用户名: 密码: 验证码:
长江中下游矿集区综合地质地球物理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深部探测已成为目前地球科学的重要前沿课题。长江中下游矿集区是我国东部重要的成矿带,论文开展以铜陵和九瑞矿集区为例的长江中下游矿集区综合地质地球物理研究,为探测深部隐伏矿床提供技术支持,具有重要的科学价值和实际意义。
     论文从中国东部岩石圈减薄的机制和控制因素入手,提出了基于软流圈拖拽,岩石圈各块体运动速度不同引起挤压、伸展等构造环境的岩石圈演化动力模型,继而研究了长江中下游矿集区的演化过程和动力学模型,为综合地球物理探测深部矿产资源和解释成矿演化过程提供动力模式。在研究大地电磁场特征的基础上,分析了矿集区实测电磁噪声特点和噪声源,研究了远参考法、小波去噪法等去噪技术及效果后,提出了解决矿集区内电磁噪声的人机联作与Robust组合去噪技术。论文对九瑞矿集区MT数据进行了处理和反演,解释得到区内深部地层展布特征、岩浆岩体和成矿远景区;对铜陵综合地球物理实验区的CSAMT数据进行了去噪、场源、静校正和反演,综合重力剩余密度反演结果和磁化率反演结果,解释出研究区分布有一个单斜沉积地层,燕山期岩浆叠加了海西期喷流沉积矿床后,在上部灰岩地层中形成了以岩浆岩为中心的复合式成矿远景区。
     最后,论文讨论了综合地球物理在深部矿产资源探测中的技术组合、流程和解释思路。
At present, Deep exploration has become an important question in the earth science. This paper carried out the integrated geological and geophysical study in Tongling and Jiurui ore district. The study provided a reliable evidence and technical support for exploring deep mineral deposits. It has important scientific value and practical significance.
     Yangtze River ore district is a metallogenic belt in eastern China. Jiurui and Tongling ore district are the copper and gold ore district. These two ore districts existed in the fold uplift area and were related to potassium-rich diorites, main ledge existed between Group Wutong and Group Huanglong. Geological characteristics indicate that the two areas were of same sedimentary environment and tectonic features and experienced collision between Yangzi block and the North China block during Yanshan orogenic extrusion and Yanshan orogenic extension and depression period. In the tectonic character, Jiurui and Tongling ore district shows that the regional deep tectonics controlled the distribution of metallogenic belt. And the space of orebearing rock and that deposit is restricted by tectonic node which located in North-west ,North-east and North-northeast. Deposit type and character show that the ore deposit is a complex symbiotic deposit and mineralization is related magmatic activity of Yanshan period. Mineralization law shows that the two ore districts have rich mineral basement and that with the uplift of mantle, magma activate the mineral substrate and mix with sedimentary sulfides of Wutong and the Huanglong group, and form porphyry, skarn, massive sulfide, etc. deposit.
     The forming of deposit is part of lithosphere evolution. The study of dynamic mechanism of lithosphere evolution plays an important role in clarifying formation conditions and regional distribution of endogenous metal deposits. The Indo-Chinese epoch movement, tectonic transition and the large scale mineralization in Yanshan epoch and the extensional structures of late Mesozoic and the current GPS observations of the migration of the eastern lithosphere show that the evolution of the Yangtze River ore concentration area and the lithosphere of eastern China are consistent.
     Continental lithosphere thinning in eastern China is an important event of lithosphere evolution. There are some debates about the mechanisms and time of lithospheric thinning. Although the petrological and geochemical evidences support the delamination mechanism in a number of the most competitive parts to explain the lithospheric thinning and magmatic role, but there are many shortcomings in the model.
     Therefore, according to the several major events in evolution of eastern China lithosphere and the status of lithosphere at present, the paper constructs the dynamic model of continental lithosphere evolution according to the fluid theory and resumes the evolution of the continental lithosphere. Three magnetotelluric profiles and seismic profiles in China Eastern were explained. The result proved that the model is reasonable.
     Combined with regional geological background characteristics of the Yangtze River, the paper proposed a dynamic model with extrusion and extension mechanism which can be used to construct a model for an integrated geophysical interpretation of the deep ore mineral resources.
     With the development of society, various artificial noises for geophysical survey are growing. Then, geophysical exploration is brought in a very serious problem, particularly the noise in MT data. This paper studied the noise characteristics according to the actual geophysical data of ore belt. According to waveform characteristics, we can divide noise into 6 categories: impulse noise, periodic noise, triangle wave noise, square wave noise, the step noise, and charge-discharge mode noise. The frequency range of noise is wide and the noise energy is generally stronger, and noises almost completely destroy useful signal. Through the investigation in ore belt and analysis of noise sources, large mines underground power DC electric locomotives were identified as the main source of noise in study area. Mobile, Unicom, PHS base stations are also the source of noise. In addition, the vibration caused by frequent private exploitation of interference, local city tour bulk current, road, rail, carrier telephone, high-voltage lines, substations and other infrastructure also lead a greater interference to the measured data.
     From the beginning of the MT, many researchers have been plagued by noise. Suppressing noise and improving SNR of geophysical data are the premise of successful application of geophysical exploration technology. This paper studied the far reference method and wavelet denoising method that were widely applied at present. We considered that the two methods had poorer effect and limitations for suppressing the strong energy noise and complexity noise and in ore district. The far reference method hadn’t good effect in suppressing noise of near the source. The wavelet denoising method can be very good effect in suppressing noise of single type and strong energy. But, the wavelet denoising method can’t identify and suppressing when the noise energy is weak and that the number is large and that the noise wave is complex. Based on the fact that the noise is very complex in ore district, we study the interaction suppressing noise method. The interaction method is although able to achieve good effect in suppressing noise, but the process of suppressing noise not only need too much energy and time but also add too many human factors. So, we proposed a method which combines the interaction method and Robust denoising method. This method can not only improve efficiency but also maintain the objectivity of the original data.
