用户名: 密码: 验证码:
河南嵩县祁雨沟金矿床成矿作用及找矿预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
熊耳山变质核杂岩是中生代在区域伸展作用背景下形成,并对区内金矿形成起着重要的控制作用。变质核杂岩中控矿构造类型主要有拆离断层内的缓倾斜构造破碎带、拆离断层附近的缓倾斜断层、拆离断层附近的陡倾断层及拆离断层附近的爆破角砾岩筒。在祁雨沟矿田内主要表现为后两种类型,其中爆破角砾岩型金矿床在矿田占有举足轻重的地位。
     通过J4矿床的重点解剖和对比研究,本次研究取得的主要成果及认识为:
     (1)从地质、地球物理、地球化学等方面深入分析了研究区的成矿地质条件,丰富了该区爆破角砾岩筒型金矿和构造蚀变岩型金矿受变质核杂岩控制的认识。在中生代,区域构造体制由挤压向伸展作用转换,形成了熊耳山变质核杂岩,引发了深部物质上涌而导致伸展隆升、大规模岩浆侵位及金的大规模成矿作用。
     (2)通过J4的重点解剖,对爆破角砾岩型矿床的成矿特征有了新的认识,为研究爆破角砾岩型金矿床提供了新的思路。J4内大致以490m标高为界,其上以脉状矿化为主,其下主要为不规则状矿化;厘定了J4爆破角砾岩体内热液蚀变具有“同心环状”分带的特征,自爆破角砾岩体中心向外依次为:石英-钾长石化带、石英-黑云母化带、青磐岩化带,不规则状矿体主要集中分布在石英-钾长石化带和石英-黑云母化带交接处。
     (3)经对比研究,确定了矿田内以J4为爆发中心(矿化中心),识别出区内存在花岗斑岩-金成矿体系和二长斑岩-钼成矿体系,前者形成时间早于后者;多型矿床是同源、同期、不同成矿阶段、不同构造空间的产物。成矿物质主要来源于岩浆流体,部分为地层提供。成矿流体性质介于岩浆热液与热卤水之间;与国内外同类型矿床对比,研究区内爆破角砾岩型矿床的独特之处,主要表现在角砾成份复杂、矿化形式多样、矿物种类繁多、热液蚀变分带明显及伴生组份少等方面。
     (4)初步建立了矿床、矿田两个层次的成矿模式。提出了矿田内成矿作用表现为四次成矿叠加的新认识,不规状矿体形成在先,依次形成构造蚀变岩型金矿床(公峪矿区)、多金属硫化物型金矿脉和钼矿化。
     (5)针对不规则状矿化的不均匀性,提出了“矿化域”的概念,对金矿体圈定和工业利用有较好的指导作用;依据综合找矿标志,对矿田内爆破角砾岩体的找矿前景做了初步评价,具有重要的找矿参考价值。
The metamorphic core complex of Mt. Xiong’er, formed in the background of regional extension of Mesozoic Era, plays a controlling role in the formation of gold deposits in the mining area. The ore-controlling structures in the metamorphic core complex mainly include gently inclined structural fracture zone in the detachment fault, gently inclined fault, steep inclined fault and explosive breccia pipe near the detachment fault. Qiyugou ore-field is mainly controlled by steep inclined fault and explosive breccia pipe near the detachment fault. The gold deposits of explosive breccia pipe type are of great importance to the ore-field.
     Through the key analysis to J4 deposit and the contrastive study between this deposit and others, the following achievements and conclusions are made.
     (1) The metallogenic geological conditions of the research area have been deeply analyzed from geological, geophysical, and geochemical aspects. The research also enriches the theory that the explosive breccia pipe typed gold deposits and the structural altered rock typed gold deposits in the mining area are controlled by metamorphic core complex. In Mesozoic era, the regional structural process shifted from compression to extension, followed by the formation of Mt. Xiong’er metamorphic core complex, the uprush of deep-seated materials, the large-scaled emplacement of magma and the large-scaled mineralization of gold.
