用户名: 密码: 验证码:
新疆土屋—黄山一带遥感异常提取及铜多金属找矿预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本次研究在系统总结东天山多年来地质找矿研究工作的基础上,针对新疆东天山哈密土屋-黄山成矿带近几年来虽然研究程度较高,但存在没有大的突破的问题,提出采用遥感技术手段在东天山地区展开遥感找矿潜力评价工作,以期望能够为地质找矿工作提供遥感找矿的靶区,为该地区的地质勘查部署提供决策依据。
     本次研究拟从现代成矿系统理论入手,以研究区最主要的两个类型矿种:斑岩型铜矿床和岩浆型铜镍矿为主攻矿种类型,以多光谱遥感技术方法为主导,进行地、物、化、遥等多源信息综合分析的矿产资源快速评价模型研究。
     1.在总结分析区域成矿地质特征的基础上,深入分析研究典型矿床,采用ETM数据进行区域性的遥感地质解译与信息提取,在研究区大面积展开遥感异常提取,获取与区域成矿作用有关的蚀变遥感异常和矿物分布等信息。
     2.通过在典型矿床开展ASTER和HYMAP高光谱遥感矿物填图研究,针对斑岩型铜矿床和岩浆型铜镍矿中占主导地位的蚀变矿物组合,进行蚀变矿物填图,有针对性地提取蚀变遥感异常,以ASTER和HYMAP数据提取的铜矿的遥感找矿信息为标准,对比验证ETM数据蚀变遥感异常,印证其有效性。
     3.通过多源地学信息综合分析,综合地质、物探、化探、航磁重力等数据分析研究,分析研究区铜矿、铜镍矿的控矿要素和遥感异常的相关性规律,采用特征分析法进行矿产定位预测,圈定遥感找矿靶区和推荐遥感异常区,进行遥感找矿潜力评价,并对找矿靶区进行了验证,取得了良好的应用效果。
     本次研究在新疆东天山地区尝试大面积展开遥感应用研究,为矿产资源调查与评价提供遥感资料,以推动东天山土屋-黄山成矿带找铜工作合理有序的部署,以期实现该成矿带找铜工作的新突破,进而带动东天山地区乃至整个天山地区的找矿工作。
On the basis of systematic summary of mineral prospecting work in the Eastern Tianshan Mountain, aiming at a breakthrough of mineral prospecting in Tuwu-Huangshan metallogenic belt in Hami area, remote sensing technology is taken to use to carry out the remote sensing mineral prospecting potential assessment in the area of Easten Tianshan Mountain, provides the exploration target area for geological prospecting and offers the decision-making support for geological exploration deployment in the area.
     This research is to start with the modern metallogenic system theory, considering the Porphyry Copper Deposit and Magmatic Cu- Ni Deposit as the main direction, to dominantly apply multispectral remote sensing technology to perform the research on quick assessment modeling of mineral resource by the multi-information ( geological, geophysical, geochemical and remote sensing information) comprehensive analysis.
     After summarizing and analyzing the regional metallogenic geological characteristics, deeply analyze and study typical deposit; making use of the ETM data to carry out the regional remote sensing geological interpretation and information extraction. This research is about to conduct the large area remote sensing anomalies extraction and capture the alteration anomalies that relevant to regional metallogenic effect and the information of mineral distribution rule.
     By the hyperspectral remote sensing mineral mapping research using ASTER and HYMAP data, conduct the alteration mineral mapping and extract the alteration remote sensing anomalies aiming at the dominant alteration mineral combinations in Porphyry Copper Deposit and Magmatic Cu- Ni Deposit. Considering the copper deposit remote sensing mineral prospecting information extracted from ASTER and HYMAP data as the standard, carry out the large area alteration remote sensing anomalies extraction and filtration by ETM data.
     By multi-resource geological information comprehensive analysis, integrating and studying the geological, geophysical, geochemical and aeromagnetic gravity data, analyze the ore-controlling factor and relativity rule of remote sensing anomalies of Copper Deposit and Cu- Ni Deposit in the study area, circle the remote sensing mineral prospecting target area and commend and predict remote sensing anomalies area, to carry out the remote sensing mineral prospecting potential assessment and choose some of the target area to make the field check. This method achieved a good application effect.
