用户名: 密码: 验证码:
密井网条件下开发地震解释技术在油田调整中应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着大庆油田已进入高含水后期开发阶段,剩余油预测业已成为油田开发的核心问题和提高采收率的瓶颈。而控制剩余油分布的关键问题就是微幅度构造、小断层和井间砂体展布,早期长垣油田没有三维地震资料,构造解释、储层预测是靠已有井刻画、预测,缺乏客观性、准确性;在井网密度达到50~55口/km~2,砂体认识程度只能达到60%~75%,断点组合只有85%左右,这正是密井网条件下开发地震解释技术的核心攻关内容。
     本论文以大庆喇嘛甸油田为例,以开发地震处理成果和理论研究为基础,结合测井信息,从构造解释入手,结合正演模拟、纵横波联合地震地质层位标定、多种小断层识别方法的综合运用,。通过对密井网条件下小断层、微幅度解释方法及各种条件下储层反演参数试验、地震属性系统分析研究,实现了3m断层可识别、5m断层准确识别;薄层砂体预测精度高,构造解释误差1m左右。从而形成了密井网条件下构造解释、储层预测流程。主要成果与创新点如下:
     (1)进一步完善了小断层识别方法。在纵横波联合层位标定技术的基础上,以纵波资料为主,采用相干体、蚂蚁体、横波联合层位追踪、空变三维速度场时深转换等技术联合手段,应用转换波资料和钻井断点数据为引导,井点动态资料为后验,最终用干扰试井资料落实,使断层空间组合结构更合理,提高了3m以上小断层的识别精度,后验井误差小于0.2%。
     (2)探索出适合密井网条件下地震反演思路。通过反演参数优化,优选波阻抗约束随机模拟反演方法,分析了地震反演参与井数、砂体预测精度的关系,并应用抽稀井反演实验,使3m以上厚度砂体预测符合率达到85%以上。
     (3)提高了井间砂体预测精度、完善了喇嘛甸油田的沉积微相相图。利用井震联合地震属性反演结果,结合密井网条件下沉积微相研究成果,确定了砂体展布特征,完善了原有沉积微相的认识。
     (4)落实了微幅度构造形态。在井分层引导、地震解释的砂岩组顶底面和断面约束下,结合井点动态信息,构造图误差控制在±2m以内,大部分控制在±1m左右。
     (5)本次研究成果应用于老油田二次开发调整。利用井震结合精细构造解释、储层预测成果及动态分析寻找剩余油富集区,完成3口水平井及4口斜井设计,从3口水平井完钻结果看,砂体钻遇率70%以上;并根据小断层与砂体预测成果,优化新井射孔方案、完善单砂体注采关系,为老油田精细挖潜提供技术支持。
With development of Daqing Oilfield having entered the later stage of high water cut the remaining oil prediction has become the core problem of oilfield development and the bottleneck of EOR. The key problems of controlling the remaining oil distribution are structures with micro amplitudes, small faults and sand-body distribution between wells. Without 3D seismic data structure interpretation and reservoir prediction are conducted on the basis of well portray and prediction, lacking objectivity and accuracy; in the case of the well pattern density of 50~55 well/km~2 the understanding degrees of sand body can only reach 60%~75%, breakpoint combination is only about 85%, which are the core contents of development seismology interpretation technology under dense well patterns.
     Taking Lamadian Oilfield of Daqing as an example, on the basis of development seismology processing achievements and theoretic researches, combining with logging information and structure interpretation, and combing with comprehensive application to forward simulation, geological horizon calibration from P and S-wave combined seismology, many methods of recognizing small faults, taking increase of interpretation accuracy of small faults and structures with micro amplitude and prediction accuracy of sand bodies between wells as the goal, through tests of interpretation methods of small faults and structures with micro amplitude under dense well patterns and inversion parameters from reservoirs under deferent condition and analytical study of seismic attribute system, this paper realizes recognition of faults of 3m and accurate recognition of faults of 5m; the prediction accuracy of thin sand bodies is high, and the error of structural interpretation is about 1m. The paper also presents the structural interpretation and the reservoir prediction suitable for the dense well pattern condition. Main achievements and innovation pointsare as following:
     (1) The methods of recognizing small faults are improved further. On the basis of thecalibrated technology for P and S-wave combined horizons, taking P-wave data as the dominant factor, using techniques, such as coherent body, ant body, S-wave combined horizon tracing, time to depth conversion of special variation 3D velocity field, using converted wave and well breakpoint data for guide, using dynamic data from well points as posteriority, and using data from interference test wells to ascertain, the special combination structure of faults are made more reasonable, the accuracy of recognizing small faults above 3m is risen, the error of posterior wells is smaller than 0.2%.
     (2) The clue for seismic inversion suitable for dense well pattern condition is explored. Through optimization of inversion parameters, the restrained probabilistic simulation method for wave impedance is optimized, the relationship among seismic inversion parameters, well numbers and sand body prediction accuracy is analyzed, the vacuated well is used for inversion test, and the predict coincidence rate of sand bodies above 3m reaches more than 85%.
     (3) The accuracy of predicting sand bodies between wells is risen, and the diagrams of sedimentary microfacies in Lamadian Oilfield is improved. Using inversion results of well-seismology combined seismic attributes, and combining with achievements of sedimentary microfacies under dense well patterns, the characteristics of sand body distribution are determined, and the understanding about the sedimentary microfacies are improved.
     (4) The morphologies of structures with micro amplitude are ascertained. Under restriction of the top and bottom surfaces and fault surface of sandstone groups that are guided by layering in wells and interpreted seismically, combining with dynamic information from well points, the error of the structural map is controlled within±2m, mostly controlling within about±lm.
     (5) The achievement is used in the secondary development adjustment. Using the finely structural interpretation of well-seismology combination, reservoir prediction achievements and dynamic analysis to find remaining oil enriching areas, the design of 3 horizontal wells and 4 deviated wells is finished. It can be seen from 3 horizontal wells that the penetration rate of sand body is above 70%, on the basis of prediction achievements from small faults and sand bodies, the perforation plan for new wells is optimized, the injection-production relationship of single sand body is improved, providing the further development in old oilfields with technical support.
引文
Araktingi U G, Bashore W M. Effects of properties in seismic data on reservoir characterization and consequent fluid-flow predictions when integrated with well logs[R]. SPE24752,1992: 913-926
    
