用户名: 密码: 验证码:
深层次致矿异常信息提取及其找矿应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿床作为一定异常地质过程的产物,成矿的原因是“地质异常事件的耦合”,研究地质异常的目的是揭示“矿致因素”和“找矿标志”,“地质异常找矿方法”的关键技术是研究“致矿地质异常”,提高对深层次致矿异常信息的识别成为研究地质异常的重点和难点所在。同时,基于地质异常的成矿预测是一种有序性很强,突出了致矿异常信息定量提取的成矿预测方法,在成矿预测的过程中,查明不同尺度、不同类型的致矿地质异常与不同级别找矿地段之间的关系是基于地质异常的成矿预测方法的基础,也是找矿的前提和选靶的依据。
     本次研究是在地质异常致矿理论的指导下,通过不同的信息提取方法,获取不同层次的致矿异常信息,重点探索和研究了多元统计分析方法、地质统计学方法、多重分形滤波和二维经验模分解(BEMD)等非线性方法在深层次致矿异常信息提取中的应用,并在此基础上开展了基于地质异常的多尺度聚焦找矿方法的实际探索应用,研究结果表明:
     1.以我国Cu-Au-PGE重要的成矿远景区滇东地区为研究区,采用因子分析、地质统计学和多重分形S-A滤波等方法对滇东地区复杂地质背景下的不同层次的Pt-Cu-Au矿化异常进行定量提取与评价。研究结果表明:(1)因子分析结果能够揭示成矿背景和致矿异常元素组合及其空间分布特征;(2)变差函数分析能有效揭示成矿元素在区域上的空间变化特征,泛克立格法能有效揭示区域异常;(3)多重分形滤波法能有效提取深层次局部矿化异常信息。
     2.系统论述了二维EMD方法原理,编制了MATLAB环境下的二维EMD处理模块,并以鲁西铜石金矿田为研究区,成功的将二维EMD方法应用于铜石金矿田重力数据分解,获取了比傅氏变换处理结果更精细、更客观反映铜石金矿田深部地质结构、与金矿化有关的致矿异常信息。然后结合其地质特征,构建了铜石金矿田地质地球物理成矿模型,该成矿模型显示具有环形重力异常特征的接触交代矿化带是寻找金矿的远景地段,而在铜石杂岩体北东侧,早白垩世火山沉积岩之下,应是寻找隐伏金矿床的潜在地段。
     3.不同的数学方法可用以解决不同的地质成矿问题,因子分析和地质统计学等线性方法在研究区域成矿地质背景、揭示成矿元素及其元素组合在区域上的空间变化性特征上具有显著优势;多重分形滤波方法对提取局部矿化异常信息是有效的;二维EMD方法可多层次分解复杂的叠加场信号从而获取深部地质构造与矿化有关的致矿异常信息,以上方法可在深层次致矿异常信息提取中得到推广应用。
     4.根据基于地质异常的“5P”找矿地段逐步逼近法的思路,将大尺度下圈定的滇东Pt、Pd地球化学省定义为寻找Pt矿的找矿可行地段,对该地段实施多尺度聚焦找矿方法的实际应用,应用变差函数分析不同尺度下Pt含量的空间变化特征及控制因素,依据不同尺度的勘查数据,定量圈定了寻找Pt矿的找矿有利地段和资源潜在地段,在实施聚焦找矿过程中,多尺度的勘查数据揭示了多层次的控矿因素组合,获取致矿信息量逐渐增多,找矿靶区逐渐缩小而资源量显著浓集,靶区级别逐渐增高。因此,多尺度聚焦找矿战略具有从全球到成矿省尺度的高性能选靶能力,该方法具有快速易实施的特点,适合在勘查程度较低地区推广应用。
As the result of certain geological anomalous process, deposit is located at the area where the spatio-temporal coincidence of a series of geological anomalies. The aim of geological anomaly research is to reveal the mineral deposit controlling factors and indictor, and the key of quantitative mineral resources assessment based on geological anomaly is researching the geoanomaly associated with mineralization. Therefor, how to recognize the conceal geoanomaly information associated with mineralization effectively is becoming the difficulty and the key point of geological anomaly research. Meanwhile, quantitative mineral resources assessment based on geological anomaly is the theory in sequence and emphasized on quantitative extraction of geoanomaly information associated with mineralization. In mineral resources prediction process, how to identify the relationship between multi-scale and multi-type geoanomaly associated with mineralization and different stage of ore-finding process is the basic of quantitative mineral resources assessment based on geological anomaly, the precondition of ore-finding and the evidence of target selection.