     (2) Through the key analysis to J4 deposit, new understanding to the metallogenic characteristics of explosive breccia typed deposits has been obtained, which offers a new mind for studying explosive breccia typed gold deposits. The height of 490m above sea level in J4 deposit is regarded as a borderline; above that it is characterized by vein-typed mineralization, while below that it is characterized by irregular mineralization. Furhthermore, the hydrothermal fluid alteration in the J4 explosive breccia rock body is characterized by concentric ring zones. From the core to outer zone of explosive breccia rock body are the following rock zones: quartz-potash feldspathization zone, quartz-biotite zone and propylitization zone. The irregular mineralization is mainly located at the contacting zone between quartz-potash feldspathization zone and quartz-biotite zone.
     (3) Through contrastive study, J4 deposit is confirmed to be the explosive center (mineralization center) of the ore-field. It is concluded that there are two metallogenic systems in this ore-field, namely, the granite-porphyry gold metallogenic system and the monzonitic-porphyry molybdenum metallogenic system. The first system is formed earlier than the second one. Multi-type deposists are the outcome of same source and phase, but are formed in different metallogenic stages and structural space. The metallogenic materials mainly come from magma fluid, with partially coming from stratum. In addition, the metallogenic fluid is neither magmatic thermal water nor thermal brine, but between the two types. Compared to the deposits with same type in domestic and abroad, the explosive breccia typed deposits in the ore-field has its unique characteristics, which includes complicated breccia components, diverse mineralization, various types of minerals, clear zoning of hydrothermal alteration and few associated components.
     (4) The metallogenic models of deposit and ore-field have been initially established. It is firstly put forward that there are four phases of ore-formation in the ore-field. The irregular ore-bodies are firstly formed, followed by structural altered rock typed gold deposits (Gongyu deposit), polymetallic sulphide typed gold deposits and molybdenum mineralizaion.
     (5) In terms of the heterogeneity of irregular mineralization, the concept of“mineralization area”is put forward, which is to be a good guide to the delineation and exploration of gold ore bodies. According to the comprehensive surveying predictors, the ore prospecting prospective of the explosive breccia rock bodies in the ore-field has bee assessed, which is of great importance to the ore prospecting.
引文
Acosta J,Lonergan L,CowardM P.Oblique transpression in the western thrust front of the Colombian Eastern Cordillera.
    Allen M B,GhassemiM R,ShahrabiM,et al.Accommodation of late Cenozoic oblique shortening in the Alborz range,northern Iran.Journal of Structural Geology,2003,25:659~672 .
    Bertrand G,Rangin C.Tectonics of the western margin of the Shan plateau(central Myanmar):implication for the India-Indochina oblique convergence since the Oligocene.Journal of Asian Earth Sciences,2003,21:1139~1157.Journal of south American Earth Siences,2004,17:181~194 .
    Boorman SL, McGuire JB, Boudreau AE,et al. Fluid overpressure in layered intrusions: formation of a breccia pipe in the Eastern Bushveld Complex, Republic of South Africa. Mineralium Deposita,2003,38:356-369.
    Boyle R W著,马万钧等译.1984.金的地球化学及金矿床.北京:地质出版社.
    Burnham CW, Energy release in subvolcanic environments: Implications for breccia formation: Economic Geology, 1985, 80, 1515-1522.
    Busby C.Continental growth at convergent margins facing large ocean basins:a case study from Mesozoic convergent—margin basins of Baja California,Mexico.Tectonopysics,2004,392:241~277 .
    BellT H,Wang Jianqi.Linear indicators of movement direction versus foliation axes in porphyroblasts(FIAs) and their relationship to direction of relative plate motion.Earth Science Frontiers,1999,6(3):31~47 .