     The physical character of Rock is the key for combining the geophysical data and the geological information. Studying the geophysical characters of stratums and rock in Jiurui and Tongling ore district, we considered that there are four electrical interfaces , five electrical layers, four density interfaces and five density layers from the Quaternary strata to the Sinian strata. The overall strata have lower magnetic characteristics except the Silurian strata. The geophysical field characteristics show that high-frequency gravity anomalies are caused by high-density rocks and that low-frequency gravity anomaly is caused by Lower Ordovician strata. The geophysical field characteristics show that the positive magnetic anomalies have good consistency with the gravity anomalies caused by high-density body. Apparent resistivity curves show low resistivity characteristic in middle band and reflect the electric characteristics of strata in the area.
     The paper inversed and interpreted the MT data in Jiurui ore district. The shallow electrical characteristics have a good consistency with the stratums. Combining the results of gravity and magnetic exploration, we obtained the profile characters and the plane distributions of stratums and magmatic rock in Jiurui ore district and explored the energy source and channel of activated minerals in deep. Based on the dynamic model, the potential spaces of deposits in different depth were forecasted in the paper.
     This paper inversed and interpreted CSAMT, gravity and magnetic data in Tongling ore district. Combining the results about the energy and mineral sources obtained by MT, we restored the evolution process of magma and deposit within 1500m.and located some different types of deposits.
     Based on geophysical results, the paper analyzed the combined methods of integrated geophysical exploration for deep resources and considered that the combined methods should be applied in the following sequences. First, based on the regional dynamic model, using the combination methods of MT, aeromagnetic method and airborne gravity to explore the character of geophysical field of the deep geological dynamic action and to ascertain the energy source and channel of activated minerals, and to mark off the potential space of deposits in the top of the deep magmatic rock according to stratum’s and tectonic characters. Second, using the combination methods of CSAMT, high-precision magnetic and gravity explore the character of geophysical field of the geological body in deep 500m-1500m. Using high-precision magnetic and gravity explore the plane distribution of shallow stratums and branches. Using CSAMT explore the vertical distribution of the pathway of gas and liquid in the late magma active period and also explored the extension of deposit in depth.
引文
[1]董树文,李廷栋SinoProbe——中国深部探测实验[J].地质学报,2009,83(7):895-900.
    [2] Oliver J E.. Exploration of the continental basement by seismic reflection profiling[J]. Nature, 1978, 275: 485~488.
    [3] Oliver J E, Cook F A, Brown L D. COCORP and the continentalcrust[J]. J Geophys. Res.,1983, 88: 3329~3347.
    [4] COCORP. Tibetan trek; A time for reflection: COCORP targets last frontier[J]. AAPG Explorer, 1992, 1: 15~19.
    [5] Cavazza, W., Sassi, Francesco, P. A strategic vision for the Earth sciences[J]. Episodes, 2004, 27(4): 242-243.
    [6] EUROBRIDGE Working Group, Deep seismic profiling within the East European[J] Craton. Tectonophysics, 2001, 339: 153~175.
    [7] Blundell, D., Freeman, R., Mueller, S. A Continent Revealed The European[M]. United Kingdom (GBR), 1992.
    [8] Gee, D. G., Stephenson, R. A. European Lithosphere Dynamics[A]. Memoirs of the Geological Society of London[C], 2006, 32: 654.
    [9] DEKORP Research Group. First results and preliminary interpretation of deep-reflection seismic recordings along profile DEKORP 2-South.[J]. Geophys., 1985,57: 137~163.
    [10] Pfiffner, O. A., Lehner, P., Heitzman, P. et. al. deep structure of the Swiss Alps; Results of NRP 20[C]. Switzerland (CHE) 1997, 380.
    [11] Schmid S M, et al. Integrated cross section and tectonic evolution of the Alps along the Eastern Traverse.[A]. deep structure of the Swiss Alps; Results of NRP 20[C]. Switzerland (CHE) 1997, 289-304.
    [12] Echtler, H. P., Stiller, M., Steinhoff, F., et. al. Preserved collisional crustal structure of the Southern Urals revealed by Vibroseis Profiling[J]. Science, 1996, 274: 224~226.
    [13] Knapp, J. H., Steer, D. N., Brown, L. D.,et. al. Lithosphere-scale seismic image of the Southern Urals from explosion-source reflection profiling[J]. Science, 274: 226~228.
    [14] Brown, L. D., Zhao, W., Nelson, K. D,, Hauck, M., et. al. Bright spots, structureand magmatism in southern Tibet from INDEPTH seismic reflection profiling[J]. Science, 1996, 274: 1688~1690.
    [15] Carbonell, R., P r z-Estaun, A., Galart, J., et. al. Crustal root beneath the Urals: wide-angle seismic evidence[J]. Science, 1996, 274:222~223.
    [16] Clowes, R. M. The Evolution of a Continent Revealed, 2002-03 to 2004-05 Final Report for NSERC[R].2005.
    [17] Clowes, R. M., Li, C. LITHOPROBE Celebratory Conference Oral and Poster Presentations. LITHOPROBE Secretariat, University of British Columbia, Vancouver, Canada, E-Publication No.5, 2 CDs. 2005.
    [18] Wilson, J. LITHOPROBE: Dancing Elephants & Floating Continents-The story of Canada beneath your feet[M]. Key Porter Books.2003.
    [19] David, S., Willam, P., Mark, Z. EarthScope: Acquisition, Construction, Integration and Facility Management. A Collaborative Proposal to NSF.2002.