     This study is based on the geological anomaly ore-forming theory, using different information processing techniques to obtain geoanomaly information associated with mineralization in different level, specially focus on researching and applying multi-statistical analysis, geostatistics, multi spectrum and area filtering (S-A) technique, and Bidimensional empirical mode decomposition (BEMD) method on extracting the conceal geoanomaly information associated with mineralization, then, explore application of the telescoping ore targets at multiple scales base on geological anomaly. The studied results show as follows.
     1. Eastern Yunnan area-the important Cu-Au-PGE ore-forming perspective area in China is selected as the study area. The factor analysis, geostatistical and multifractal S-A filtering method are applied to quantitatively extract and estimate the Pt-Cu-Au mineralization anomalies from the complicated geological background. The research shows that: (1) The results of factor analysis illustrate that there are three element associations existing in Eastern Yunnan area; (2) The semivariation analysis illustrates that the concentrations of Pt, Cu and Au are continuous in NE trend (9°~18.6°) and the maximal ranges are about 95km. The geochemical maps obtained by the Universal Kringing imply the concentration distributions of Pt, Cu and Au are mainly controlled by the faults and magmatism; (3) The multifractal S-A filtering method characterizes the detailed information of local mineralization, extract the conceal mineralization information.
     2. A bidimensional empirical mode decomposition (BEMD) program on a MATLAB platform was effectively used to handle gravity signals for the Tongshi gold field. This yielded a three-dimensional intrinsic mode function image that meticulously depicts the spatial distribution relationship between various gold deposits and the different geological units of the gold field rather than Fourier transform. By combining the IMF image with geological features yields a geological–geophysical pattern for the Tongshi gold field showing the formation and distribution of gold deposits, which shows that concealed gold deposits might be discovered on the northeastern side of the Tongshi intrusive complex and the contact metasomatic zone covered by early Cretaceous volcanic sedimentary rocks.
     3. Different geological and ore-forming problems can be solved by different geomathematic methods. The linear geomathematic methods such as the factor analysis and geostatistics can be used to explore the regional ore-forming background and the regional spatial variability of the ore-forming elements and the element associations, while the nonlinear geomathematic methods such as S-A method are efficient in extracting the local ore-forming information and the BEMD method are efficient in decomposing the complex superimposed field singles such as gravity data into several components to obtain the geoanomaly information associated with mineralization under cover. These methods are of benefit to the concealed ore-forming anomaly information extraction.
     4. Following the method of quantitative delineation of“5P”ore finding area, the Pt-Pd geochemical province in Eastern Yunnan was defined as permissive ore-finding area for Pt and the telescoping ore targets at multiple scales was applied in this area. The semi-variograms were used to quantitatively describe the variability of Pt anomalies and further analyze the factors controlling the variability, preferable ore-finding area and potential mineral resource area were quantitatively delineated based on multi-scale exploration data. During the process of telescoping ore targets, multi level of ore-control factors were revealed while the amount of geoanomaly information gradually increased, the target areas gradually decreased while the Pt resource amount concentrated singularly. So, the telescoping ore targets at multiple scales has a good exploration function that efficiently focuses on ore targets and easily and quick to apply, especially in the green field exploration.
引文
Agterberg and Banerjee, 1969. Stochastic model for the deposition of varves in glacial lake Barlow-Ojibway, Ontario, Canada: Can. Jour. Earth Sciences, 6(4):625-652.
    Agterberg and Fabbri, 1973. Spatial correlation of stratigraphic units quantified from geological maps: Computer & Geosciences, 4(3):284-294.
    Agterberg F P, Cheng Q and Wright D F, 1993. Fractal modeling of mineral deposits. Proceedings 24th APCOM Symposium, Canadian Inst. Mining, Metallurgy, and Petroleum Engineers, v. 1:43-53.
    Agterberg, 1967. Computer techniques in geology: Earth Sciences Reviews, 3(1):47-77.
    Agterberg, 1974.Geomathematics:Mathematical Background and Geo-Science Application. Elsevier Scientific Publishing Company, Amsterdam London New York.
    Agterberg, 2007. New applications of the model of de Wijs in regional geochemistry. Math Geol, 39(1): 1-25.
