用户名: 密码: 验证码:
松辽盆地北部浅层生物气形成条件及其资源潜力评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在现有对生物气形成机理认识的基础上,依据化学、生物化学、微生物学基本理论,综合有关学科关于生物甲烷气生成的定量研究成果,对源岩菌解气和原油菌解气进行了深入的研究,建立了源岩菌解生物气成因关联成气计算模型及原油菌解生物气物质平衡成气计算模型,通过对松辽盆地北部浅层生物气形成的物质基础和地质、地球化学条件深入系统的分析,定量阐明了浅层生物气的生成史,并动态地计算了生物气的资源量,最后指出了源岩菌解生物气和原油菌解生物气有利勘探区。得到的主要认识有:
     1、阐明了松辽盆地北部浅层生物气存在的地质、地球化学条件和生成的物质基础。松辽盆地北部具有良好的构造、沉积、温压场、水文等地质、地化条件。广泛发育富含氢、氧的暗色泥岩层,有机质丰度高、处于未~低成熟阶段,具备生成生物气的良好物质基础。
     2、明确了松辽盆地北部浅层生物气具有多种成因类型,从理论上对不同成因类型生物气的评价方法进行了探讨,重点对源岩菌解型和原油菌解型生物气资源计算方法进行了深入的分析论证,并指出了具体的计算方法。
     3、阐明了松辽盆地北部生物气的分布特征。剖面上,松辽盆地北部现今埋藏1500m以上的生物气源岩主要分布在嫩江组一、二段,其次为青山口组,嫩江组三、四段及明水组一段也有一定的生气能力。在平面上,青山口组在三肇凹陷周围及西部斜坡的东部生气强度最高,嫩江组则在整个中央坳陷区生气强度都很高。原油菌解气剖面上主要分布在相对较浅的地层中,平面上主要分布在泰康隆起、西部超覆带及大庆长垣南部的葡萄花地区。
     4、定量评价了敖南、新肇油气田生物气的运聚系数。松辽盆地敖南、新肇油气田生物气的运聚系数分别为0.4029%、0.3694%,平均为0.3862%,其中,源岩于嫩江组末之前生成的生物气运聚系数仅为0.1786%,而嫩江组之后生成的生物气运聚系数则可达2.0426%;阿拉新气藏原油菌解气的运聚系数可达67.28%。
     5、定量阐明了松辽盆地北部浅层生物气的生气量与资源量。采用成因关联法计算了松辽盆地北部1500m以上地层源岩菌解生物气的生气量为120.94×10~(12)m~3,运用动态计算方法计算的资源量是1.058×10~(12)m~3,运用静态计算方法计算的资源量是0.467×10~(12)m~3。原油菌解气总产气量为7.06×10~(11)m~3。在50%概率置信水平下,松辽盆地原油菌解气总资源量为4.55×10~(11)m~3,其中泰康隆起2.83×10~(11)m~3、西超地区1.13×10~(11)m~3、葡萄花地区0.59×10~(11)m~3。松辽盆地北部源岩1500m以上生物气总资源量为1.513×10~(12)m~3。
     6、建立了地震“亮点和低频”生物气识别技术。通过对敖南、葡南地区地层进行振幅属性等分析研究,发现了含气砂岩储层的地震“亮点”及低频反射特征,通过含气特性及地震属性参数的定量相应分析,建立了地震“亮点和低频”生物气识别技术标准和规范,在实际应用中有效的预测了河口坝、水下分流河道砂体中的气层分布。
     7、阐明了松辽盆地北部浅层源岩菌解生物气藏及原油菌解生物气藏主要为构造—岩性气藏,揭示了成藏主控因素是气源岩、储层及断裂。
     8、预测了松辽盆地北部浅层源岩菌解气和原油菌解气的有利勘探区。中部组合为三肇凹陷的边部及其相邻的朝长地区、东北隆起区的西南部、明水阶地南端及齐家~古龙凹陷东西两侧地区;上部组合为三肇凹陷及周缘的大庆长垣、朝长地区、东北隆起区的西南部、明水阶地南部地区及齐家~古龙凹陷西缘与西部斜坡地区;浅部组合为西部斜坡、齐家~古龙凹陷与西部斜坡的过渡地带、黑鱼泡凹陷、北部倾没区及三肇凹陷中北部地区;新生界在西部斜坡区相对比较有利。
On the basis of present recognition of generation mechanism for biogas and chemistry, biochemistry and microbiology theories, this thesis sets up the calculation models of genetic association method of biogas and material balance method of biogas from original oil biodegradation. Generation history is studied quantificationally through material basis and geological, geochemistry conditions of biogas generation in shallow and middle depth layer in northern Songliao basin. Resoure quantity is calculated dynamically. At last ,the favorable exploration areas of biogas from source rock and bacterial decomposition gas from original oil arepredicted. Main conclusions are as follows:
     1、The geochemical condition and material basis of biogas in shallow layer are generalized. There are excellent geochemical conditions, good tectonic conditions, sedimentary conditions, temperature-pressure field and material basis for biogas generation - gray mudstone layers with immature and low maturity, high abundance and rich in hydrogen and oxygen in Songliao basin.
     2、Different genetic type biogas and with different calculation methods are studied. Calculation methods of biogas from source rock and bacterial decomposition gas from original oil are particularly studied.
     3、Distributive character of biogas is generalized. Gas source rock above 1500m layers mainly distributed in K_2n_1 and K_2n_2, k_2qn secondly, and K_2n_3, K_2n_4 and K_2m thirdly in profile. From plane view, gas generation intensity is highest around Sanzhao sag and east West slope of k_2qn Formation, and high of the whole Central depression of K_2n Formation. Bacterial decomposition gas mainly distributed in Taikang uplift, west overlap area and Putaohua area.