    [20] Pan Y M, P Dong. The Lower Changjiang (Yangzi / Yangtze River) metallogenic belt, east central China: intrusion and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits[J]. Ore Geology Reviews, 1999, 15:177~242.
    [21]吕庆田,杨竹森,严加永.长江中下游成矿带深部成矿潜力、找矿思路与初步尝试[J].地质学报, 2007, 81(7): 865-881.
    [22]常印佛,董树文,黄德志..论中—下扬子“一盖多底”格局与演化[J],火山地质与矿产, 1996, 17(1~2):1-14.
    [23]常印佛,刘湘培,吴言昌..长江中下游铜铁成矿带[M].北京:地质出版社, 1991.
    [24]毛建仁,苏郁香,陈三元,等..长江中下游中酸性侵入岩与成矿[M].北京.地质出版社. 1990.
    [25]刘光鼎.前新生代海相残留盆地[J].地球物理学进展, 2001, 16(4): 1-3.
    [26]刘光鼎,肖一鸣.油气沉积盆地的综合地球物理研究[J].石油地球物理勘探, 1985, 20(5): 445-454.
    [27]刘光鼎. 20世纪地球科学发展[J].地球物理学进展, 2000, 15(2): 1-5.
    [28]刘光鼎.雄关漫道真如铁——论中国油气二次创业[J].地球物理学进展, 2002, 17(2): 185-190.
    [29]涂广红,江为为,朱东英,等.综合地球物理方法对黄海地区前新生代残留盆地分布的研究[J].地球物理学进展, 2008, 23(2): 398-406.
    [30]郝天珧,杨长春,王真理,等.海区前新生代残留盆地油气研究的综合地球物理技术[J].地球物理学进展, 2008, 23(3): 731-742.
    [31]唐建伟,丁建荣,郝天珧.徐闻地区综合地球物理勘探方法研究[J]地球物理学进展, 2008, 23(3): 800-807.
    [32]叶筱华.东乡地区有色、贵金属矿(点)重磁场特征及找矿探讨[J].地质与勘探, 2008, 44(1): 70-74.]
    [33]曹寿孙,龚晓春,吉高萍.相山铀矿田重磁场特征、成矿条件及找矿方向分析[J].铀矿地质, 2007, 23(4): 234-238.
    [34]韩斗发.宁镇地区重磁场特征及其与地质构造、岩浆岩和内生矿产的关系研究[J] .江苏地质, 1992,16(3):228-234.
    [35]张维宸,刘建芬,谢连文,李小平,郝跃生.利用航磁数据推断隐伏(半隐伏)岩体[J].东华理工大学(自然科学版), 2008, 31(4):349-456.
    [36]刘登明.应用物探技术识别和预测火山岩储集层———以松辽盆地和准噶尔盆地为例[J].新疆石油地质, 2009, 30(1):109-113.
    [37] Lindrith C and Daniel H. Knepper Aeromagnetic images: Fresh insight to the buried basement, Rolla quadrangle, southeast Missouri[J].Geophysics, 1987, 52(2 ): 218-231.
    [38] Hearst R B and Morris W A. Regional gravity setting of the Sudbury structure[J].Geophysics, 2001, 66(6): 1680-1690.
    [39]张寿庭,徐旎章,郑明华.甚低频电磁法在矿体空间定位预测中的应用[J].地质科技情报, 1999, 18(4):85~88.
    [40]许令兵.甚低频电磁法在河南省竹园铜矿的应用[J],中国地震, 2001, 28(11): 25-28.
    [41]白大明,关继东,苏来柱.甚低频电磁法在某萤石矿勘查中的应用[J].物探与化探, 2002, 26(1):39-41.
    [42]史保连,辜彬.甚低频电磁法在基岩裂隙水勘探中的应用[J],物探与化探, 1989, 13(4): 273-280.
    [43]许天海.地面甚低频电磁法在工程地质中的应用[J],水电站设计, 1994, 10(4):76-80.
    [44]陈乐寿.大地电磁测深——探测地球深部电性和物质状态的一种有效手段[J].自然杂志, 2009, 31(1): 39-46.
    [45]赵国泽,刘国栋,詹艳,等.张北-尚义地震区及其邻区地壳上地幔结构[J].地震地质, 1998, 20(2): 155-163.
    [46]詹艳,赵国泽,汤吉,等.新疆玛纳斯大震区地壳深部的电性结构[J].地震地质, 1999, 21(2): 159-167.
    [47]肖骑彬,赵国泽,王继军,等.苏鲁造山带及邻区深部电性结构研究[J].中国科学D辑:地球科学, 2008, 38(10): 1258~1267.
    [48]张晓永.瞬变电磁法的中深部铝土矿预测研究[J].工程地球物理学报, 2005, 2 (2): 145-148.
    [49]陈贵生.瞬变电磁法在金属矿产勘查上的应用效果及存在问题探讨[J].矿产与地质, 2006, 20(4-5): 543~547.
    [50]叶敏生,张云.瞬变电磁法在内蒙古元山子镍矿勘查中的应用研究[J].宁夏工程技术, 2007, 6(1): 54-56.
    [51]金中国,邹林,赵俭文.瞬变电磁法在黔西北猫猫厂铅锌矿区找矿中的应用[J],地质与勘探, 2002, 38 (6): 48-50.
    [52]杨瑞西,马振波,司法祯,等. CSAMT法在铝土矿勘查中的应用[J].工程地球物理学报, 2008, 5(4):400-407.
    [53]刘国印,燕长海,赵健敏,等.微重力法与可控源音频大地电磁法组合在豫西寻找隐伏铝土矿中的应用[J].地质通报, 2008, 27(5):641-648.
    [54]于昌明. CSAMT方法在寻找隐伏金矿中的应用[J].地球物理学报, 1998, 41(1):133-138.