    Bath M, 1974. Spectral analysis in geophysics. Elsevier Scientific Publishing Company, Amsterdam London New York.
    Blenkinsop T G and Sanderson D J, 1999. Are gold deposits in the crust fractals? A study of gold mines in the Zimbabwe craton, in McCaffrey K J W, Lonergan L, and Wilkinson J J, eds., Fractures, Fluid Flow and Mineralization: Geological Society, London, p. 141-151, Special Publication 155.
    Bonham-Carter, G.F, 1994. Geographic information systems for geoscientists: modeling with GIS, Pergamon press, Oxford.
    Bradshaw G A and Spies T A, 1992. Characterizing canopy gap structure in forests using wavelet analysis. Ecology, 80:205-215.
    Buhmann M D, 2004. Radial Basis Functions: Theory and Implementations. Cambridge University Press.
    Burenkov E K, Golovin A A, Morozova I A, 1999. Multi-purpose geochemical mapping (1: 1000000) as basis for the integrated assessment of natural resources and ecological problems. J Geochem Explor, 66 (1-2), 159-172.
    Carloson C A, 1991. Spatial distributions of ore deposits: Geology, v. 19, 111-114.
    Carlson R E, Foley T A, 1991. The parameter R2 in Multiquadric interpolation. Computers & Mathematics with Applications, 21(9):29-42.
    Carr J C, Beatson R K, Cherrie J B, et al, 2001. Reconstruction and Representation of 3D Objects with Radial Basis Function. In Computer Graphics (Proceeding of ACM SIGGRAPH 2001), 67-76.
    Carr J C, Fright W R, 1997. Surface interpolation with radial basis functions for medical imaging, Transactions on Medical Imaging, IEEE, 16(1), 96-107.
    Chen Q, Huang N E, Riemenschneider S, et al, 2006. A B-Spline approach for empirical mode decompositions. Advances in Computational Mathematics, 24: 171-195.
    Chen Y Q , Xia Q L, Liu H G, 2000. Delineation of potential mineral resources region based on geo-anomaly unit. Earth-sciences—Journal of China University of Geosciences, 11(2):158-163.
    Chen Y Q, Huang J N, Zhang S Y, 2007. Application of Multi-fractal Filtering in Geochemistry Data Decomposing-A case study from the south region of“Sanjiang ore-forming belt”,South-western China. Proceedings of Fifth Decennial International Conference on Mineral Exploration, Exploration 07, Volume two (Edited by Bernd Milkereit), Totronto, 2007:985-988.
    Chen Y Q, Zhao P D, Chen J G, et al, 2001. Application of the geo-anomaly unit concept in quantitative delineation and assessment of gold ore targets in western Shangdong uplift terrain, eastern China. Natural Resources Research, 10(1):35-49.
    Cheng H X, Shen X C, Xie X J, 1997. Wide-spaced floodplain sediment sampling covering the whole of China: Pilot survey for International Geochemical Mappin. In: Xie X J, ed. Proceedings of the 30th International Geological Congress, Vol. 19: Geochemistry. 89-109.
    Cheng Q M, 1995. The perimeter-area fractal model and its application in geology. Mathematical Geology, 27(7):64-77.
    Cheng Q M, 1998. GSI-based methods for mineral resource assessment: Mitchell-Sulphurest area, Canada. Ph. D. dissertation. University of Ottawa.
    Cheng Q M, 1999. Spatial and scaling modeling for geochemical anomaly separation. Journal of Exploration Geochemistry, 65: 175-194.
    Cheng Q M, 2003. No-linear mineralization model and information processing methods forprediction of unconventional mineral resources. Earth-sciences—Journal of China University of Geosciences (in Chinese), 28(4):1-10.
    Cheng Q M, 2004. A new model for quantifying anisotropic scale invariance and for decomposition of mixing patterns . Mathematical Geology, 36(3):345-360.
    Cheng Q M, 2008. No-linear theory and power-low models for information integration and mineral resources quantitative assessments. Math Geosciences, 40(5):503-532.
    Cheng Q M, Agterberg F P and Ballantyne S B, 1994. The separation of geochemical anomalies from background by fractal methods: Jour. Geochem. Exploration, 51(2), 109-130.
    Cheng Q M, and Agterberg F P, 1995, Multifractal modeling and spatial point processes: Math. Geol., v. 27, no. 7, p. 831-845.