     Firstly experiment to do a large area remote sensing application research in Easten Tianshan Montain area, this research provide remote sensing documents for mineral resource investigation and evaluation and promote the reasonable and orderly deployment of Copper prospecting in Tuwu-Huangshan metallogenic belt in Easten Tianshan Montain, with the expectation that achieve the new breakthrough of cooper prospecting in this metallogenic belt and further promote the mineral prospecting work in Easten Tianshan Montain area, even the whole Tianshan Montain area.
引文
[1] Adler-Golden, S. M., M. W. Matthew, L. S., Bernstein, et al, 1999,Atmospheric correction for short-wave spectral imagery based on MODTRAN4. SPIE Proc, Imaging Spectrometry, 3753: 61-69.
    [2] Adler-Golden, S., A Berk, L. S. Bernstein, S. Richtsmeier, et al., 1998, Flaash, A MODTRAN4 Atmospheric Correction Package for Hyperspectral Data Retrievals and Simulations, Proceedings of 1998 AVIRIS Workshops.
    [3] Agterberg F. P., Chung C. F. Geomathematical prediction of sulphur in coal, New Lingan Mine Area, Sydney Coalfield. Canadian Mining and Metallurgical Bulletin, 1973, 66 (738):85-96
    [4] AIG, 2001, ACORN User Guide, Analytical Imaging and Geophysics, LLC, Boulder, Colorado.
    [5] Bateson,C. A., G. P. Asner and C. A. Wessman,2000, Endmenber Bundles: A New Approach to Incorporation Endmenber Variability into Spectral Mixture Analusia, IEEE Trans. Geosci. Remote Sensing ,38(2): 1083-1094.
    [6] Baugh W. M., Kruse F. A., et al, 1998, Quantitative geochemical mapping of ammonium minerals in the Southern Cedar Mountains, Nevada, using the airborne visible/infrared imaging spectrometer(AVIRIS) , Remote Sens. Environ., 65:292-308
    [7] Baugh W. M., Kruse F. A., William W. A., et al. Quantitative Geochemical Mapping of Ammonium Minerals in the Southern Cedar Mountains, Nevada, Using the Airborne Visible/Infrared Imaging Spectrometer (AVIIS). Remote sensenvrion, 1998, 65(3): 92-308
    [8] Clark, R. N., 1999,Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy, in Chapter 1 of Manual of Remote Sensing, Volume 3, Remote Sensing for the Earth Sciences (A.N. Rencz, ed.) , John Wiley and Sons INC., New York, Jan. 1999,pp 3- 58.
    [9] Crosta,A. P., C. Sabine and J. Taranik, 1998, Hydrothermal Alteration Mapping at Bodie California, Using AVIRIS Hyperspectral Data, Remote Sensing Environ. 1998,Vol.65, pp.309-319.
    [10] Crowley J. K., Brickey D. W., et al, 1989, Airborne imaging spectrometer data of the Ruby Mountains, Montana: mineral discrimination using relative absorption band-depth images , Remote Sens. Environ., 29:121-134
    [11] Crowley, J. K., Brickey, D. W., Rowan, L. C. Airborne imaging spectrometer data of the Ruby Mountains, Montana: mineral discrimination using relative absorption band-depth images. Remote Sensing of Environment, 1989, 29, 121-134
    [12] Feldman S. C, Taranik J. V. Comparison of techniques for discriminating hydrothermal alteration minerals with airborne imaging spectrometer data. RemoteSens Environ, 1988, 24(1): 67-83
    [13] Fujisada H., Sakuma F., and Ono A. et al. 1998. Design and preflight performance of ASTER instrument protoflight model. IEEE Transactions on Geoscience and Remote Sensing,36(4):1152-1160.
    [14] Gad, S., Timothy, K. 2007.ASTER spectral ratioing for lithological maping in the Arabian-Nubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt. Gondwana Research, 11:326-335.
    [15] Green A.A. , and M.D. Graig, 1985;Analysis of Aircraft spectrometer dada with logarithmic residuals, Proceedings of Airborne Imaging Spectrometer data analysis Workshop, JPL Publication, 85(41):111-119.
    [16] Green, R. O., D. A. Roberts, and J. E. Conel, 1996, Characterization and Compensation of the Atmosphere for the Inversion of AVIRIS Calibrated Radiance to Apparent Surface Reflectance, 1996 AVIRIS Workshop Proceedings, pp. 135-146.