    Burrows D R, Wood P C and Spooner E P C . Carbon isotope evidence for a magmatic origin for Archean gold-quartz vein ore deposits. Nature, 1986.321:851~854 .
    Casamitjana, X, Colomer1, J and Fernando, HJS, Fluidization of sediments in a conical basin by subterranean springs: relevance to Lake Banyoles: Aquatic Sciences, 2000, 62, 79-90.
    Chen W-P,Chen C-Y.Seismogenic structures along continental convergent zones:from oblique subduction to mature collision.Tectonopysics,2004,385:105~120 .
    Chen Y J, Pirajno F, Sui Y H. Isotope geochemistry of the Tieluping silver deposit, Henan, China:A case study of orogenic silver deposits and related tectonic setting. Mineralium Deposita,2004,39:560-575.
    ChenY J, Pirajno F, Qi J P, et al.oregeology, fluid geoehemistry and genesis of theShanggong gold deposit, eastern Qinling orogen , China.ResoureeGeology, 2006.56:99~116.
    CourtillotV, Feraud G, Maluski H et al.Deccan flood basalts and the Cretaceous/Tertiary boundary, Nature, 1998 .333:843~846 .
    Condie KC and Crow C. Geochemistry of basalts from the Kaapvaal Craton ,South Africa: Evklution of mantle sources during the last 3 Ga, Abstracts of 28th International Gelogical Congress, 1~320,Washington ,D.C.,USA, 1989. July9~19 .
    Cooke DR and Davies Ags, Breccias in epithermal and porphyry deposits: The birth and death of magmatic hydrothermal system. 8th SGA Meeting, Beijing. 2005.
    Ding G,ChenJ,Tian Q,et al.Active faults and magnitudes of leftlateral displacement along the northern margin of the Tibetan Plateau.Tectonopysics,2004,380:243~260 .
    Doser D I,Lomas R.The transition from strike-slip to oblique subduction in southeastern Alaska from seismologicalstudies.Tectonopysics,2000,316:45~65 .
    Driaison M,Cobbold P R,Rosselllo E A,al.Neogene dextral transpression due to oblique convergence across the Andes of northwestern Patagonia,Argentina.Journal of South American Earth Sciences,1998,11(6):519~532 .
    Druitt TH, Settling behaviour of concentrared dispersions and some volcanological applications.J.Volcano. and Geotherm.Res.1995,65:27-39
    Goldfarb R J. Metallogenic evolution of Alaska.In: Goldfarb R J, Miller L D, eds.. Mineral Deposits of Alaska .Economic Geology Monograph, 1997.9: 4~34 .
    Grffin W L,zhangA, O’Reilly S Y et al.. Phanerozoic evolution of the lithosphere beneath the Sino-korean craton.In: Flower M F J ,Chung S L, Lo CH et al, eds.. Mantle Dynamics and Plate Interactions in East Asia. Geodynamics Series. American Geophysical Union, Washington D C, 1998.107~126 .
    Guillou-Frottier, L Burov E, The development and fracturing of plutonic apexes: implications for porphyry ore deposits. Earth and Planetary Science Letters,2003,214:341-356.
    Haeussler P J,Bradley D, Goldfarb R J et al.. Link between ridge subduction and gold mineralization in southern Alaska. Geology, 1995.23: 995~998 .
    Hollister VF,Geology of the porphyry copper deposits of the western hemisphere:New York,Am.Inst.Mining Metall.Petroleum Engineers,1978,219p.
    Johnston WP and Lowell JD, Geology and origin of mineralized breccia pipes in Copper Basin, Arizona: Economic Geology, 1961, 56: 916-940
    Kerrich R, Goldfarb R J, Groves D I, et al. The characteristics, origins andgeodynamic settings of supergiant gold metallogenic provinces. Science in China(Series D), 2000, 43(supp.):1-68.
    Laznicka P,Breccias and coarse fragmentities-petrology,environments,associations,ores, Elsevier Science Publishers B.V.1988.