    Cheng Q M, Xu Y G, and Grunsky E, 1999. Integrated spatial and spectrum analysis for geochemical anomaly separation, in Lip-pard, S. J., Naess, A., and Sinding-Larsen, R., eds., Proc. Intern Assoc. for Math. Geology Meeting, (Trondheim, Norway), v. 1, p. 87-92.
    Chork and Mazzucchelli C, 1989. Spatial filtering of exploration geochemical data using EDA and robust statistics. Jour. Geochem. Exploration, 34(3): 221-243.
    Claude and Eric, 1995. Scaling laws and geochemical distributions. Earth and Planetary Science Letters, 132:1-13.
    Cohen D R, Kelley D L, Anand R, 2007. Major advances in exploration geochemistry, 1999~2007.
    In: Milkereit B, ed. Exploration in the New Millennium: Proceedings of the Fifth Decennial International Conference on Mineral Exploration, Toronto. Decennial Mineral Explo-ration Conference Publisher:3-18.
    Coveney R M, Murowchick J B, Grauch R I, et al, 1992. Field relation, origins, and resource implications for platiniferous molybdenum-nickel ores in black shales of South China. Explor Min Geol, 1(1): 21-28.
    Coveney R M, Nansheng C, 1991. Ni-Mo-PGE-Au-rich ores in Chinese black shales and speculations on possible analogues in the United States. Miner Depos, 26: 83-88.
    Davis J C, 1973. Statistical and Data Analysis in Geology. John Wiley & Sons. Deutsch CV, Journel A G, 1998. GSLIB: Geostatistical Software Library and User’s Guide. Oxford: Oxford University Press.
    Doe B R, 1991. Source rocks and the genesis of metallic mineral deposits. Glob Tecton Metallog,4: 13-19.
    Eramian M G, Schincariol R A, Mansinha L and Stockwell R G, 1999. Generation of Aquifer Heterogeneity Maps Using Two-Dimensional Spectral Texture Segmentation Techniques. Mathematical Geology, 31(3):327-348.
    Flandrin P; Rilling G; Goncalves P, 2004. Empirical mode decomposition as a filter bank, Signal Processing Letters, IEEE, Vol. 11, Issue 2, 112-114.
    Foley T A, 1987. Interpolation and approximation of 3D and 4D scattered data. Computers & Mathematics with applications, 13: 711-740.
    Ford A et al, 2008a. Evaluating geological complexity and complexity gradients as controls on copper mineralization, Mt Inlier. Australian Journal of Earth Sciences. 55: 12-23.
    Ford A et al, 2008b. Combining fractal analysis of mineral deposit clustering with weights of evidenve to evaluate patterns of mineralization: Application to copper deposits of the Mount Isa Inlier, NW Queensland, Australia. Ore Geology Reviews, 33:435-450.
    Franke R, 1979. A critical comparison of some methods for interpolation of scattered data. Naval Postgraduate School, Technical Report NPS-53-79-003.
    Franke R, 1982. Scattered data interpolations: tests of some methods. Mathematics of Computation, 38(157): 181-200.
    Gorelov D A, 1982. Quantitative characteristics of geological anomalies in assessing ore capacity. Internal. Geology Rew., 4: 457-465.
    Griffin W R, 1949. Residual gravity in theory and practice. Geophysics, 14(1): 39-56.
    Groves D I, 2008. Conceptual mineral exploration. Australian Journal of Earth Sciences, 55: 1-2.
    Hardy R L, 1971. Multiquadric Equations of Topography and Other Irregular Surfaces. Journal of Geophysical Research, 76(8): 1905-1915.
    Hardy R L, 1990. Theory and applications of the Multiquadric-Biharmonic method. Computers & Mathematics with applications, 19(8): 163-208.
    Hassan H H, Peirce J W, 2008. Empirical Mode Decomposition(EMD) of potential field data: airborne gravity data as an example. CSEG RECORDER, 25-30.
    Hodkiewicz P F, 2005. Complexity gradients in the Yilgarn Craton: fundamental controls on crustal-scale fluid flow and the formation of world-class orogenic-gold deposits. Australian Journal of Earth Sciences, 52: 831-841
    Howarth R J, 2001. A History of Regression and Related Model-Fitting in the Earth Sciences (1636?-2000). Natural Resources Research, 10(4):241-286.