     4、Migration and accumulation coefficients of two typical projects are calculated. Migration and accumulation coefficient of Aonan oil field is 0.4029%,and Xinzhao is 0.3694%. So the average coefficient is 0.3862%. The coefficient before Nenjiang Formation is only 0.1786%.and after it is 2.0426%. Besides above,when Alaxin gas field is formed, migration and accumulation coefficient of bacterial decomposition from original oil gets to 67.28%.
     5、Biogas generation quantity and resource quantity of biogas from source rock and bacterial decomposition gas from original oil in Songliao basin is calculated. Two calculation methods-genetic relationship method and elment balance method are set up to calculate quantity of biogas from source rock. The result is 120.94×10~(12)m~3, Resource quantity of biogas from source rock is 1.058×10~(12)m~3 by dynamic calculation method, and 0.467×10~(12)m~3 by static calculation method. Total gas generation quantity of bacterial decomposition gas from original oil is 7.06×10~(11)m~3. With 50% probability confidence level, the total resource of bacterial decomposition gas from original oil is 4.55×10~(11)m~3,Taikang uplift belt is 2.83×10~(11)m~3,western overlying belt is 1.13×10~(11)m~3,and Putaohua area is 0.59××10~(11)m~3, Total resource of biogas from source rock and bacterial decomposition gas from original oil in Songliao basin above 1500m layers is 1.513×10~(12)m~3.
     6、It is identified that Biogas can be found effectively by seismic bright point and low frequency. Through stratigraphic attribute analysis, seismic bright point character is discovered in sandstone reservoir. The distribution of biogas layer in the sandstones from mouth bar, and subsea distributary channel is predicted with the low frequency attribute.
     7、It is noted that there are biogas fields from source rock and bacterial decomposition gas from original oil by means of classic gas field dissection, which belong to structural-lithological gas fields. It is stated that the main play factors are gas source rock, reservoir and faults.
     8、The favorable exploration areas of biogas from source rock and bacterial decomposition gas from original oil are predicted. The favorable exploration area of biogas from source rock are: Sanzhao sag margin,Chao-Chang area, southwest Northeast uplift ,south Mingshui terrace, Daqing large anticline belt and West slope around Qijia-Gulong sag for middle and upper combination, West slope, belt between Qijia-Gulong sag and West slope, Heiyupao sag ,north plunge area and middle and northern Sanzhao sag for shallow combination. The favorable exploration area of bacterial decomposition gas from original oil are mostly West slope area for middle combination, and secondly south area of Daqing large anticline belt for middle and upper combination.
引文
Cappenberg T. Interrelation between sulfatereducing and methane~producing bacteria in bottom deposits of a freshwater lake.I. Field Observations, Antonie van Leeuwenhooek, 1974, 40:285—295.
    