    Abbots, F.V, van Kuijk, A.D. Using 3D Geological Modelling and Connectivity Analysis to Locate Remaining Oil Targets in the Brent Reservoir of the Mature Brent Field,, SPE 38473,1997/9
    
    Behrens R A,MacLeod M K,Trann T T,et al.Incorporating seismic attribute maps in3D reservoir models[R].SPE36499,1998:31-36. (1996年9月)
    
    Breit V ,Dozzo J."State-of-the-Art" intergrated studies methodologies-a historical review [C] //SPE 87032 prepared for presentation at the SPE Asia Pacific Conference on integrated Modeling for Asset Management held in Kuala Lumpur ,Malaysia ,29-30 March ,2004.
    
    Coleou, T., Allo, F., Bornard, R., et al. 2005: Petrophysical Seismic Inversion to the Troll Field ;SEG/Houston 2005 Annual Meeting, SPE 19068
    
    Caers J., 2003. History matching under a training imagebased geological model constraints. SPE 74716,218-226 SPE-74716-PA, SPEJ 8 (3): 218-226.
    
    Castro S., and Caers J., 2006. A probabilistic approach to integration of well log, geological information, 3D/4D seismic and production data. 10th European Conference on the Mathematics of Oil Recovery, SPE103152
    
    Chung H. M., Lawton D. C, 1995, Amplitude responses of thin beds: Sinusoidal approximation versus Ricker approximation, Geophysics, 60(1): 223-230
    
    Dong W., 1999, AVO detectability against tuning and stretching artifacts, Geophysics, 64(2):494-503
    Enchery G ,Le Ravalec-Dupin M ,Roggero F ,An improved pressure and saturation downscaling process for a better intergration of 4D seismic data together with production history [C]// SPE 107088 ,EUROPEC/EAGE Conference and Exhibition ,11-14 June ,London ,U.K. ,2007
    