    Hronsky and Groves, 2008.Science of targeting: Definition, strategy, targeting and performance measurement. Australian Journal of Earth Sciences, 55: 101-122.
    Huang N E, 2006. Beyond the Fourier transform: coping with nonlinear, nonstationary time seriers. www. Physiconet.org/events/hrv-2006/huang.pdf.
    Huang N E, Chern C C, Huang Kang et al, 2001. A New Spectral Representation of Earthquake Data: Hilbert Spectral Analysis of station Tcu129, Chi-Chi, Taiwan, 21 September 1999. Bulletin of Seismological Society of America, 91(5): 1310-1338.
    Huang N E, Shen Z, Long S R, et al, 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc Roy Soc Lond, Ser. A 454: 903-995.
    Johnston K, Ver Hoef J M, Krivoruchko K et al, 2001. Using ArcGIS Geostatistical Analyst. GIS by ESRI.
    Kansa E J, 1990a. Multiquadrics-A scattered data approximation scheme with applicati0ns to computational fluid-dynamics-I Surface approximations and partial derivative estimates. Computers & Mathematics with Applications, 19(8/9): 127-145.
    Kansa E J, 1990b. Multiquadrics-A scattered data approximation scheme with applicati0ns to computational fluid-dynamics-II Solutions to parabolic, hyperbolic and elliptic partial differential equations, Computers & Mathematics with Applications, 19(8/9): 147-161.
    Keays, R R, Scott R B, 1976. Precious metals in ocean-ridge basalts: implications for basalts as source rocks for gold mineralization. Econ Geol, 71(4): 705-720.
    Krige D G, 1966. Two-dimensional weighted moving average trend surfaces for ore valuation[with discussion]. Jour. South African Inst. Mining and Metallurgy. Spec. Symp. Issue:13-79.
    Lovejoy S et al, 2005. Multifracal simulation of the Earth’s surface and interior: anisotropic singularities and morphology. Proceeding of IAMG’2005: GIS and Spatial Analysis(Editors: Qiuming Cheng,et al) , v.1:37-54.
    Mandellbrot, 1962. Statistics of natural resources and the law of Petro: Watson Research Center, New York, LBM Research note NC-146,131.
    Matheron G, 1963 Principles of geostatistics. Econ. Geology, 58: 1246-1266.
    Maus S., 1996, Depth estimation from the scaling power spectrum of potential fields? Geophys. Jour. Intern., v. 124, no.1: 113-120.
    McCaffrey K J W, and Johnston J D, 1996, Fractal analysis of mineralized vein deposit. Curraghinalt gold deposit, County Tyrone: Miner. Deposita, v. 31: 52-58.
    Milne B T, 1991.Heterogeneity as a multi-scale characteristic of landscapes. Kolasa J and Waters W E(eds.). Ecological Heterogeneity, New York: Springer Verlag:69-84
    Mugglestone, M. A., 1998, Detection of geological lineations on aerial photographs using two-dimensional spectral analysis. Conputer & Geosciences, v.24(8): 771-784.
    Nunes J C, Bouaoune Y, Delechelle E, et al, 2003. Image analysis by bi-dimensional empirical mode decomposition. Image and Vision Computing, 21: 1019-1026.
    Nunes J C, Guyot S, Delechelle E, 2005. Texture analysis based on local analysis of he Bidimensional Empirical Mode Decomposition. Machine Vision and Applications, 16: 177-188.
    Pan G C, 2001. Introduction to Fundamental Geostatistical Techniques for Resources Estimation. Short Course Presented for Chinese Academy of Geosciences. Beijing, China.
    Paterson N R, 2003. Geophysical developments and mine discovery in the 20th century. The Leading Edge, 22: 558-561.
    Paul D Agnew, 2004. Applications of Geochemistry in Targeting With Emphasis on Large Stream and Lake Sediment Data Complications, SEG Conference, Sydney.
    Roberts S, Sanderson D J, and Gumiel P, 1998, Fractal analysis of Sn-W mineralization from Central Iberia-insights into the role of fracture connectivity in the formation of an ore deposit: Econ. Geol., v. 93, no. 3, p. 360-365.
    Sanderson, D. J., Roberts, S., and Gumiel, P., 1994, A fractal relationship between vein thickness and gold grade in drillcore from La Codosera, Spain: Econ. Geol., v. 89, p. 68-173.