    [17] Hewson R. D., Cudahy T.J., and Mizuhiko S. et al. 2005. Seamless geological map generation using ASTER in the Broken Hill-Curnamona province of Australia. Remote Sensing of Environment, 99: 159-172.
    [18] Le?nio S, Galva, Raimundo A.F, and et al. Spectral discrimination of hydrothermally altered materials using ASTER short-wave infrared bands: Evaluation in a tropical savannah environment. International Journal of Applied Earth Observation and Geoinformation 7, 2005, 107-114
    [19] Longhlin W. P. Principal component analysis for alteration mapping. In: Proceedings of the 8th Thematic Conference on Geologic Remote Sensing. Denver, USA: 1991, p293-306
    [20] Mogghtaderi, A., Moore, F., Mohammadzadeh, A. 2007. The application of advances space-borne thermal emission and reflection (ASTER) radiometer data in the detection of alteration in the Chadormalu paleocrater, Bafq region, Central Iran. Journal of Asian Earth Sciences, 30(2): 238-252.
    [21] Ninomiya Y., Fu B., and Cudahy T. J. 2005. Detecting lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer(ASTER) Multispectral thermal infrared "radiance-at-sensor" data. Remote Sensing of Environment,99:127-139.
    [22] Ninomiya, Y., Fu, B, Cudahy T. J. Detecting lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer(ASTER) multispectral thermal infrared“radiance-at-sensor”data. Remote Sensing of Environment. 2005, 99,127-139
    [23] Ninomiya, Y., Fu, B. Quartz index, carbonate index and SiO2content index defined for ASTER TIR data. Journal of Remote Sensing Society of Japan. 2002, 22, 50-61
    [24] Reda, A., Timothy, K., Ghulam, A. 2009. Lithological mapping in the Central Eastern Desert of Egypt using ASTER data. Journal of African Earth Sciences,doi:10.1016/j.jafrearsci.2009.06.004.
    [25] Regli, C., Rosenthaler, L., Huggenberger, P. GEOSSAV: a simulation tool for subsurface applications. Computers &Geosciences, 2004, 30:221-238
    [26] Roberts D. A., Gardner M., et al, 1997, Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixing models , Remote Sens. Environ., 65:267-279
    [27] Rowan L. C., Goetz A. F. H., Ashley, R. P. Discrimination of hydrothermally altered and unaltered rocks in visible and near infrared multispectral images. Geophysics, 1977 (42):522-535
    [28] Rowan L. C., Schmidt R. G., Mars J. C. Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data. Remote Sensing of Environment, 2006, 104:74-87
    [29] Rowan L. C., Schmidt R. G., Mars J. C. Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data. Remote Sensing of Environment, 2006, 104:74-87
    [30] Rowan, L. C., Mars, J. C. Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sensing of Environment, 84, 2003, 350-366
    [31] Rowan, L. C., Mars, J. C., Simpson C, J. Lithologic mapping of the Mordor, NT, Australia ultramaficcomplexby using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Remote Sensing of Environment. 2005, 99105-126
    [32] Sabins F.F. Remote sensing for mineral exploration. Ore Geology Reviews, 1999, 14: 159-167
    [33] Sabins F.F. Remote sensing for mineral exploration. Ore Geology Reviews, 1999, 14: 159-167
    [34] Simon J. H., Jane E. D., and Keith A. H. et al. 2005. Mapping variations in weight percent silica measured from multispectral thermal infrared imagery-Examples from the Hiller Mountains, Nevada, USA and Tres Virgenes-La Reforma, Baja California Sur, Mexico. Remote Sensing of Environment, 95: 273-289.
    [35] Singer D. A. Relative Efficiencies of Square and Triangular Grids in the Search for Elli Ptically Shaped Resource Targets. Journal of Research of the United States Geological Survey. 1975, 32:163-167
    [36] Singer, D. A. Mineral Deposit Densities for Estimating Mineral Resources. Mathematical Geosciences, 2008, 40: 33-46
    [37] Solomon S, Ghebread W. Lineament characterization and their tectonic significance using Landsat TM data and field studies in the central highlands of Eritrea. Journal of African Earth Sciences, 2006, 4:371-378
    [38] Thome K., Palluconi F., and Takashima T. et al. 1998. Atmospheric correction of ASTER. IEEE Transactions on Geoscience and Remote Sensing,36(4):1199-1211.