    F.M. Liestol, E. Hodneland, K. Hatland, E. Zachariassen, and T. Andersen,. Improved Modeling and Recovery From Fluvial Reservoirs in the North Sea, Hydro ASA, IPTC 10378,2005
    
    Journel A.,G, 2002. Combining knowledge from diverse information sources: an alternative to Bayesian analysis. Mathematical Geology, 34(5), 573-596 (Combining Knowledge from Diverse Sources: An Alternative to Traditional Data Independence Hypotheses)
    
    J.M.Davison, R. Leaper, and M.B. Cauley et al .Extending the Drilling Operating Window in Brent:Solutions for Infill Drilling in Depleting Reservoirs, 2004/3
    
    Johnstad S. E., Seymour R. H. and Smith P. J., 1995. Seismic reservoir monitoring over the Oseberg field during the period 1989-1992: First Break, 13(5), 169-183 Kurt J.Marfurt.R,Lynn Kirlin,Steven.Farmer and Michael S.Bahorich:3-D Seismic attributes using a semblance-based coherency algorithm,Geophysics,vol.63,July-August 1998
    
    Lee D S, Steven V M. Time-laps crosswell seismic tomogram to characterize flow structure in the reservoir during the thermal stimulation [J]. Geophysics Soc of Expl Geophys, 1995,60:660-666
    
    Litiak M .Innovative integrated modeling technology [C] // SPE 112811 ,This presentation was an SPE distinguished lecture during 2006-2007
    
    Liestol F. M, Hodneland E., Hatland K., and et al. Improved Modelling and Recovery from Fluvial Reservoir in the North Sea. 2005,International Petroleum Technology Conference. IPTC 10378
    
    Lange J. N., Almoghrabi H. A., Lithology discrimination for thin layers using wavelet signal parameters,Geophysics, 1988,53(12): 1512-1519
    
    Lin C, Young R., Implications of thin layers for amplitude variation with offset (AVO) studies,Geophysics, 1993,58(8):1200-1204
    
    Liu Y. B., Schmitt D. R., Amplitude and AVO responses of a single thin bed, geophysics 2003,68(4): 1161 -1168
    
    Mezghani M., Fornel A., Langlais V., Lucet N., 2004. History matching and quantitative use of 4D seismic data for an improved reservoir characterization. SPE 90420
    
    Martinez R D ,Corinish B E ,Seymour .An intergrated approach for reservoir description using seismic ,Borehole >and geologic data[C]//SPE Annual Technical Conference and Exhibition ,8-11
    October ,San Antonio ,Texas ,1989,SPE 19581
    
    Odegaard, E., and Avseth, P., 2004: Well log and seismic data analysis using rock physics templates;First Break, v. 22, no.10, 37-43
    
    Partyka G, Whitaker P., King Field AVO sensitivity to reservoir thickness and amplitude scaling, SEG Expanded Abstract, 2001, 193-196
    
    Robert D.E, Winchester,A.J Improved reservoir description through the integration of seismic ,VSP ,and well logs [C]//SPE 15862,European Conference ,20-22 October London, United Kingdom ,1986 Robert E Sheriff: Reservoir Geophysics ,SEG: Inresrigations in Geophysics, 1992
    Strebelle S., 2002. Conditional simulation of complex geological structures usingmultiple-point statistics.Mathematical Geology, 34(1), 1-26
    
    Stephen K.D, Macbeth C. Reducing reservoir prediction uncertainty using seismic history matching [C]// SPE 100295, EUROPEC /EAGE Conference and Exhibition ,12-15 June ,Vienna ,Austria ,2006
    
    Scarlet Castro, Jef Caers, and Cecilie Otterlei et al .A Probabilistic Integration of Well Log, Geological Information, 3D/4D Seismic and Production Data: Application to the Oseberg Field, SPE 103152, 2006/9
    
    Tjolsen C B,Johnsen Gyrid,Halvorsen Gunnar,et al. Seismic data can improve the stochastic facies modeling[R].SPE30567,1996:141-145
    