    Sharara N A, Wilson G C, Rucklidge J C, 1999. Platinum-group elements and gold in Cu-Ni-mineralized peridotite at Gabbro Akarem, East-ern desert, Egypt. Can Mineral, 37(5): 1081-1097.
    Starostin V I, Yapaskurt Q V, 2007. Au-Cu black shale formations. Earth Sci Front, 14(6): 245-256.
    Tukey J W, 1970. Some further inputs, in Merriam, D F ed., Geostatistics: Plenum, New York,163-174.
    Turcotte D L, 1997. Fractals and chaos in geology and geophysics(second edition). Cambridge University Press.
    Wang M Q, Gao Y Y, Liu Y H, 2008. Progress in the collection of Geogas in China. Geochem: Explor Environ Anal, 8(1): 183-190.
    Wang X Q, Xie X J, 1999. Delineation of regional geochemical anomalies penetrating through thick cover in concealed terrains: Case history from the Olympic dam deposit, Australia. J Geochem Explor, 66(1-2), 85-97.
    Wold H A, 1949. A large sample test of moving average. Jour. Royal Stat. Society, B11(1): 297-305.
    Xie X J, Cheng H X, 2001. Global geochemical mapping and its implementation in the Asia-Pacific region. Appl Geochemi, 16: 1309-1321.
    Xie X J, Liu D W and Xiang Y C, 2004 Geochemical blocks for predicting large ore deposits—concept and methodology. Journal of Geochemical Exploration, 84: 77-91.
    Xie X J, Mu X Z, Ren T X, 1997. Geochemical mapping in China. J Geochem Explor, 60: 99-113.
    Xie X J, Wang X Q, 1999. Orientation study of strategic deep penetration geochemical methods in the central Kyzylkum desert terrain, Uz-bekistan. J Geochem Explor, 66(1-2): 135-143.
    Xu Y and Cheng Q, 2001. A multifractal filter technique for geochemical data analysis from Nova Scotia , Canada. J . Geochemistry: Exploration, Analysis and Environment, 1 (2):147-156.
    Yan M C, Chi Q H, 2005. The Chemical Compositions of the Continental Crust and Rocks in the Eastern Part of China. Beijing : Science Press.
    Yao Y B, Liu J G, Shi C, et al, 2002. Multi-quadric Equations Interpolation and its Applications to the Establishment of Crustal Movement Speed Field. Geo-spatial Information Science(Quarterly), 5(2): 1-5.
    Zhao Zhifang et al, 2008. Extraction of Mineral Alteration Zone from ETM+ Data in Northwestern Yunnan, China. Journal of China University of Geosciences, 19 (4), 416-420.
    曹瑜,胡光道,1999.圈定“5P”找矿地段的GIS成矿预测空间模型及其应用.地球科学——中国地质大学学报,24(4):409-412.
    陈建平,胡明铭,李巨初,1999.康滇地轴中南段区域构造格架的遥感地质统计分析.成都理工学院学报, 26(1):78-81.
    陈建平,唐菊兴,付小方等,2008.西南三江中段成矿规律与成矿预测研究.北京:地质出版社.
    陈永清,陈建国,汪新庆,等,2008.基于GIS矿产资源综合定量评价技术.北京:地质出版社.
    陈永清,刘红光,2001.初论地质异常数字找矿模型.地球科学——中国地质大学学报,26(2):129-134.
    陈永清,夏庆霖,2003.黑色页岩含矿建造评价研究现状.地球物理学进展,(2):261-268.
    陈永清,夏庆霖,刘红光,2003.滇东Pt-Pd-Cu含矿建造地球化学特征及其含矿性分析.中国地质,30(3):225-234.
    陈永清,张生元,夏庆霖,等,2006.应用多重分形滤波技术提取致矿地球化学异常—以西南“三江”南段Cu、Zn致矿异常提取为例.地球科学——中国地质大学报.31(6):861-866.
    陈永清,赵鹏大,刘红光,2001.鲁西金矿成矿组分的聚集与演化.地球科学——中国地质大学报, 26(1):41-48.
    陈玉东,2006.地球物理信息处理基础.北京:地质出版社.
    成秋明,2003.矿床模型与非常规矿产资源评价.地球科学——中国地质大学报,28(4):1-10.
    成秋明,2004.空间模式的广义自相似性分析与矿产资源评价.地球科学——中国地质大学报,29(6):733-743.