    [55]柳建新,王浩,程云涛,等. CSAMT在青海锡铁山隐伏铅锌矿中的应用[J].工程地球物理学报, 2008, 5(3):273-278.
    [56]李茂,杜建农,余水泉. CSAMT法在松辽盆地四平地区铀矿勘查中的应用[J].物探与化探, 2006, 30(4):298-302.
    [57]伍岳,刘汉彬,董秀康. EH4电导率成像系统在砂岩型铀矿床上的应用研究[J].铀矿地质, 1998, 14(1): 32-37.
    [58]申萍,沈远超,刘铁兵. EH4连续电导率成像仪在隐伏矿体定位预测中的应用研究[J].矿床地质, 2007, 26(1): 70-78.
    [59]肖骑彬,蔡新平,徐兴旺,等.浅层地震与MT联合技术在隐伏金属矿床定位预测中的应用——以新疆哈密图拉尔根铜镍矿区为例[J].矿床地质, 2005, 24(6): 676-683.
    [60]韩金良,张宝林,蔡新平,等.山西堡子湾金矿隐伏矿体预测及其工程验证[J].地质·矿床, 2003, 39(5): 6-10.
    [61] Tonglin Li and David W.Eaton. On the roles of magnetization and topography in the scaling behaviour of magnetic-anomaly fields[J], Geophys. J. Int,.2005,160: 46-54.
    [62] Vozoff, K, Jupp, D. L. B. Effective search for a buried layer: An approach to experimental design in geophysics[J]. Expl. Geophys.. 1977, 8(1): 6-15.
    [63] Savino, J. M., Rodi, W. L., Masso, J. F. Simultaneous inversion of multiple geophysical data sets for earth structure[A]. Presented an the 50th Ann. Internet.Mtg. Soc. Explor. Geophys. 1980.
    [64] Lines, L., Schultz, A. K., Treitel, S. Cooperative inversion of geophysical data[A]. In: Annual Meeting Abstracts[C], Society of Exploration Geophysicists, 1987, 814-816.
    [65] Lines, L., Schultz, A. K., Treitel, S. Cooperative inversion of geophysical data[J]. Geophysics, 1988, 53(1):8-20.
    [66] Fu, L. Y., Application of the Caianiello neuron-based network to joint inversion[A]. In: Annual Meeting Abstracts[C]. Society of Exploration Geophysicists, 1997, 1624-1627.
    [67] Aleseev, A. S.联合反演问题解的定量描述及其一般特性[A]. SEG61届年会论文集[C].北京:石油工业出版社, 1993, 595-596.
    [68]范兴才王家林松辽盆地北部杏山地区典型的地质地球物理模型及综合解释[A].中国典型含油气盆地综合地球物理研究[C].上海:同济大学出版社, 1995, 112-124.
    [69]陈冰王家林剥离法与综合模型法的地球物理综合反演[A].中国典型含油气盆地综合地球物理研究[C].上海:同济大学出版社, 1995, 125-135.
    [70]杨文采.地球物理反演的理论与方法[M].北京:地质出版社,1997.
    [71]于鹏,王家林,吴建生,等.地球物理联合反演的研究现状和分析[J].勘探地球物理进展, 2006, 29(2): 87-93.
    [72]杨辉,戴世坤,宋海斌,等.综合地球物理联合反演综述[J].地球物理学进展,2002,17(2):262-271.
    [73] Gomez-Trebino, E., Edwards, R. N. Electromagnetic sounding in the sedimentary basin of southern Ontarioa case history[J]. Geophysics, 1983, 48(3):34-41.
    [74] Sasaki, Y., Two-dimensional joint inversion of magnetotelluric and dipole-dipole resistivity data[J]. Geophysics, 1989, 54(2): 254-262.
    [75] Sun, Y., Schuster, G. T. Hierarchic optimizations for smoothing and cooperative inversion[A]. In: Annual meeting Abstracts[C]. Society of Exploration Geophysicists, 1992, 745-748.
    [76] Tezkan, B., Goldman, M., Greinwald, S. et. al. A joint application of radiomagnetotellurics and transient electromagnetics to the investigation of a waste deposit in Cologne (Germany)[J]. Journal of Applied Geophysics, 1996, 34(3): 199-212.
    [77] Meju, M. A. Joint inversion of TEM and distorted MT soundings: Some effective practical considerations[J]. Geophysics, 1996, 61(1): 56-65.
    [78] Li Y, Oldenburg, D. W. Joint inversion of surface and three-component borehole magnetic data[A]. In: Annual meeting Abstracts[C]. Society of Exploration Geophysicists, 1996, 1142-1145.
    [79] Vasco, D. W., Peterson, J. E., Majer, E. L. A simultaneous inversion of seismic travel times and amplitudes for velocity and attenuation[J]. Geophysics, 1996, 61(6):1738-1757.
    [80] Grechka, V., Theophanis, S., Tsvankin, I. Joint inversion of P-and Ps-waves in orthorhombic media: Theory and a physical-modeling study[A]. In: Annual Meeting Abstracts[C]. Society of Exploration Geophysicists, 1997, 1250-1253.
    [81] Rossi, G., Vesnaver, A. 3-D imaging by adaptive joint inversion of reflected and refracted arrivals[A]. In: Annual Meeting Abstracts[C]. Society of Exploration Geophysicists, 1997, 1873-1876.
    [82] Brian, S. A., Mark, E. W., Jogn, E. B. A report on the renaissance of gravity in the deep water Gulf of Mexico: A practical view of integration methods[A]. In: Annual Meeting Abstracts[C]. Society of Exploration Geophysicists, 1998, 515-517.
    [83] Grechka, V., Theophanis, S., Tsvankin, I. Joint inversion of P-and Ps-waves in orthorhombic media: Theory and a physical-modeling study[J]. Geophysics. 1999, 66(1): 146-161.