    Coleman D D, Liu C L. Rilev K M. Microbial methane in the shallow Paleozoic sediments and glacial deposits of Illinois, USA. Chem. Geol., 1988, 71:23—40.
    
    Collett T S. Energy resource potential of natural gas hydrates. AAPG, 2002, 86:1971 — 1992
    
    Hansen L K, Jakobsen R, Postma D. Methanogenesis in a shallow sandy aquifer, Romo,Denmark.Geochimica et Cosmochimica Acta, 2001, 65(17)
    
    James A T.Correlation of natural gas by use of carbon components. AAPG Bull, 1983, 67: 1176—1191
    
    JIA Chengzao, The Characteristics of Intra-continental Deformation and Hydrocarbon Distribution Controlled by the Himalayan Tectonic Movements in China, 2007, Earth Science Frontiers, 2007, 14(4):96-104
    
    Jianye Ren, Kensaku Tamaki, Sitian Li .etal , Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas, Tectonophysics, 2002, 344:175—205
    
    Katz B J, Narimanov A,Huseinzadeh R.Significance of micro—bial processes in gases of the South Caspian basin.Marine and Petroleum Geology,2002,19(6):783—796
    
    Lovely J A, Klug M J. Sulfate reducers can Out conlpete methanogens at freshwater sulfate coneent rations. Appl. Environ. Microbiol.,1983,45:187—192
    
    Manuel C, Nicolas B, Jean P D.,Rene E M. Effects of nitrogen oxides and denitrication by Pseudomonas stutzeri on acetotrophic methanogenesis by Methanosarcina mazei. FEMS Microbiology Ecology, 1998,25:271—276
    
    Melodye A R, George E C, Chung H M. 利用天然气的碳同位素比值建立热成因气模型.天然气地球科学,2002, 13(5-6):19—26
    
    Momper J A. Oil migration limitations suggested by geological and geochemical considerations. AAPG Continuing Education Course Note Ser., 1978,(8): 1—60.
    
    MR Winfreyetal. Association of hydrogen metabolism with methanogenesis in LakMendota sediments.Appl.EnvironMicrobiol,1979,33,312—318
    
    Noble R A,Henk Jr F H.Hydrocarbon charge of abacterial gas field by prolonged methanogenesis:an example from the East Java Sea, Indonesia.Organic Geochemistry, 1998,29(1— 3):301— 314
    
    Prinzhofer A A.Distinction of bacterial and thermogenic gas using radiogenic isotopes of thenoble gas family.Abstract of AAPG Annual Meeting,2002
    