    Li Yongfeng, MAO Jingwen,GUO Baojian,et al.Re-Os dating of molygdenite from the Nannihu Mo(-W) orefield in the east Qinling and its geodynamic significance.Acta Geologica Sinica,2004,78(2):463~470 .
    Loucks R R, Mavrogenes J A. Gold solubuluty in supercritcal hydrothernal brines measured in syntetic fluid inclusions. Science, 1999.284(25):2159~2163 .
    Mao J W, Goldfarb R J, Zhang Z W. Gold deposits in the Xiaoqingling-Xiong'ershan region,Qinling Mountains. Central China. Mineralium Deposite, 2002,37:306-325.
    McCallum M E, Fluidization processes in breccia formation: Economic Geology, 1985, 80: 1523-1543.
    MengQ-R,ZhangG-W.Geologic framework and tectonic evolution of the Qinling orogen,central China.Tectonopysics,2000,323:183~196 .
    Michard A and Albarede E, The REE content of some hydrothermal fluids. Chemical Geology, 1986, 55: 51-60.
    Michard A, Rare earth element sysmatics in hydrothermal fluids. Geochemica et Cosmochimica Acta, 1989, 53: 745-750.
    Mitchell AHG, Garson MS, Mineral Deposits and Global Tectonic Settings. Academic Press, London, 1981, 405 pp.
    Pirajno F, Hydrothermal mineral deposits: Principles and fundamental concepts for the exploration geologist: Springer-Verlag, Berlin, 1992, 709pp.
    Ratschbacher L,HacherB R,CalvertA,et al.Tectonics of the Qinling(Central China):tectonostratigraphy,geochronology and deformation history.Tectonopysics,2003,366:1~53 .
    Reynolds DL, Fluidization as a geological processs, and its bearing on the problem of intrusive granites: Am.Jour.Sci., 1954, 252: 557-613
    Ross, P S, Jebrak M, Walker B M. Discharge of hydrothermal fluids from a magma chamber and Concomitant Formation of a stratifyied breccia zone at the Questa porphyry molybdenum deposit, New Mexico. Economic Geology, 2002, 97: 1679-1699.
    Seward T M. This complexes of gold and the transport of jold in hydrothermal ore solutions, Geochim et Cosmochim. Acta, 1973.37: 379~399 .
    Shenberger D M and barnes H L. Solubility of gold in aqueous sulfide from 150 to 350℃.Geochim. et Cosmochim Acta, 1989.53, 269~278 .
    Sibson RH, Fault rocks and Faults mechanisms, Journal of Geological Society, London, 1977, 133Sillitoe RH., Characteristics and controls of the largest porphyry copper-gold and epithermal gold depositsin the circum-Pacific region: Australian Journal of Earth Sciences, 1997, 44: 373-388.
    Sillitoe RH, Halls C and Grant JN, Porphyry tin deposits in Bolivia: Economic Geology, 1975, 70: 913-927
    Sillitoe RH. Ore-related breccias in volcanoplutonic arcs. Economic Geology. 80(6): 1985, 1467-1514.
    Sparks RSJ, Grain size varations in ignimbrites and implications for the transport ofpyroclastic flows. Sedimentology, 1976, 23:147-188.
    Taylor S R,McLennan S M The continental crust:its composition and evolution. Blackwell Oxford,1985.
    Teyssier C,Tikoff B.Fabric stability in oblique convergence and divergence.Journal of Structural Geology,1999,21:969~974 .
    Van Middlesworth PE and Wood SA, The aqueous geochemistry of the rare earth elements associated with the Idaho batholith. Applied Geochemistry, 1998, 13: 861-864.
    Vernant Ph,Nilforoushan E,Chery J,et al.Deciphering oblique shortening of central Alborz in Iran using geodetic data.Earth and Planetary Science Letters,2004,223:177~185 .