    [84] Chieh-Hou, Y., Lun-Tao, T., Ching-Feng, H. Combined application of DC and TEM to sea-water intrusion mapping[J]. Geophysics, 1999, 64(2): 417-425.
    [85] Sharma, S P; Kaikkonen, P. Appraisal of equivalence and suppression problems in 1D EM and DC measurements using global optimization and joint inversion[J]. Geophysical Prospecting, 1999, 47(2): 219-249.
    [86] Yang-hua, W. Simultaneous inversion for model geometry and elastic parameters[J]. Geophysics, 1999,64(1):182-190.
    [87]杨文采,焦富光.利用联合反演技术进行反射地震的波速成像[J].地球物理学报, 1987, 30(6): 617-627.
    [88]胡建德.瞬变电磁测深和直流电磁测深资料的联合反演[J].石油地球物理勘探, 1989, 24(5): 549-558.
    [89]张贵宾,申宁华,王喜臣,等.位场广义线性综合反演系统的建立[J].长春地质学院学报, 1993, 23(2): 197-204.
    [90]张树林,朱介寿,贺振华.井间地震和逆VSP联合层析成像[J].石油地球物理勘探, 1993, 28(5): 577-583.
    [91]关小平,黄嘉正.谈重震联合反演问题[J].物探与化探, 1994, 18(6): 429-437.
    [92] Menichetti, A. V., Guillen, A. Simultaneous interactive magnetic and gravity inversion[J]. geophysical prospecting, 1983,31(6):929-944.
    [93] Mottl, J., Mottlova, L. The simultaneous solution of the inverse problem of gravimetry and magnetics by means of nonlinear programming[J]. geophysical Joural of the Royal Astronomical Society, 1984, 76: 563-579.
    [94] Chavez, R. E. Bailey, R. C., Garland, G. D., Joint interpretation of gravity and magnetic data over axial symmetric bodies with application to the Darnley bay anomaly[J]. Nwt Canada. Geophysical prospecting, 1987, 35(4): 374-392.
    [95] Dobroka, M., Gyulai, A., Ormos, T., et. al. Joint inversion of seismic and geoelectric data recorded in an underground coal mine[J]. Geophys. Prosp., 1991, 39(5): 643-665.
    [96] Rasmussen, H. J., Hohmann, G. W. Cooperative inversion of transient Electromagnetic and gravity data for depth determinations in a basin[A]. In: Annual meeting Abstracts[C]. Society of Exploration Geophysicists, 1991, 614-617.
    [97] Zeyen, H. Pous, J. 3-D joint inversion of magnetic and gravimetric data with a priori information[J]. Geophysical Journal international, 1993, 112(2): 244-256.
    [98] Hering, A., Misiek, R., Gyulai, A., et. al. A joint inversion algorithm to process geoelectric and surface wave seismic data. Part I: Basic ideas[J]. Geophys. Prosp. 1995,43(2):135-156.
    [99] Aric, K., Adam, A., Smythe, D. K. Combined seismic and magnetotelluric imaging of upper crystalline crust in the southern Bohemian Massif[J]. First Break, 1997, 15(8): 265-271.
    [100] Roth, M., Holliger, K. Joint inversion of Rayleigh and guided waves in high resolution seismic data using a genetic algorithm[A]. In: Annual Meeting Abstracts[C]. Society of Exploration Geophysicists, 1998, 1570-1573.
    [101]汪宏年,张文生,谢靖.层状介质中重力、地震联合反演的迭代算法[J].石油地球物理勘探, 1993, 28(2): 153-165.
    [102]冯锐,陶裕录.地震-重力联合反演中的非块状一致性模型[J].地球物理学报, 1993, 36(4): 463-475.
    [103]周辉,杨宝俊,刘财.地震—大地电磁测深资料联合反演[J].地球物理学报, 1994, 37(增刊), 477-485.
    [104]周辉,刘财,渠广学.地震—大地电磁测数据非线性联合反演方法研究[J].长春地质学院学报, 1995, 25(2): 205-211.
    [105]关小平,黄嘉正,罗孝宽.重力、地震资料联合反演实例[J].石油地球物理勘探, 1995, 30(3): 379-385.
    [106]杨振武,王家映,张胜业,等.一维大地电磁和地震数据联合反演方法研究[J].石油地球物理勘探, 1998, 33(1): 78-88.
    [107]过仲阳,王家林,吴建生.应用遗传算法联合反演地震—大地电磁测深数据[J].石油物探, 1999, 38(1): 102-108.
    [108]王家林吴建生中国典型含油气盆地综合地球物理研究[M].上海:同济大学出版社, 1995.
    [109]崔天秀.钾盐找矿工作中的综合地球物理一地质研究[J].化工矿产地质, 1995, 17(3): 198-206.
    [110]张锐,刘洪涛,刘建明,等.综合地球物理勘探在龙头山银铅锌多金属矿床中的应用[J].地质与勘探, 2008, 44(2): 67-72.
    [111]张鲁新,张作伦,曾庆栋,等.综合地球物理方法在大庙铁矿斜长岩杂岩体中的应用[J].中国矿业, 2008, 17(7): 96-99.
    [112]江桂,朱国强,汪利民.综合地球物理方法在浙江小梅多金属矿产勘查中的应用[J].工程地球物理学报, 2008, 5(4): 464-469.
    [113]陶波,伍法权,底青云,等.地球物理综合勘探技术在南水北调工程中的应用[J].中国石油大学学报(自然科学版), 2006, 30(3):30-35.
    [114]姚保华,章震栓,王家林,等.上海地区地壳精细结构的综合地球物理探测研究[J].地球物理学报, 2007, 50(2): 482-491.