    [39] Tommaso I. D., and Rubinstein N. 2007. Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina. Ore Geology Reviews,32: 275-290.
    [40] Zhang X., Micha P., and Norman D. 2007. Lithologic and mineral information extraction for gold exploration using ASTER data in the south Chocolate Mountains(California). ISPRS Journal of Photometry & Remote Sensing, 62: 271-282.
    [41]陈毓川、朱裕生,中国矿床成矿模式,地质出版社,1993。
    [42]崔振奎,方茂龙,朱代等.北山重点金矿区遥感地质解译及成矿预测。1995,11(3):155-160
    [43]党福星,方洪宾,赵福岳.遥感找矿信息提取方法应用研究.中国地质学会80周年学术文集,北京:地质出版社,2002,739-743
    [44]党福星.多光谱定量化分析方法在地物识别中的应用研究.航空物探遥感中心论文集,地质出版社,1999,40-47
    [45]党福星.航空多光谱图像地形影响校正的模拟式反射率方法[J].国土资源遥感,1999,(4):33-39
    [46]董连慧,冯京,庄道泽等。全国矿产资源潜力评价项目新疆东天山示范区工作报告:[项目报告].新疆地调院,2008。
    [47]甘甫平,王润生,郭小方,等.利用成像光谱遥感技术识别和提取矿化蚀变信息-以河北赤城-崇礼地区为例.现代地质,2000,14(4):465-469
    [48]甘甫平,王润生,马蔼乃,等.遥感地质信息提取集成与矿物遥感地质分析模型.遥感学报,2003,7(3):208-213
    [49]甘甫平,王润生.遥感岩矿信息提取基础与技术方法研究.北京:地质出版社,2004:43-47
    [50]甘甫平、王润生、马蔼乃,2003,基于特征谱带的高光谱遥感矿物谱系识别,地学前缘,10(2):445-454
    [51]甘甫平、王润生、马蔼乃,2003,基于特征谱带的高光谱遥感矿物谱系识别,地学前缘,10(2):445-454
    [52]耿新霞杨建民张玉君等2008 ASTER数据在浅覆盖区蚀变遥感异常信息提取中的应用地质论评54(2):184-191.
    [53]郭华东.感知天地—信息获取与处理技术[M].北京:科学出版社,2000
    [54]郭小方,王润生,2000,机载成像光谱图像边缘辐射畸变校正,中国图像图形学报,5(1):16-20。
    [55]李华芹,谢才富,常海亮.1998.新疆北部有色贵金属矿床成矿年代学[M].北京:地质出版社.1~264.
    [56]李培军龙玄耀刘立2007基于ASTER数据的蛇绿岩组分识别:以德尔尼矿区为例岩石学报23(5):1175-1180.
    [57]刘德权,唐延龄,周汝洪,等.2005.中国新疆铜矿床和镍矿床[M].北京:地质出版社,30~34.
    [58]刘德权,唐延龄,周汝洪,等.2005.中国新疆铜矿床和镍矿床[M].北京:地质出版社,30~34.
    [59]刘德权,唐延龄,周汝洪.1996.中国新疆矿床成矿系列[M].北京:地质出版社,6~24.
    [60]马建文,张齐道.利用TM数据在多种环境因素干扰条件下填制蚀变岩方法[J].地质找矿论丛,1994,9(02):84-88
    [61]马建文,张齐道.利用TM数据提取含金蚀变带的方法研究──以冀北东卯地区为例[J].国土资源遥感,1994,(02):41-45
    [62]马建文.利用TM数据快速提取含矿蚀变带方法研究.遥感学报,1997,1(3)
    [63]马建文.利用TM数据快速提取含矿蚀变带方法研究[J].遥感学报,1997,I(3):208-212,
    [64]毛景文、杨建民等,2002a,东天山铜多金属矿床成矿系统和成矿地球动力学模型,地球科学,27(4):413-424.
    [65]毛景文、杨建民等,2002b,新疆黄山东铜镍硫化物矿床Re-Os同位素测定及其地球动力学意义,矿床地质,21(4): 323-330.
    [66]毛晓长,刘文灿,杜建国,许卫,ETM和ASTER数据在遥感矿化蚀变信息提取应用中的比较.现代地质,2005,19卷,第二期,309-314.