    Wang T,Wang X,Li W.Evaluation of multiple emplacement mechanisms:the Huichizi granite pluton,Qinling orogenic belt,central China.Journal of Structural Geology,2002,22:505~518 .
    Wilson CJN, The role of fluidization in the emplacement of pyroclastic flows: An experimental approach. J. Volcano. and Geotherm. Res., 1980, 8: 231-249.
    Yang K,Bodnar RJ,Orthomagmatic origin for the Ilkwang- Cu-W breccia pipe deposit, southeastern Kyongsang Basin, South Korea. Journal of Asian Earth Science.2004,24(2):259~270.
    Zhao TP,Zhai MG,Xia B,et al.,Zircon U-Pb SHRIMP dating for the volcanic rocks of the Xiong’er Group:Constraints on the initial formation age of the cover of the North China Ctaton. Chinese Science Bulletin,49(23):2495-2502. Barnett, W,2004, Subsidence breccias in kimberlite pipes-an application of fractal analysis:Lithos,2004,76,299-316.
    白万成,王春宏,雷时斌.河南省熊耳山地区金矿的构造控矿特征.河南地质,1993,1:17-22.
    崔来运.河南赵岭构造蚀变岩型金矿床微量元素地球化学特征.地质与勘探,2005,2:30-34.
    崔毫.华北台南缘(河南)有色、贵金属矿床铅同位素组成特征及成矿意义.矿产与勘查, 1992,(3):30~41 .
    曹益富,李世华.爆破角砾岩型金矿床成矿特点.黄金,1999,20(9):12~16.
    陈衍景,崔亳,富士谷,等.论祁雨沟式金矿.矿产与地质,1992,28(6):103~110.
    陈丰.氢-地球深部流体的重要源泉.地学前缘,1996,3(3):72~79 .
    范宏瑞,谢奕汉,王兰英,等.豫西熊耳山地区变质流体的性质与演化.矿物学报,1992,12(4):299~308 .
    范宏瑞,谢奕汉,王兰英,等.豫西花山花岗岩岩浆热液的性质及与金成矿的关系.岩石学报,1993,12(3):136~145 .
    范宏瑞,谢奕汉,赵瑞,等.豫西熊耳山地区岩石和金矿床稳定同位素地球化学研究.地质找矿论丛,1994,9(1):54~63 .
    范宏瑞,谢奕汉,王英兰.豫西花山花岗岩基岩石学和地球化学特征及其成因.岩石矿物学杂志,1994,13(1):19~32.
    范宏瑞,谢奕汉,郑学正,等.河南祁雨沟热液爆破角砾岩体型金矿床成矿流体研究.岩石学报,2000,16(4):559~563.
    郭保健,戴塔根,徐孟罗,等.熊耳山北坡拆离断层带地球化学特征及其与金银矿化的关系.矿产与地质,1997,11(1):20~25 .
    郭保健.东秦岭中生代金属矿床组合与成矿规律研究:[博士学位论文].北京:中国地质大学(北京),2006.
    郭东升,陈衍景,祁进平.河南祁雨沟金矿同位素地球化学和矿床成因分析.地质评论,2007,53(2):217~227.
    葛良胜,卿敏,张文钊,等.华北板块北缘首例大型高品位隐伏斑岩型金矿床-内蒙古毕力赫金矿.中国地质,2009,36(5):1111~1122.
    高永丰,栾文楼,魏瑞华.祁雨沟地区金矿床稳定同位素研究.矿床地质,1994,13(4):354~362.
    高永丰,栾文楼,魏瑞华,等.河南祁雨沟金矿流体包裹体研究.地球化学,1995,24(supp1):150~159.
    河南省地质矿产局,河南省区域地质志.北京,地质出版社,1989.
    胡受奚,林潜龙.华北与华南古板块拼合带地质与成矿.南京,南京大学出版社,1988.
    胡受奚,赵懿英,徐金方,等.华北地台金成矿地质.北京:科学出版社,1997.