    [115]杨玉春,刘康和.试析综合物探的意义和作用[J].西部探矿工程, 2005, 115.
    [116]南天文,王兴祥,洪东良.中家山铅锌(金银)矿床地质-地球物理异常特征及综合找矿效果[J].矿业快报, 2007, 459(7): 66-68.
    [117]彭朝晖,张家奇,肖金平.综合地球物理方法在冀东铁矿采空区勘查中的应用[J].物探与化探, 2007, 31(4):354-357.
    [118]金永念,张登明,刘志平.综合地球物理勘查技术在地热勘查中的应用[J].水文工程地质, 2006, 1:92-94.
    [119]阴曼宁,安存杰,金玉洁.综合物化探方法在内蒙古某地区地热勘探中的应用[J].物探与化探, 2007, 31(4): 313-316.
    [120]刘益中.综合物探方法在DQ地区地热勘查中的应用[J].江苏地质, 2004, 4: 210-213.
    [121]应勇,何兰芳,杨伦凯,等.综合物探在J地区地热水勘探中的应用[J].工程地球物理学报, 2006, 3(4): 251-256.
    [122]赵军龙,毛锁明,胡建平.综合地球物理在三峡重庆库区深部断裂构造特征研究中的应用[J].西安石油大学学报(自然科学版), 2007, 22(3):52-56.
    [123]时晗.综合物探方法在厚覆盖层地区勘查地下水源的应用实例[J].水文地质工程地质, 2005, 5: 101-104.
    [124]王志宏,山科社.综合物探在层间氧化带砂岩型铀矿勘查中的应用研究[J].铀矿地质, 2006, 22(1):50-54.
    [125]王慧芳.综合物探在第四系地质勘察中的应用[J].广西水利水电, 2005, 2: 17-21.
    [126]藤吉文.当代中国地球物理学的发展势态与在地球系统科学研究进程中的使命[J].吉林大学学报(地球科学版), 2006, 36(5): 687-716.
    [127]翟裕生,姚书振,林新多.长江中下游地区铁铜等成矿规律[J].矿床地质, 1992, 11 (1): 1~11.
    [128]季绍新,王文斌,邢文臣.赣西北铜矿[M].北京:地质出版社, 1990.
    [129]王道华,傅德鑫,吴履秀.长江中下游区域铜、金、铁、硫矿床基本特征及成矿规律[J].北京:地质出版社, 1987
    [130]常印佛,刘湘培,吴言昌.长江中下游铜铁成矿带[M].北京:地质出版社, 1991.
    [131]熊熊,滕吉文,郑勇.中国大陆地壳运动的GPS观测及相关动力学研究[J].地球物理学进展, 2004, 19(1):16-25.
    [132] Kao, Dominic W.; Rankin, David Source: Enhancement of signal tu noise ratio in magnetotelluric data[J]. Geophysics, 1977, 42( 1): 103-110.
    [133] Gamble T D, Coubau W M, Clarke J. error analysis for remote reference magnetotelluric[J]. geophysics, 1979, 44(5): 959-968.
    [134] Egbert G D and Booker J R. Robust estimation of geomagnetic transfer function[J].Geophys J Roy Astr Soc,1986,87:175-194.
    [135] Sutarno D and Vozoff K. Robust M-estimation of magnetotelluric impedance tensors[J]. Expl Geophys,1989,22:383-398.
    [136] Chave A D et al.On the robust estimation of Power spectra,coherences and transfer functions[J]. J Geophys Res, 1987,92:633-648.
    [137]江钊,刘国栋,孙洁,等. Robust估计及其在大地电磁资料处理中的初步应用[A].电磁方法研究与勘探[C],北京:地震出版社,1993,60~69.
    [138] Mallat S G.A theory for multiresolution singal decomposition:the wavelet representation[J].Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-678.
    [139] Trad, D. O.. Travassos, J. M.. Wavelet filtering of magnetotelluric data[J].Geophysics,2000,65,482-491.
    [140]宋守根,汤井田,何继山.小波分析与电磁测深中静态效应的识别、分离及压制[J].地球物理学报, 1995, 38(1): 120-128.
    [141]林长佑,武玉霞,刘晓玲.大地电磁响应函数估算中改进的多道相关函数法及误差的综合评价[J].地球物理学报, 1989, 32(2): 236-241.
    [142] Chave, A. D., Thomson, D. J., Ander, M E. On the robust estimation of Power spectra. Coherences and transfer functions[J]. GeoPhys. Res, 1987, 92: 633一648.
    [143]杨生.大地电磁测深法环境噪声抑制研究及其应用[D].湖南长沙:中南大学信息物理工程,2004.
    [144]范翠松矿集区强干扰大地电磁噪声特点及去噪方法研究[D].吉林大学,2009.
    [145]毛建仁,赵曙良.宁镇山脉基岩岩浆的化学演化[J].中国地质科学院南京地质矿产研究所所刊,1990,11(1):16-27.
    [146]郭文魁.论安徽铜官山铜矿成因[J].地质学报, 1957, 37(3):317-322.
    [147]常印佛,刘学圭.关于层控式矽卡岩型矿床—以安徽省内下扬子坳陷中一些矿床为例[J].矿产地质, 1983,1:11-19.
    [148]崔彬.安徽铜陵地区花岗岩类的演化与铜金成矿系列[J].世界地质,1988,34-41.
    [149]刘裕庆,刘兆廉,杨成兴.铜陵地区冬瓜山铜矿的稳定同位素研究[C].中国地质科学院矿床地质研究所文集(11),1984:71-100.
    [150]黄华盛,师其政,崔彬等.铜官山铜矿床的组合特征及成因[J].矿床地质,1985,4(2): 13-22)
    [151]温春齐,黄华盛,刘兆廉等.铜陵地区石炭系铁铜矿床的矿石组构组分特征[J].成都理工学院学报,1996,23(2):7-14.