    成秋明,2006.非线性成矿预测理论:多重分形奇异性-广义自相似性-分形谱系模型与方法.地球科学——中国地质大学报,31(3):337-348.
    成秋明,2007.成矿过程奇异性与矿产预测定量化的新理论与新方法.地学前缘,14(5): 42-53.
    范德廉,张涛,叶杰,等,2000.与黑色页岩有关的超大型矿床.见:涂光炽,等,著.中国超大型矿床(Ⅰ),北京:科学出版社:204-219.
    龚琳,何毅特,陈天佑,1996.云南东川元古宙裂谷型铜矿.冶金工业出版社.
    候增谦,卢纪仁,汪云亮等,1999.峨眉山火成岩:结构、成因与特色,地质论评,45(增刊):885-891.
    胡光道,1990.区域地球化学数学模型研究.见赵鹏大主编:地质勘探中的统计分析.武汉:中国地质大学出版社.
    胡华斌,毛景文,牛树银,等,2005.鲁西平邑归来庄金矿床成矿流体研究.矿物岩石,29(1):38-44.
    来雅文,甘树才,戚长谋,等,2003.峨眉山玄武岩铂钯赋存状态分析.岩矿测试,22(2):121-123.
    李红阳等,2002.峨眉地幔柱与超大型矿床.矿床地质,2002,21 (增刊):148-151.
    李庆谋,成秋明,2004.分形奇异(特征)值分解方法与地球物理和地球化学异常重建.地球科学——中国地质大学报,29(1):109-118.
    林景仟,谭东娟,金烨,1996.鲁西地区中生代火成活动的40Ar/39Ar年龄.岩石矿物学杂志,15(3):213-220.
    卢纪仁,1996.峨眉地幔柱的动力学特征.地球学报,1996,17(4):424-438.
    毛景文,程彦博,郭春丽,等,2008.云南个旧锡矿田:矿床模型及若干问题讨论.地质学报,82(11):1455-1467.
    任治机,朱智华,赵重顺, 1996.云南地体构造与成矿作用.北京:冶金工业出版社.
    沈滨,崔峰,彭思龙,2005.二维EMD的纹理分析及图像瞬时频率估计.计算机设计与图形学学报,17(10): 2345-2352.
    孙华山,赵鹏大,张寿庭,夏庆霖,2005.基于5P成矿预测与定量评价的系统勘查理论与实践.地球科学——中国地质大学学报,30(2):199-205.
    陶琰,胡瑞忠,王兴阵,等,2006.峨眉山大火成岩省Cu-Ni-PGE成矿作用几个典型矿床岩石地球化学特征的分析.矿物岩石地球化学通报,25(3):236-244.
    汪云亮,候增谦,修淑芝等,1999.峨眉火成岩省地幔柱热异常初探.地质论评,1999,45(增刊):876-879.
    王登红,骆耀南,屈文俊,等,2007.中国西南铂族元素矿床地质、地球化学与找矿.北京:地质出版社.
    王敏,孙晓明,2007.华南黑色岩系铂多金属矿床地质地球化学及成因.北京:地质出版社.
    王仁铎,胡光道,1988.线性地质统计学.北京:地质出版社.
    王世称,刘玉强,伊丕厚,等,2003.山东省金矿床及金矿床密集区综合信息成矿预测.北京:地质出版社.
    王学求,申伍军,张必敏,等,2007.地球化学块体与大型矿集区的关系——以东天山为例.地学前缘,14(5):116-123.
    夏庆霖,陈永清,赵鹏大,2003.滇东铂钯地球化学勘查及评价.地质通报,22(9):704-707.
    肖龙,王方正,Hayward Nick,等,2003.新疆伊犁图拉苏地区的线性构造及控矿特征.地球科学——中国地质大学学报,28(2):191-195.
    谢学锦,1997.矿产勘查的新战略.物探与化探, 21(6): 402-410.
    熊德信,孙晓明,石贵勇,2007.云南哀牢山喜马拉雅期造山型金矿带矿床地球化学及成矿模式.北京:地质出版社.
    徐义纲,钟孙霖,2001.峨眉山大火成岩省:地幔柱活动的证据及其熔融条件.地球化学,30(1):1-9.
    徐义纲,2002.地幔柱构造、大火成岩省及其地质效应.地学前缘,9(4):341-353.