    韩长寿.嵩县公峪金矿区成矿后断裂活动及深部找矿.河南地质,2001,19(4):273~277.
    贾承造.熊耳群火山岩系岩石地球化学特征及其大地构造意义.河南地质,1985,(2):39~43.
    贾承造.东秦岭板块构造.南京:南京大学出版社,1988.
    金伟.河南省祁祁雨沟金矿成矿规律及成矿预测[硕士论文].北京:中国地质大学(北京),1990.
    金伟,刘福.祁雨沟金矿田S、O、C、Pb同位素组成及成矿物质来源.现代地质,1994,8(2):139~145.
    栾文楼,刘海军,邵克忠.“祁雨沟式”金矿床围岩蚀变特征及其与矿化关系初探.河北地质学院学报,1988,11(4):1~10.
    卢欣祥,尉向东,董有,等。小秦岭—熊耳山地区金矿特征与地幔流体。北京:地质出版社,2004.
    卢欣祥,董有,常秋岭,等.秦岭印支期河湾奥长环斑花岗岩及其动力学意义.中国科学(D辑),1996,26(3):244~248.
    卢欣祥,于在平,冯有利,等.东秦岭深源浅成型花岗岩的成矿作用及地质构造背景.矿床地质,2002,21(2):168~178.
    罗铭玖,王享治,庞传安,等.河南金矿概论.北京:地震出版社,1992.
    罗铭玖,黎世美,卢欣祥,等。河南省主要矿产的成矿作用及矿床成矿系列。北京:地质出版社,2000。
    罗铭玖,卢欣祥,董有,等.流体.花岗岩.金矿.河南地质,1995,13(4):253~261 .
    罗镇宽,关康.河南祁雨沟金矿床地质地球化学特征和矿床成因讨论.贵金属地质,1995,4(1):1~12.
    李惠,王支农,张文华.大型金矿盲矿的原生叠加晕和预测准则.黄金科学技术,2001,9(3-4):1-4.
    李胜荣,邵克忠.河南嵩县祁雨沟金矿床石英流体包裹体标型.现代地质,1991,5(4):415~422.
    李胜荣.以隐爆角砾岩型为主的金矿床系列模式.有色金属矿产与勘查,1995,4(5):272~277.
    李世华,韩军,柴春新.河南祁雨沟金矿四号含金角砾岩筒地质地球化学特征及成因.黄金,1998,19(7):9~12.
    李世华,齐金忠.河南公峪石英脉型金矿地质特征及应力场分析.黄金地质,2000,6(2):26~130.
    罗明强,王世军.河南省祁雨沟北西部金矿成矿地质特征.矿产与地质,2004,101(18):26~30.
    李莉,齐金中.河南公峪石英脉型金矿地质特征及其成因探讨.矿床地质,2002,21(增刊):625~628 .
    李乃志,于在平,崔海峰,等.变质核杂岩特征及小秦岭地区变质杂岩成因讨论.西北大学学报,2006,36(5):793~798.
    李永峰,毛景文,郭保健,等.豫西公峪金矿床地质地球化学特征及成因探讨.矿床地质,2004,23(1):61~66.
    李永峰,毛景文,胡华斌,等.豫西公峪金矿床流体包裹体及其He、Ar、S、H、O同位素组成对成矿流体来源的示踪.岩石学报,2005,21(5):1347~1357.
    李诺,赖勇,鲁颖淮,等.河南祁雨沟金矿流体包裹体及矿床成因类型研究.中国地质,2008,35(6):1230~1239.
    刘英俊,马东升.金的地球化学.北京:科学出版社,1991.
    刘传权,刘振宏,张毅星.河南嵩县祁雨沟金矿Ⅳ号爆破爆破角砾岩体金矿化富集规律.矿产与地质,2005,110(19):383~387.
    刘德民.中国变质核杂岩的基本特征.现代地质,2003,(2):125~129.