    T. Andersen, T. F(?)ye and C. Otterlei etc al .Method for Conditioning the Reservoir Model on 3D and 4D
    Elastic Inversion Data Applied to a Fluvial Reservoir in the North Sea,SPE 100190,2006/6Tureyen O,and Caers J.2003.A two-level optimization method for geostatistical integration of production data on non-uniform grids.SPE 84368
    Treadgold G.E.,Dey-Sarkar S.K.,Smith S.W.,Swan,H.W.,1990,Amplitude versus Offset and Thin Beds,SEG,Expanded Abstracts,1463-1466
    W.D.Pennington.The Rapid Rise of Reservoir Geophysics,The Leading Edge 24,S86 -S91(2005)
    John E.Peterson,Jr,Sudan S.Hubbard,Kenneth H.Williams etc al Moisture migration using high resolution time-laps radar tomography[C]//68th Ann.Internet.Mtg:Soc of Expl Geophys,.1998:322-325
    Fuller B.N.,Iverso W.P.,Smithson S.B.,1989,AVO for thin bed detection,SEG,Expanded Abstracts,826-828
    毕丽飞,王延光,夏吉庄,等.垦71地区转换波油气检测技术研究[J].油气地球物理,2007,5(3):23-26
    曹辉.油藏地球物理技术的发展历程与现状-《The Leading Edge》D&P专栏回顾[J].勘探地球物理进展,2005,28(1):5-11
    陈军,陈岩.地震属性分析在储层预测中的应用.石油物探[J],2001,40(3):94-99
    甘利灯 姚逢昌.测井约束反演与储层地球物理重构技术.CPS/SEG/EAGE北京98国际地球物理研讨会暨展览论文详细摘要[M]1998.226-229
    黄伏生,陈维佳,方亮,黄修平,等 喇嘛甸油田注采无效循环治理的做法及效果[J].大庆石油地质与开发,2006,25(1):70-72
    何樵登.地震波理论[M].北京:地质出版社.1988,100-113
    胡守仁,沈清,胡德文神经网络应用技术[M].长沙:国防科技大学出版社.1993,220-223
    韩伟东,兰爱萍 喇嘛甸油田剩余油挖潜方法[J].大庆石油地质与开发,2002,21(3):41-43
    大庆油田提高采收率技术,内部资料,2004年
    大庆油田“315”工程,内部资料,2009-2010年
    姜岩,李纲,刘文岭 基于地震解释成果的地质建模技术及应用[J].大庆石油地质与开发,2004,23(5):115-117
    季玉新,陈娟,谢雄举.测井曲线精细处理解释技术在复杂储层预测中的应用[J].石油物探[J],2004,43(2):139-144
    箭晓卫,赵伟 喇嘛甸油田特高含水期厚油层剩余油描述及挖潜技术[J].大庆石油地质与开发,2006,25(5):31-33
    李兰斌.开发地震技术及其进展[J].河南石油,2000,14(5):28-31
    李伯虎,李洁.大庆油田精细地质研究与应用技术[M].石油工业出版社,2004,20-36
    李庆忠.走向精确勘探的道路[M].北京:石油工业出版社.1994,180-196
    李卫斌,王丽英,孙庆萍,特高含水期厚油层细分挖潜方法研究[J].大庆石油地质与开发,2005,24(1):58-60
    刘文岭.地震约束储层地质建模技术[J].石油学报,2008,29(1):64-68
    刘合,王玉普.国外井间地震技术[M].北京:石油工业出版社,1998,15-20
    王昌瀚.测井与地震信息标定研究[J].石油地球物理勘探2004,39(1):68-74
    吕晓光,赵翰卿.松辽大型浅水湖盆三角洲沉积特征及前缘相储层结构模型[J].沉积学报,1999,17(4):572-577
    刘雯林.油气田开发地震技术[M].北京:石油工业出版社,1996:67-72