    [152]顾连兴,徐克勤.论长江中、下游中石炭世海底块状硫化物矿床[J].地质学报,1986,2:177-188.
    [153]何金祥,徐克勤,顾连兴等.南岭与下扬子区块状硫化物矿床特征的对比[J].南京大学学报,1995,31(4):626-633.
    [154]王文斌,李文达,董平等.论长江中下游地区含铜黄铁矿型矿床成因[J].火山地质与矿产, 1994, 15(2):26-33.
    [155]李文达.矿床研究急需加强[J].火山地质与矿产,1997,18(2):89-91.
    [156]徐文艺,杨竹森,蒙义峰,等.安徽铜陵矿集区块状硫化物矿床成因模型与成矿流体动力学迁移[J].矿床地质, 2004, 23(3):353-364.
    [157]王训诚,刘良根,郭祥焱,等.铜陵地区喷流-沉积块状硫化物矿床[J].安徽地质, 2007,17(2):95-97.
    [158]刘裕庆,刘兆廉,杨成兴.铜陵地区冬瓜山铜矿的稳定同位素研究[J].中国地质科学院矿床地质研究所所刊, 1984, (1): 70-101.
    [159]李进文.铜陵矿集区矿田构造控矿与成矿化学动力学研究[D].北京:中国地质科学院。中国地质科学院博士学位论文,2004.
    [160]董树文.长江中下游铁铜矿带成因之构造分析[J].中国地质科学院院报, 1991, 2:43-56.
    [161]吕庆田,侯增谦,吴宣志等.大型矿集区的深地震反射剖面研究:以铜陵为例[C].中国地球物理学会第十八届年会论文集,2002年:303.
    [162]黄顺生,徐兆文,顾连兴.安徽铜陵狮子山矿田岩浆岩地球化学特征及成因机制探讨[J].高校地质学报, 2004, 10(2):217-226.
    [163]彭聪,高锐.中国大陆及邻近海域岩石圈/软流圈结构横向变化研究[M].北京:地震出版社, 2000.
    [164]邓晋福,罗照华,苏尚国,等.岩石成因、构造环境与成矿作用[M].北京:地质出版社, 2004.
    [165] FAN W M , ENZIES M A. Destruction of aged lower lithosphere and accretion of asthenosphere mantle beneath eastern China [J ] . Geotectonic et Metallogenia , 1992 , 16 (324) : 171-180.
    [166] MENZIES M A , FAN W M , ZHANGM. Palaeozoic and Cenozoic lithoprobe and the loss of > 120 km of Archean lithosphere ,Sino2Korean craton , China [ A ] . PRICHARD H M , ALABASTER T , HARRIS N B W, et al. Magmatic Processes and Plate Tectonics[M] . Geol Soc Spec Pub , 1993 , 76 : 71-81。
    [167]邓晋福,莫宣学,赵海玲,等.中国东部岩石圈根/去根作用与大陆“活化”[J] .现代地质,1994 , 8 : 349-356.
    [168]邓晋福,赵海玲,莫宣学,等.中国大陆根柱构造———大陆动力学的钥匙[M] .北京:地质出版社, 1996. 110.,
    [169] GRRIFFINW L , ZHANG A D , O’REILL Y S Y, et al. Phanerozoic evolution of the lithosphere beneath the Sino - Korean craton [ A ] . FLOWER M , CHUNG S L , LO C H , et al. Mantle Dynamics and Plate Interactions in East Asia[M] . A m Geophys Union , ( Geodyn Series) , 1998 , 100 : 107-126.
    [170] MENZIES M A , XU Y G. Geodynamics of the North China craton[A] . FLOWER, M , CHUNG S L , LO C H , et al. Mantle Dynamics and Plate Interactions in East Asia[M] . Am Geophys Union , Geodyn Series , 1998 , 100 :155-165.
    [171]郑建平.中国东部地幔置换作用与中新生代岩石圈减薄[ M].武汉:中国地质大学出版社, 1999.126.
    [172]吴福元,孙德有.中国东部中生代岩浆作用与岩石圈减薄[J].长春科技大学学报,1999 , 29 (4) : 313-318.
    [173]吴福元,孙德有,张广良,等.论燕山运动的深部地球动力学本质[J] .高校地质学报, 2000 , 6 : 379-388.
    [174]许文良,王冬艳,王嗣敏.中国东部中新生代火山作用的p-T-t-c模型与岩石圈演化[J ] .长春科技大学学报, 2000 , 30 : 329-335. ]
    [175] FAN W M , ZHANG H F ,BAKER J , et al. On and off the North China Craton : Where is the Archean keel [J ] J Pet rol ,2000 , 41 :933-950.
    [176] XU Y G. Thermo2tectonic destruction of the Archean lithospheric keel beneath the Sino - Korean craton in China : evidence , timing and mechanism [ J ] . Phys Chem Earth ( A) ,2001 , 26 : 747-757.
    [177] GAO S , RUDNICK R L , CARLSON R W, et al. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China Craton [ J ] . Earth Planet Sci Lett , 2002 , 198 : 307-322.
    [178] WU F Y, WAL KER R J , REN X W, et al. Osmium isotopic constraints on the age of lithospheric mantle beneath northeastern China[J ] . Chem Geol , 2003 , 196 :107-129.
    [179]陈培荣,华仁民,章邦桐,等.南岭燕山早期后造山花岗岩类:岩石学制约和地球动力学背景[J ] .中国科学(D) , 2002 , 32 : 279-289.
    [180]陶奎元,毛建仁,邢光福,等.中国东部燕山期火山岩浆大爆发[J].矿床地质, 1999 , 18 : 316-322.