    Rice D D,Claypool G E. Generation, accumulation, and resource potential of biogenicgas. AAPG,1981,65(1):5-25
    Rice D D.Relation of natural~gas composition to thermal maturity and source rock type in San~Juan Basin,Northwestern New~Mexico and Southwestern Colorado.AAPG Bulletin,1983,67(8):199-218
    Shurr G W,Ridgley J L.Unconventional shallow biogenicgas systems.AAPG,2002,86:1939-1970
    Stahl W J,JrCarey B D.Source rock identification by isotopeanaly ses of natural gas from fields in the ValVerdean Delaware basins,West Texas.Chemical Geology,1975,16(4):257-267
    Thiel V,Peckmann J,Richnow H H,et al.Molecular signals for anaerobic methane oxidation in Black Sea seep carbonates and a microbial mat.Marine Chemistry,2001,73(2):97-112
    Tingguang Song.Inversion styles in the Songliao basin(northeast China) and estimation of the degree of inversion.Tectonophysics,1997,283:173-188
    Vaiiero M V G.,Hulshoff Pol L W,Lettinga G,Lens P N L.Elfect of NaCl on thermophilic(55℃)methane degradation in sulfate reducing granular sludge reactors.Water Research,2003,(37):2269-2280Waldron S,Lansdown J M,Scott,et al.The global influence of the hydrogen isotope composition of water on that of bacteriogenic methane from shallow fresh water environments.Geochimica et Cosmochimica Acta,1999,63(15)
    Wangshui Hu,Chunfang Cai,Zhiyong Wu,Etal,Structural style and its relation to hydrocarbon exploration in the Songliao basin,northeast China,Marine and Petroleum Geology 1998,15:41-55
    包茨.天然气地质学.北京:科学出版社,1988
    蔡希源,陈章明,王玉华.松辽两江地区石油地质分析.北京:石油工业出版社,1999
    曹海防,夏斌.松辽盆地地层水化学特征及其流体—岩石相互作用探讨.天然气地球科学,2006,17:(4):566-572
    陈安定,刘桂霞,莲莉文等.生物甲烷形成实验与生物气聚集的有利地质条件探讨.石油学报,1991,12(3):7-16
    陈建渝,唐大卿.非常规含气系统的研究和勘探进展.地质科技情报,2003,22(4):55-59
    戴金星,И.B.维索茨基.天然气地质学.北京:石油工业出版社,1986
    戴金星,陈英.中国生物气中烷烃组分的碳同位素特征及其鉴别标志.中国科学(B辑),1993,23(3):303-310
    戴金星,裴锡古,戚厚发.中国天然气地质学(卷二).北京:石油工业出版社,1996
    戴金星,裴锡古,戚厚发.中国天然气地质学(卷一).北京:石油工业出版社,1992
    党玉琪,侯泽生,徐子远,等.柴达木盆地生物气成藏条件.新疆石油地质,2003,24(5):374-378
    丁安娜,黄第藩,张水昌等.未熟有机质发酵后饱和烃中主要生物标志化合物的变化.地球化学,2001,30(5):407-415
    丁安娜,宋桂侠.松辽盆地滨北地区生物气源岩酸性含氧化合物的分布及其地球化学意义.天然气地球科学.2004,15(1):51-57
    丁安娜,王明明.生物气的形成机理及源岩的地球化学特征——以柴达木盆地生物气为例.天然146 气地球科学,2003,14(5):402-407
    丁国生,田信义.中国浅层天然气资源及开发前景.石油与天然气地质.1996,17(3):226-229
    冯子辉.松辽盆地生物气和低熟气成藏条件与目标评价,大庆勘探开发研究院,2006
    付广,吕延防,薛永超,等.泥岩盖层压力封闭的演化特征及其研究意义.石油学报,2000,21(3):41-44
    付广、吕延防.油气藏封盖研究.石油工业出版社,1996
    付晓泰,王振平,卢双舫.天然气在盐溶液中的溶解机理及溶解度方程.石油学报,2000,21(3):89-94
    高波,陶明信.煤层气甲烷碳同位素的分布特征与控制因素.煤田地质与勘探,2002,30(3):14-17
    高瑞祺,蔡希源.松辽盆地大油田形成条件与分布规律,北京:石油工业出版社,1997
    关德师,戚厚发,钱贻伯等,生物气的生成演化模式,石油学报,1997,18(3):31-36