    刘家远.江西燕山期隐蔽爆破相岩石及其与成矿关系的初步研究.南昌:江西地质科学研究所,1979.
    刘家远.一种值得重视的新类型金矿床—爆破岩筒型斑岩金矿床.贵金属地质,1992,第2-3期:148~152.
    刘家远.论新疆东准噶尔陆相火山成矿作用.大地构造与成矿学,2001,25(4):434~438.
    刘全德,王相文,陈铁力.吉林金厂沟隐爆爆破角砾岩型金矿床地质特征浅析.有色矿冶,2008,24(6):8~15.
    栾世伟,陈尚迪.小秦岭金矿主要控矿因素及成矿模式.地质找矿论丛,1990,(4):1~12 .
    栾文楼,刘海军,邵克忠.“祁雨沟式”金矿床围岩蚀变特征及其与矿化关系初探.河北地质学院学报,1988,11(4):1~10.
    卢欣祥,尉向东,于在平,等.小秦岭-熊耳山地区金矿的成矿流体特征.矿床地质,2003,22(4):377~385.
    毛景文,华仁民,李晓波.浅议大规模成矿作用与大型矿集区.1999,18(4):
    毛景文,李晓峰,张荣华,等.深部流体成矿系统.北京:中国大地出版社,2005.
    彭恩生,孙振家.脉状矿床成矿构造研究.长沙:中南工业大学出版社,1994.
    强立志,赵太平,原振雷.熊耳群中金铅锌成矿时代新认识.河南地质,1993,11(1):8~12.
    卿敏,韩先菊.隐爆角砾岩型金矿研究述评.黄金地质,2002,8(2):1~7.
    齐金忠,马占荣,李莉.河南祁雨沟金矿床成矿流体演化特征.黄金地质,2004,10(4):1~10.
    齐金忠,李汉光,葛良胜,等.祁雨沟隐爆角砾岩型金矿床构造应力、成矿流体及元素地球化学.北京:地质出版社,2005.
    任富根,李维明,李增慧,等.熊耳山-崤山地区金矿成矿地质条件和找矿综合评价模型.北京:地质出版社,1996.
    宋鸿林.关于变质核杂岩构造特征的几个问题.地质通报,2002,21(4-5):193-197.
    孙丰月,石准立,冯本智.胶东金矿地质及幔源C-H-O流体分异成岩成矿.长春:吉林人民出版社,1995.
    邵克忠,栾文楼.Bi-硫盐、Bi-碲化物一祁雨沟爆发-坍塌爆破角砾岩型金矿床成因及找矿标志.河北地质学院学报,1989,12(3):209~305.
    邵克忠,王宝德.嵩县西北地区金矿成矿作用及找矿规律.河南地质,1992,3(3):161~167 .
    邵世才.爆破角砾岩型金矿床的成因及其定位机制—以河南祁雨沟金矿为例.矿物学报,1995,15(2):230~235.
    沈保丰,骆辉.华北陆台太古宙绿岩带金矿的成矿特征.华北地质矿产杂志,1994,9(1):78~84.
    沈渭洲.同位素地质学.北京:原子能出版社,1987.
    石铨曾,尉向东,李明立,等.河南省东秦岭山脉北缘的推覆构造及伸展拆离构造.北京:地质出版社,2004.
    谭文娟,魏俊浩,张可清,等.隐爆爆破角砾岩型金矿床成矿特征浅析—以山西堡子湾、河南祁雨沟金矿床为例.地质找矿论丛,2006,21(1):15~17.
    唐菊兴.含金热液隐爆角砾岩的特征及研究意义.成都理工学院学报,1995,22(3):59~64.
    王宝德,李胜荣.河南祁雨沟爆发爆破角砾岩型金矿床地质地球化学特征.成矿理论,1992,No.1:16~24.
    王宝德,李胜荣.河南祁雨沟爆发爆破角砾岩型金矿床地质地球化学特征初步研究.地质地球化学,1996,6:37~44.
