMAN D Y. Non-chrome-containing conversion coatings for zinc and zinc alloys: Environmentally friendly alternatives provide equal or better adhesion and corrosion resistance as conventional methods[P]. U.S. Patent. 4,191,596, 1980.
    [104] GUST J, SUWALSKI J. Use of Mossbauer Spectroscopy to Study Reaction Products of Polyphenols and lron Compounds[J]. Corrosion,1994, 50: 355-365.
    [105]陈怒华.水乳型铁锈转化涂料[J].电镀与涂饰,1995(4):41-42
    [106]徐军,B06-89带锈涂料的生产[J].材料保护,1995,12: 30-33
    [107]周金保.镀锌层的无铬钝化工艺新进展[J].电镀与环保, 1991(5):8-11
    [108]周金保.铜合金的铬酸盐钝化及其代替工艺的新进展[J].表面技术,1990(5):1-7
    [109] CHEN X M, LI G Y, LIAN J S, JIANG Q. Study of the formation and the growth of Tannic acid-based conversion coating on AZ91D magnesium alloy[J]. Surface and coating, 2009, 204(5): 736-747.
    [110]赵娜如,王迎军,陈晓峰,南开辉,杨宇霞. Sol-Gel生物活性玻璃降解性能及矿化沉积的体外模拟研究[J].材料科学与工程学报,2004, 5:723-725.
    [111]董利民,王晨,田杰谟,昝青峰,李兆新.类骨磷灰石的结构分析与形成机制研究[J].功能材料,2004,35:2397-2400.
    [112]王建平.实用磷化及相关技术[M].北京:机械工业出版社, 2009, 1-12.
    [113] GB/T 6807-200:钢铁工件涂装前磷化处理技术条件.
    [114] 136 GB/T10125-1997:人造气氛腐蚀试验盐雾试验.
    [115] GB/T17720-1999:金属覆盖层孔隙率试验评述.
    [116] GB/T17721-1999:金属覆盖层孔隙率试验铁试剂试验.
    [117]牛丽媛.镁合金锌系磷化膜成膜机理、微观结构及性能的研究[D].长春:吉林大学材料学院,2006.
    [118] ASTM B879-97Standard: Practice for applying con-electrolytic conversion coatings on magnesium and magnesium Alloys.
    [119] ASTM D132-67 Standard : Practices for preparation of magnesium alloy surfaces for painting
    [120]吴纯素.化学转化膜[M].北京:化学工业出版社,1998.
    [121] A.M.Al-Mayouf, Corrosion of iron in aqueous solutions containing a chemical cleaning agent, Desalination 1997, 114:29-36.
    [122] XPS data: http://srdata.nist.gov/xps/default.aspx.
    [123] XIONG G, PAL U, SERRANO J G, UCER B K, WILLIANMS R T, photoluminescentand FIIR study of Zno nanoparticles: the iopurity and defect perspective [J]. Physical Status Solidi c, 2006, 3:3577-3581.
    [124] SIDDIQUEY I A, FURUSAWA T, SATO M, SUZUKI N, Microwave-assisted silica coating and photocatalytic axtivities of Zno nanoparticles[J]. Materials Research Bulletin, 2008, 43:3416-3424.
    [125] WENG D, JOKIEL P, UEBLEIS A, BOEHNI H. Corrosion and protection characteristics of zinc and manganese phosphate coatings[J]. Surface and Coatings Technology, 1995, 88: 147-156.
    [126] LI G Y, LIAN J S, NIU L Y, JIANG Z H. A Zinc and Manganese Phosphate Coating on Automobile Iron Castings[J]. ISIJ International, 2005, 45(9): 1326– 1330.
    [127] CAMPESTRINI P, VAN WESTING E P M, DE WIT J H W. Influence of surface preparation on performance of chromate conversion coatings on Alclad 2024 aluminium alloy Part I: Nucleation and growth[J]. Electrochimica Acta, 2001, 46: 2553 - 2571.
    [128]周婉秋,单大勇,韩恩厚,等.镁合金无铬化学转化膜的耐蚀性能研究[J].材料保护, 2002, 35(2): 12-14.
    [129] BARIL G, BLANC C, PEBERE N, ELECTROCHEM J. AC Impedance Spectroscopy in Characterizing Time-Dependent Corrosion of AZ91 and AM50 Magnesium Alloys Characterization with Respect to Their Microstructures[J]. Joural of the Electrochemical Society, 2001, 148 (12): B489-B496.
    [130] NAKATSUGAWA I, KANADO S, NINOMIYA R, KUBOTA K. Corrosion of magnesium alloys containing rare earth elements [J]. Corrosion Reviews, 1998, 16(1-2):139-157.
    [131] ZHU D, VAN OOIJ W J. Corrosion protection of AA 2024-T3 by bis-[3-(triethoxysilyl)propyl]tetrasulfide in neutral sodium chloride solution. Part 1: corrosion of AA 2024-T3[J]. Corrosion Science, 2003,45: 2163-2171.
    [132] STAIGER M P, PIETAK A M, HUADMAI J, DIAS G. Magnesium and its alloys as orthopedic biomaterials: A review [J]. Biomaterials, 2006, 27:1728-1734.
    [133] GLEDHILL H C, TURNER I G, DOYLE C. In vitro dissolution behaviour of two morphologically different thermally sprayed hydroxyapatite coatings [J]. Biomaterials, 2001, 22: 695-673.
    [134] SONG W H, JUN Y K, HAN Y, HONG S H. Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application[J]. Biomaterials, 2004, 25: 3341-3347.
    [135] LI L, Gao J, WANG Y.Calculation of acoustoelectric current in quasi one-dimensional electron channel[J]. Surface and Coating Technology, 2004, 185: 92-100.
    [136] Song Y W, Shan D Y, Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application[J]. Mater. Lett. 2008, 62: 3276-3279.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700