    郝石生,黄志龙,杨家琦.天然气运聚动平衡及其应用.北京:石油工业出版社,1994
    郝石生,戚后发,戴金星.天然气地质学概论.北京:石油工业出版社,1989,180-185
    华振明,固体废物的处理与处置,北京:高等教育出版社出版,2004
    黄保家,肖贤明.莺歌海盆地海相生物气特征及生化成气模式.沉积学报,2002,25-30
    黄第藩,李晋超,周翥虹.陆相有机质的演化和成烃机理.北京:石油工业出版社,1984
    贾承造,赵文智.国外天然气勘探与研究最新进展及发展趋势.天然气工业,2002,22(4):5-9
    姜乃煌.甲烷菌发酵阶段划分.石油勘探与开发,1993,20(4):39-43
    解习农.松辽盆地层序地层格架和浅层沉积体系:[科研报告].大庆:勘探开发研究院,2007
    柯益华,杨新凯,方治华.厌氧消化过程微生物四种群生态系统数学模型.中国沼气,1997,15(1):16-19
    李本亮,王明明.地层水含盐度对生物气运聚成藏的作用.天然气工业,2003,23(5):16-20
    李明宅.生物气成藏规律研究.天然气工业.1997,17(2):6-10
    李明宅.生物气的生成演化模式和初次运移特征.石油实验地质,1995,17(2),147-155
    李明宅.生物气运移特征初步探讨.石油与天然气地质文集(第4集).北京:地质出版社,1994
    李维铮,郭耀煌,甘应爱.1982.运筹学.北京:清华大学出版社,163-220
    李先奇,张水昌,朱光有,梁英波.中国生物成因气的类型划分与研究方向.天然气地球科学,2005(4),477-484
    李英华.水地化指标研究的新认识.中国海上油气(地质),1998,12(1):19-23
    林春明,李从先,蒋维三.钱塘江口地区全新世沉积环境与生物气分布.天然气工业,1997,17(1):11-5
    林春明,钱奕中.浙江沿海平原全新统气源岩特征及生物气形成的控制因素.沉积学报,1997,15(增刊):70-75
    林春明,朱嗣昭,黄志诚.浙江沿海平原第四系生物气特征和成藏条件.南京大学学报(自然科学).1999,35(3):286-294
    刘德来,陈发景.中国东北地区中生代火山岩与板块构造环境,大庆石油学院学报,1994,18(2)
    刘立等.满洲里—绥芬河地学断面域内中新生代盆地基地结构与沉积构造演化.北京:地质出版社,1993
    刘树根,戴苏兰,赵永胜等.云南保山盆地烃源岩及天然气生成特征.天然气工业,1998,18(1):18-24
    刘文辉,徐永昌.天然气成因类型及判别标志.沉积学报,1996,14(1):110-116
    刘文汇,徐永昌,史继扬等.生物~热催化过渡带气.北京:科学出版社,1998
    刘文汇,徐永昌.论生物~热催化过渡带气.石油勘探与开发.2005:Vol.32 No.4,30-36
    楼章华,程军蕊,金爱民.沉积盆地地下水动力场特征研究—以松辽盆地为例.沉积学报,2006,24(2):193~201
    楼章华,高瑞祺,蔡希源.论松辽盆地地下水动力场演化与油气运移、聚集.沉积学报,1997,15(4):115-120
    楼章华,金爱民,朱蓉,等.论松辽盆地地下水动力场的形成与演化.地质学报,2001,75(1):111-120
    楼章华,金爱民,朱蓉,等.松辽盆地油田地下水化学场的垂直分带性与平面分区性.地质科学,2006,46(3):392-403
    卢双舫.松辽盆地滨北烃源条件研究及资源量预测:[科研报告].大庆:大庆石油学院,2004
    陆逊,陈理民,周胜福.浙江第四系天然气概况.天然气工业,1983,3(2):9-13
    吕延防.油气保存条件.哈尔滨:黑龙江科学技术出版社,1997
    罗槐章.陆良盆地上第三系未熟烃源岩特征及生物气成因分析.天然气工业,1999,19(5):21-26
    罗毅,朱扬明.百色盆地第三系浅层气成因类型与形成机制.广西科学,2003,10(4):286-291
    马杏垣等.中国岩石圈动力学纲要.北京:地质出版社,1987
    潘裕生.青藏高原的形成与隆升.地学前缘,1999,6(3):153-163.
    庞雄奇,陈章明,陈发景.干酪根演化过程中有机质转化产油气量物质平衡优化模拟计算.石油勘探与开发,1992(1),23-30
    钱凯,王明明,魏伟.中国陆相:天然气成因类型及富集规律.石油与天然气地质,1996,17(3):171-176
    钱贻伯,连莉文,陈文正.生物气形成过程中CH_4碳同位素变化规律的研究.石油学报.1998,19(1):29-33
    史占祯.渤海湾盆地及其外围的生物气研究.天然气工业,2002,22(5):11-16.
    苏爱国,赵文智,张水昌.中国生物气研究之酌议.石油天然气学报(江汉石油学院学报),2005,27(4):148 580-582
    田在艺,韩屏.中国东部中新生代含油气盆地构造分析与形成机制.石油勘探与开发,1993,20(4)
    王东坡.松辽盆地沉积建造与海平面升降.北京:地质出版社,1993
    王振平.滨北地区浅层油气成藏条件与有利探区预测研究,大庆石油学院,2002
    杨继良.松辽盆地断陷盆地的地质结构与油气.北京:科学出版社,1983
    杨玉峰.松辽盆地北部西部超覆带稠油形成机理与分布规律研究,大庆勘探开发研究院,2002
    张顺,赵波,付秀丽.松辽盆地北部地质综合大剖面研究:[科研报告].大庆:勘探开发研究院,2008
    张相春,王振平,赵炯鹏.Matlab优化工具箱在干酪根成烃动力学参数标定中的应用,计算机与应用化学,2007,24(4):448-452
    张宗命.1982.中国石油大地构造.石油工业出版社.158-172
    朱光有,赵文智,张水昌,等.稠油降解气的特征与识别及其勘探潜力.中国石油勘探,2006,4:52-56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700