    刘丁曾,李伯虎等,大庆萨葡油层多层砂岩油藏[M].北京:石油工业出版社,1997.9:140-154
    刘丁曾,王启民,李伯虎,大庆多层砂岩油田开发[M].北京:石油工业出版社,1996.11:260-282
    李霞 储层预测与地震反演[A].俄罗斯地球物理勘探前沿技术文集.北京:石油工业出版社,2000:350-364
    刘洪林,胡建,王金山,等.GA+BP神经网络在薄互层储层预测中的应用[J].物探与化探,2004,28(5):460-462
    马在田.三维地震勘探方法[M].北京:石油工业出版社.1989.12:166-174
    马在田.地震成像技术:有限差分偏移[M].北京:石油工业出版社.1989.8:200-210
    骆杨,赵彦超.多点地质统计学在河流相储层建模中的应用[J].地质科技情报,2008,27(3):68-72
    陆基孟,地震勘探原理(上册)[M].中国石油大学出版社.2006.12:200-254.
    孟尔盛.中国地球物理勘探史例[M].北京:石油工业出版社.1994
    裘亦楠 陆相湖盆河流-三角洲各种沉积砂体的油水运动特点,油田分层开采[M]..北京:石油工业出版社,1985
    靳俊波.神经网络与神经计算机原理和应用[M].成都:西南交通大学出版社.1991:400-410
    隋军,吕晓光,赵翰清等,大庆油田河流三角洲项储层研究[M],北京:石油工业出版社,2000.6:300-320
    师永民,霍进,张玉广.陆相油田开发中后期油藏精细描述[M],北京:石油工业出版社,2004.12:250-270
    尹艳树,吴胜和 储层随机建模研究进展[J].天然气地球科学,2006,17(2):210-216
    杨耀忠,曲寿利,隋淑玲等.地震约束建模技术在油藏模拟中的应用[J].石油地球物理勘探,2003,38(5):535-539
    阎平凡,张长水.人工神经网络与模拟进化算法[M].北京:清华大学出版社,2000:12-16.
    于兴河.油气田储层表征与随机建模的发展历程与展望[J].地学前缘,2008,15(1):1-15
    王家华.迎接油气储层建模理论、应用--从2007年国际石油地质统计学大会谈起[J].地学前 缘,2008,15(1):16-25
    王喜双,甘利灯,易维启,等.油藏地球物理技术进展[J].石油地球物理勘探,2006,41(5):606-613
    吴忠宝,康丽侠,王改娥 三维地质建模及油藏数值模拟一体化剩余油分布规律研究[J].地质与资源,2006,15(4):315-320
    吴胜和,李文克 多点地质统计学-理论、应用与展望[J].古地理学报,2005,7(1):137-144
    姚逢昌,甘利灯.地震反演的作用与限制.石油勘探与开发[J],2000,27(2):53-56
    姚姚,詹正彬,钱绍湖.地震勘探新技术与新方法[M].武汉:中国地质大学出版社.1991.10:115-126
    姚光庆,李联五,孙尚如.砂岩储层构成定量化分析研究思路与方法[J].地质科技情报.2001.20(1):35-38
    徐仲达.地震波理论[M].同济大学出版社.1997.7:200-220
    熊翥.21世纪初中期油气地球物理技术展望[M].石油工业出版社,2006.9:400-444
    徐刚,张建宁谭明友.BP人工神经网络在在济阳拗陷圈闭地质评价中的应用[J].石油地球物理勘探,2004,39(5):565-569
    奈德尔N.S著,牛毓荃译.褶积模型[M].石油工业出版社.1986.4:300-316
    P.An ank w.M.Moon.用前馈神经网络进行储层描述(美国勘探地球物理学家学会第63届年会论文集).北京,石油工业出版社.1994
    赵振宇,徐用懋著 模糊理论和神经网络的基础与应用[M].清华大学出版社.1996.6:180-203
    赵旭东.石油数学地质概论[M].北京:石油工业出版社,1992.4:450-489
    赵翰卿,付志国 大型河流-三角洲沉积储层精细描述方法[J].石油学报,2000,21(4):109-113
    赵伟,赵云飞,王莉明,喇嘛甸油田储层动用状况及综合调整方向[J].大庆石油地质与开发,2002,21(2):26-28
    张永刚.地震波阻抗反演技术的现状和发展[J].石油物探,2002,41(4):385-390
    汲生珍,刘震.波阻抗反演技术在层序地层与沉积分析中的应用[J].石油勘探与开发.2005,32(6):66-68

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700