    [67]芮宗瑶、艾永德、张洪涛、王龙生、李莹,中国铜矿床类型及形成环境,见大兴安岭及邻区铜、多金属矿床论文集.张德全、赵一鸣主编.北京:地震出版社,1997。
    [68]芮宗瑶、黄崇轲、齐国明、徐珏、张洪涛,中国斑岩铜(钼)矿床,北京:地质出版社,1984。
    [69]芮宗瑶、王龙生,斑岩铜矿的矿床模式及其研究进展,见当代矿产资源勘查评价的理论与方法,北京:地震出版社,1999,238—245页。
    [70]王福同,董连慧,胡建卫,庄道泽等。东天山地区综合研究与区域资源潜力预测评价:[项目报告].新疆地调院,2003。
    [71]王晋年、郑兰芬、童庆禧,1996,HyMap数据图象光谱吸收鉴别模型与矿物填图研究,环境遥感,11(1):20-31。
    [72]王润民、李思楚,1987,新疆哈密黄山东铜镍硫化物矿床成岩成矿物理化学条件,成都地质学院学报,14(3):1-10
    [73]王润生,等.地质勘查图象综合与分析[M].北京:地质出版社,1992
    [74]王润生,丁谦,张幼莹,等.遥感色调异常分析的协同优化策略[J].地球科学—中国地质大学学报,1999,24(5):498-502。
    [75]王润生等,1999,成像光谱方法技术开发应用研究,国土资源部“九五”重点科研项目报告,航空物探遥感中心,1999.12。
    [76]王润生等,2004,成像光谱矿物填图技术与应用示范,国家高科技研究发展计划(863计划)课题技术报告,航空物探遥感中心,2004.12
    [77]王世称,陈永良,夏立显.综合信息矿产预测理论与方法.北京:科学出版社,2000
    [78]王世称,陈永清.成矿系列顶测的基本原则及特点.地质找矿论从,1994,9(4):79-85
    [79]王天兴、王润生等,1996,多光谱遥感方法技术开发应用研究,国地质矿产部“八五”科技攻关项目成果报告,航空物探遥感中心,1996.6。
    [80]王晓鹏,谢志清,伍跃中. ETM图像数据中矿化蚀变信息的提取─—以西昆仑塔什库尔干地区为例[J].地质与资源,2002,11(02):119-122
    [81]王晓鹏,谢志清,伍跃中. ETM图像数据中矿化蚀变信息的提取─—以西昆仑塔什库尔干地区为例[J].地质与资源,2002,11(02):119-122
    [82]王晓鹏,谢志清,伍跃中.西昆仑塔什库尔干地区遥感找矿异常提取方法研究[J].地质找矿论丛,2002,17(02):136-139
    [83]王颖黄勇黄思源2008大气廓线反演问题的研究国土资源遥感1:23-36。
    [84]吴淦国,董连慧,薛春纪,等.2008.新疆北部主要斑岩铜矿带[M].北京:地质出版社,1~284.
    [85]夏露寒2007康古尔断裂带与新疆东部金矿的关系甘肃冶金29(6):40-41
    [86]薛重生,黄晓霞,苏德荣.成矿远景区带蚀变岩的图像识别与制图[J].地质科技情报,1997,16(S1):82-94
    [87]闫柏琨刘圣伟王润生等. 2006.热红外遥感定量反演地表岩石的SiO2含量.地质通报,25(5):15-19.
    [88]闫柏琨.热红外遥感岩矿波谱机理及信息提取技术方法研究:[博士学位论文].北京:中国地质大学(北京),2006
    [89]杨建民张玉君姚佛军等2007a遥感找矿信息在新疆罗东镍矿发现中的主导作用岩石学报23(10):2647-2652.
    [90]杨建民,张玉君,陈薇,等.ETM+(TM)蚀变遥感异常技术方法在东天山戈壁地区的应用[J].矿床地质,2003,22(03):278-286
    [91]杨金中,方洪宾.中国西部重要成矿带遥感找矿异常提取的方法研究.国土资源遥感,2003,57(3):50-53
    [92]翟裕生,邓军,彭润民,等.2002.成矿系统研究及其资源、环境意义[J].高效地质学报,8(1):1~8.
    [93]翟裕生,邓军,王建平,等.2004.深部找矿研究问题[J].矿床地质,23(2):141~149.