    王宝德,耿照强.河南祁雨沟爆发爆破角砾岩型金矿床原生晕基本特征.物探与化探,1992,16(6):433~444.
    王力群,肖文进.小秦岭变质核杂岩构造基本特征及其构造控矿模式分析.西北地质科学,2000,21(1):77~84.
    王义天,毛景文,卢欣祥.嵩县祁雨沟金矿成矿时代的40Ar-39Ar年代学证据.地质评论,2001,45(7):551~555.
    王照波,司荣军,仲卫国,等.隐爆角砾岩筒型矿床成矿流体演化趋势曲线特征.地质地球化学,2003,31(4):62~67.
    王福贵,李国平,陈正友.熊耳山地区角砾岩筒型金矿床地质-地球化学找矿模型.矿产与地质,2005,112(19):692~698.
    王长明,邓军,张寿庭.河南熊耳山地区花山花岗岩与金矿化的关系.现代地质,2006,20(2):315~321.
    万天丰.中国大地构造学纲要。北京:地质出版社,2004.
    王志光,崔亳,徐孟罗,等.华北地块南缘地质构造演化与成矿.北京:冶金工业出版社,1997.
    尉向东,卢欣祥,董有.小秦岭-熊耳山地区金矿的稳定同位素地球化学特征.矿床地质,1998,第17卷(增刊),815~820 .
    谢奕汉,范宏瑞,李若梅,等.河南祁雨沟爆破爆破角砾岩型金矿床包裹体研究.矿物学报,1991,11(4):370~376.
    谢奕汉,范宏瑞.祁雨沟爆破爆破角砾岩型金矿床包裹体特征及其在金矿评价中的应用.黄金,1991,12(11):1~4.
    谢广东. Au的迁移形式及沉淀机制研究的某些进展.现代地质,1994,8(3)357~363 .
    徐文喜.黑龙江金厂金(铜)矿田地质特征、成矿规律与成矿模式[博士学位论文].北京:中国地质大学(北京),2009.
    翟裕生.矿田构造概论.北京:冶金工业出版社,1984.
    翟裕生,邓军,王建平,等.深部找矿研究问题.矿床地质,2004,23(2):142-149.
    赵锡岩,刘国明,陈德杰,等.青岗坪金矿区拆离断层系统的控矿作用.地质与勘探,2002,38(3):38~41 .
    赵振华.某些常用稀土元素地球化学参数的计算方法及其地球化学意义.地质地球化学,1985,139增刊,11~14.
    张国伟,孟庆任,于在平,等.秦岭造山带的造山过程及其动力学特征.中国科学(D辑),1996,26(3):193~200 .
    张理刚.稳定同位素在地质科学中的应用.西安:陕西科学技术出版社,1985.
    张理刚.成岩成矿理与找矿.北京:北京科技大学出版式社,1989.
    张侍威.豫西公峪金矿床特征及成矿机制探讨.地质与勘探,2004,40(5):12~15 .
    张侍威,李国平,刘中杰.豫西熊耳山地区金银矿床构造控矿规律分析.河南地质学会等编。
    昆仑-秦岭-大别山系地质构造与资源环境学术研讨论文集.西安地图出版社,2002.
    张瑜麟.熊耳山银铅成矿区物探找矿方法应用研究.地质与勘探,2001,37(6):46~50 .
    张宇,赖勇,卿敏,等.黑龙江省金厂金矿床J0矿体流体地球化学研究.岩石学报,2008,24(5):1131~1143.
    张宗清,黎世美.河南省西部熊耳山地区太古宙太华群变质岩的Sm-Nd,Rb-Sr年龄及基地质意义.北京:地质出版社,1998.
    郑亚东,张青.内蒙古亚干变质核杂岩与伸展拆离断层.地质学报,1993,67:301-309.
    朱志澄.构造地质学.武汉:中国地质大学出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700