    [181]华仁民,毛景文.试论中国东部中生代成矿大爆发[J] .矿床地质, 1999 , 18 : 300-308.
    [182]毛景文,王志良.中国东部大规模成矿时限及其动力学背景的初步探讨[J] .矿床地质, 2000 , 19 : 289-296.
    [183]周新华,杨进辉,张连昌.胶东超大型金矿的形成与中生代华北大陆岩石圈深部过程[J] .中国科学(D) ,2002 ,32 (增刊) :11-20.
    [184] DENG F L ,MacDOUGALL J D. Proterozoic depletion of the lithosphere recorded in mantle xenoliths from Inner Mongolia[J ] . Nat ure , 1992 , 360 : 333-336.
    [185] ZHENG J P , O’REILL Y S Y, GRIFFIN W L , et al. Relict refractory mantlebeneath the eastern North China block : Significance for lithosphere evolution [ J ] L ithos , 2001 , 57 , 43-66.
    [186]陈斌,翟明国,邵济安.太行山北段中生代岩基的成因和意义:主要和微量元素地球化学证据[J] .中国科学(D) , 2002 , 32 :896-907.
    [187]牛耀龄.玄武岩浆起源和演化的一些基本概念以及对中国东部中一新生代基性火山岩成因的新思路[J].高校地质学报, 2005, 11: 9-46.
    [188]吴福元,葛文春,孙德有,等.中国东部岩石圈减薄研究中的几个问题[J],地学前缘,2003, 10 (3): 51-60.
    [189]吴福元,徐义刚,高山,等.华北岩石圈减薄与克拉通破坏研究的主要学术争论[J].岩石学报, 2008,24(6):1145-1174.
    [190]赵宗溥.“印支运动”五十周年回顾[J].地质科学,1986,(1):7-15.
    [191]朱夏,陈焕疆,孙肇才,等.中国中、新生代构造与含油气盆地[J].地质学报,1983,57(3):235-242.
    [192]崔盛芹,李锦蓉.试论中国滨太平洋带的印支运动[J].地质学报,1983,57:51-62.
    [193]涂光炽,赵振华.燕山期成矿作用的多样性[J].地质论评,1983,29(1):57-65.
    [194]胡受奚,赵懿英,胡志宏.中国东部中新生代活动大陆边缘构造-岩浆作用演化和发展[J].岩石学报,1994,10(4):370-381.
    [195]翟明国,朱日祥,刘建明,等.华北东部中生代构造体制转折的关键时限[J].中国科学(D辑),2003,33(10):913-920.
    [196]陈根文,夏换,陈绍清.华北晚中生代重大构造转折的地质证据[J].中国地质,2008,35(6):1162-1177.
    [197]陈衍景,富士谷.豫西金矿成矿规律[M].北京:地震出版社,1992:234.
    [198]陈衍景.碰撞造山体制的流体演化模式:理论推导和东秦岭金矿床氧同位素证据[J].地学前缘,1996,3(4):282-289.
    [199]陈衍景.中国陆区陆陆碰撞与成矿作用的时空耦合和动力学机制[J].地球学报,2005,26(增刊):407-410.
    [200]张进江,郑亚东,刘树文.小秦岭变质核杂岩的构造特征、形成机制及构造演化[M].北京:海洋出版社,1998.
    [201] Zhang J J,Zheng Y D.The multiphase extension and their ages of the Xiaoqinling metamorphic core complex[J].Acta Geologia Sinica(Englishi Edition),1999,73:139-147.
    [202]陈衍景,肖文交,张进江.成矿系统:地球动力学的有效探针[J].中国地质, 2008, 35(6): 1059-1073.
    [203]徐义刚.太行山重力梯度带的形成与华北岩石圈减薄的时空差异性有关[J].中国地质大学学报(地球科学版), 2006, 31(1): 14-22.
    [204]张继红,赵国泽,肖骑彬等.郯庐断裂带中段(沂沭断裂带)电性结构研究与孕震环境[J].地球物理学报,2010, 53(3):605-611.
    [205]赵国泽刘铁胜江钊山西阳高一河北容城剖面大地电磁资料的二维反演解释[J].地球物理学报, 1997,40(1):38-46.
    [206]董树文,孙先如,张勇,等.大别碰撞造山带基本特征[J].科学通报, 1993, 38 (6): 542-544.
    [207]吴良士,余忠珍.江西九瑞地区中生代两次构造事件及其对成岩成矿的控制[J].矿床地质, 1999, 18(2): 129-137.
    [208]朱日祥,郑天愉.华北克拉通破坏机制与古元古代板块构造体系[J].科学通报, 2009, 54(14): 1950~1961.
    [209] Pifen XU, Dapeng ZHAO. Upper-mantle velocity structure beneath the North China Craton: implications for lithospheric thinning[J]. Geophys.J.Int. 2009, 177:1279-1283.
    [210]汤加富,许卫。郑庐断裂带南段并无巨大平移—来自安徽境内的证据[J].地质评论, 2002, 48(5):449-456.
    [211]徐志刚.从构造应力场特征探讨中国东部中生代火山岩成因[J].地质学报, 1985, 59(2):109-126.
    [212]李曙光,葛宁洁,刘德良,等.大别山北翼大别群中C型榴辉岩的Sm-Nd同位素年龄及其构造意义[J].科学通报, 1989, 34(7):522-525.
    [213]李曙光,李感民,陈移之,等.大别山—苏鲁地体超高压变质年代学—II锆石U-Pb同位素体系[J].中国科学(D辑:地球科学), 1997, 27:310-322.
    [214]毛景文,张作衡,余金杰,等.华北中生代大规模成矿的地球动力学背景:从金属矿床年领精侧得到启示[J].中国科学(D辑), 2003, 33(4 ): 289-300.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700