    [94]张洪涛,陈仁义,韩芳林.2004.重新认识中国斑岩铜矿的成矿地质条件[J].矿床地质,23(2):150~159.
    [95]张满郎,郑兰芬.Landsat TM及JERS-1 SAR数据在金矿探测中的应用研究[J].环境遥感,1996,11(04):260-266
    [96]张满郎.金矿蚀变信息提取中的主成份分析[J].遥感技术与应用,1996,11(03):1-6
    [97]张满郎.中等植被覆盖区金矿蚀变TM及JERS-1OPS遥感信息增强技术[J].国土资源遥感,1996,(04):52-56
    [98]张佩民.云南昭通-鲁甸地区铅锌铜矿信息提取及应用.2004年遥感科技论坛年会论文集, 2004,124-129
    [99]张绪教李团结陆平等2008卫星遥感在西藏安多幅1:25万区域第四纪地质调查中的应用现代地质11(1):107-115.
    [100]张玉君杨建民姚佛军2007多光谱遥感技术预测矿产资源的潜能—以蒙古国欧玉陶勒盖铜金矿床为例地学前缘14(5):63-70.
    [101]张玉君,杨建民,陈薇.ETM+(TM)蚀变遥感异常提取方法研究与应用─—地质依据和波谱前提[J].国土资源遥感,2002,(04):30-36
    [102]张玉君,杨建民.基岩裸露区蚀变岩遥感信息的提取方法[J].国土资源遥感,1998,(02):46-53
    [103]张玉君. ETM+(TM)蚀变遥感异常提取方法研究与应用方法选择和技术流程.国土资源遥感,2003,56(2):44-49
    [104]张远飞,吴健生.基于遥感图像提取矿化蚀变信息[J].有色金属矿产与勘查, 1999,8(06):604-606
    [105]张宗贵,2004,成像光谱岩矿识别方法和影响因素分析,中国地质大学(北京)博士学位论文,2004.5。
    [106]张宗贵,甘甫平,等.新疆东天山土屋—延东地区航空HyMap数据调查成果报告,中国国土资源航空物探遥感中心,2003
    [107]张宗贵,王润生.基于谱学的HyMap数据遥感技术发展与应用.国土资源遥,2000,3:16~24.
    [108]张宗贵、甘甫平等,2003,新疆东天山土屋—延东地区航空成像光谱调查成果报告,中国国土资源航空物探遥感中心,2003.12
    [109]张宗贵.成像光谱岩矿识别方法技术研究和影响因素分析.国土资源遥感, 2004 (04):72-73
    [110]章革,高光谱短波红外技术在矿区矿物填图中的应用研究——以土屋铜矿、驱龙铜矿和普朗铜矿为例.博士学位论文。中国地质大学(北京)。2004.12。
    [111]章革,高光谱短波红外技术在矿区矿物填图中的应用研究——以土屋铜矿、驱龙铜矿和普朗铜矿为例.博士学位论文。中国地质大学(北京)。2004.12。
    [112]章革,连长云,王润生.便携式短波红外矿物分析仪(PIMA)在西藏墨竹工卡县驱龙铜矿区矿物填图中的应用[J].地质通报,2005(5): 480-485。
    [113]赵鹏大,陈建平,张寿庭.“三联式”成矿预测新进展.地学前缘,2003,10(02):455-463
    [114]赵鹏大,池顺都.初论地质异常.地球科学-中国地质大学学报,1991,16(3):241-248
    [115]赵鹏大,胡光道,陈建平,等.云南个旧锡铜多金属矿床找矿预测研究:[项目报告].中国地质大学,2008
    [116]赵鹏大,胡旺亮,李紫金.矿床统计预测的理论与实践.地球科学—武汉地质学院学报,1983,4: 107-121
    [117]赵鹏大,张寿庭,陈建平.危机矿山可接替资源预测评价若干问题探讨.成都理工大学学报(自然科学版),2004,31(2):111-117
    [118]赵鹏大.“三联式”资源定量预测与评价.地球科学-中国地质大学学报,2002,27(5): 482-489
    [119]赵元洪,陈岚,张福祥,等.遥感图像专题信息提取新方法——定向变换和逻辑取与法研究[J].遥感学报,1994,9(04):296-302
    [120]赵元洪.波段比值主成份复合在热液蚀变信息提取中的应用.国土资源遥感,1991,(3)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700