    杨勤生,2001.云南东部及邻区黑色岩系内的矿床(化)特征与找矿设想.云南地质,20(1):59-72.
    于学峰,2001.山东平邑铜石金矿田成矿系列及成矿模式.山东地质,17(3-4):59-64.
    於崇文,2003.地质系统的复杂性(上、下册).北京:地质出版社.
    云南省地质矿产局,1990.云南省区域地质志.北京:地质出版社.
    翟裕生,王建平,邓军等,2008.成矿系统时空演化及其找矿意义.现代地质,22(2):143-150.
    张本仁,1989.成矿带地球化学研究的理论构想和方法.北京:地质出版社.
    张成江,1999.峨眉山玄武岩高场强元素特征及峨眉地幔柱轮廓初探.地质论评,1999,45(增刊) :776-779.
    张成江,李晓林,1998.峨眉山玄武岩的铂族元素地球化学特征.岩石学报,14(3):299-304.
    张成江,刘家铎,刘显凡,等, 2004.峨眉火成岩省成矿效应初探.矿物岩石,24(1):5-9.
    张成江等,2001.峨嵋山玄武岩高场强元素特征及峨嵋地幔柱轮廓初探.第三届海峡两岸三地及世界华人地质科学研讨会论文集(香港),417-419.
    张洪,刘宏云,陈方伦,2002.铂-钯区域地球化学勘查.地球化学,31(1): 55-65.
    张欢,高振敏,马德云,等,2003.云南个旧锡矿床成因研究综述.地质地球化学,31(3):70-75..
    张胜业,潘玉玲,2004.应用地球物理学原理.武汉:中国地质大学出版社.
    张湘云,骆耀南,杨崇喜,1988.攀西裂谷.北京:地质出版社.
    张小浩,周鼎武,2007.径向基函数方法在南泥湾油田勘探中的应用.地球物理学进展, 22(1): 213-217.
    张翼飞,徐道谦,史清琴,等编,1993.云南省区域矿产总结(上册).云南省地质矿产局.
    赵鹏大,1995.数学地质:回顾与展望.中国地质学科发展的回顾——孙云铸教授百年诞辰纪念文集(王鸿祯主编).武汉:中国地质大学出版社:174-178.
    赵鹏大,2002.“三联式”资源定量预测与评价——数字找矿理论与实践探讨.地球科学——中国地质大学学报,27(5):139-148.
    赵鹏大,2004.定量地学及应用,北京:地质出版社.
    赵鹏大,2007.成矿定量预测与深部找矿.地学前缘,14(5):1-10.
    赵鹏大,陈建平,张寿庭,2003.“三联式”成矿预测新进展.地学前缘,10(2):455-462.
    赵鹏大,陈永清,1998.地质异常矿体定位的基本途径.地球科学——中国地质大学学报,23(2):111-114.
    赵鹏大,陈永清,金友渔,2000.基于地质异常的“5P”找矿地段的定量圈定与评价.地质论评,46(增刊):6-16.
    赵鹏大,陈永清等,1999.地质异常成矿预测的理论与实践,武汉:中国地质大学出版社.
    赵鹏大,池顺都,1991.初论地质异常.地球科学——中国地质大学学报,16(3):241-248.
    赵鹏大,池顺都,陈永清,1996.查明地质异常:成矿预测的基础.高校地质学报,2:360-373.
    赵平,2001.泡塑富集发射光谱法连测化探样品中超痕量金、铂、钯光谱学与光谱分析.光谱学与光谱分析,21(2):235-236.
    朱炳泉,常向阳,邱华宁,等,2000.扬子地块西南缘滇中元古宇特征及赋存超大型矿床的可能性.见:涂光炽,等,著.中国超大型矿床(Ⅰ).北京:科学出版社:95-116.
    朱炳泉,戴橦谟,胡耀国,等,2005.滇东北峨眉山玄武岩中两阶段自然铜矿化的40Ar/39Ar与U-Th-Pb年龄证据.地球化学,34(3):235-247.
    朱炳泉,胡耀国,张正伟,常向阳,2002.滇-黔地球化学边界似基韦诺型铜矿床的发现.中国科学(D辑),增刊,32:49-60.
    祝德平,张晓梅,李守全,等,2000.平邑县铜石次火山杂岩体区金矿化类型及其成矿地质特征.黄金,21(8):8-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700