用户名: 密码: 验证码:
水相沉淀聚合工艺制备碳纤维用高分子量聚丙烯腈
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纤维前驱体聚丙烯腈(PAN)是由丙烯腈(AN)和少量共聚单体聚合而成的,最常用的共聚单体是衣康酸(IA)。采用高分子量PAN共聚物进行纺丝是制备高性能PAN原丝的有效途径。与传统的均相溶液聚合体系相比,水相沉淀聚合体系由于采用链转移系数为0的水(H20)作为反应介质,可以避免AN自由基向溶剂的链转移反应,有利于提高PAN聚合物的分子量和聚合反应的转化率,并减少大分子链的支化。本文主要针对水相沉淀聚合工艺制备碳纤维用高分子量PAN开展基础性科学研究。借助乌氏粘度计(UVM)、差示扫描量热(DSC)分析、热重分析(TGA)、元素分析(EA)、傅里叶变换红外光谱(FTIR)、激光Raman光谱(LRS)、广角X射线衍射(WAXRD)、核磁共振(NMR)和旋转粘度计等多种测试方法,研究了各聚合反应因素对AN/IA水相沉淀共聚合反应的影响,探讨了聚合工艺参数与聚合物结构和性能之间的相互关系,获得了可应用于碳纤维工业化生产的有价值的理论成果。
     与大多数采用含碱金属离子的复合引发体系不同,以不含碱金属离子的单一水溶性铵盐——过硫酸铵[(NH4)2S2O8:APS]为引发剂,采用水相沉淀聚合工艺,研究了AN与IA的共聚合反应。结果表明:采用水相沉淀聚合工艺可以制备出IA单体链节含量合适,聚合物分子量和聚合反应转化率均较高的PAN共聚物。在聚合反应开始阶段,AN/IA的水相沉淀聚合体系中存在两相——单体相和水溶液相;反应过程中,水溶液相中的引发剂APS受热分解产生硫酸根离子自由基(SO4-),引发AN与IA发生自由基共聚合反应。当白色PAN聚合物沉淀产生时,聚合物颗粒相随之产生。随着AN单体的消耗,单体相中的AN向水相中扩散,并且被吸附在聚合物颗粒相上,使聚合反应在水溶液相和聚合物颗粒相同时发生。随着聚合体系中引发剂用量、总单体浓度、反应温度的提高,聚合反应转化率均升高,聚合物平均分子量下降;随着反应时间延长,聚合反应转化率和聚合物平均分子量均升高。
     AN/IA的共聚合反应及PAN聚合物的结构和性能都受到IA单体的影响。由于单体活性的差异,原料组成与聚合物的组成并不一致。随着喂料时IA加入量的提高,聚合反应转化率和聚合物分子量呈现先升高后下降的趋势。在IA用量为2wt%时,转化率和分子量达到最大值。聚合物中的氧(O)元素含量随IA用量的提高而增加,表明IA单体链节在聚合物中的含量增加,而碳(C)、氮(N)、氢(H)元素的含量降低。FTIR谱图中代表IA单体链节的1737cm-1附近的羰基(C=O)伸缩振动峰强度增强。共聚单体IA的引入,降低了PAN聚合物的结晶度,使其晶粒尺寸下降。
     采用分子量调节剂对AN/IA水相沉淀共聚合反应的转化率和聚合物的平均分子量进行控制。随着分子量调节剂异丙醇(IPA)和正十二硫醇(n-DDM)用量的增加,聚合反应转化率和分子量下降,但是聚合物中C、N、H、O元素含量变化不大。分子量调节剂IPA的引入使PAN聚合物的结晶度提高,晶粒尺寸增大,但对化学结构影响不大。IA单体和IPA的引入对PAN聚合物的三单元立构规整度影响不大。
     在总单体浓度Ct=22wt%,引发剂浓度[APS]=0.8wt%,反应温度T=60℃,单体转化率约6.2%的条件下,采用Kelen-Tudos(K-T)法和Fineman-Ross(F-R)法,计算单体竞聚率分别为:r1(AN)=0.64, r2(IA)=1.37; r1(AN)=0.61, r2(IA)=1.47。从竞聚率的大小可以看出,IA单体的反应活性大于AN。随聚合反应转化率和反应温度的提高,AN的单体竞聚率增大,IA的单体竞聚率降低。建立了AN/IA共聚合反应的动力学方程为,该聚合体系的反应活化能为E=180.8kJ/mol。
     应用上述结构和性能分析手段,对水相沉淀聚合工艺制备的PAN聚合物的热性能相关性进行了研究。结果表明:IA单体的引入有效改善了PAN聚合物的热性能,能在较低温度下通过离子基机理引发环化反应。不论是在惰性气氛下,还是在空气气氛下,PAN均聚物和共聚物的DSC放热曲线呈现出多峰现象。而当有氧存在时,多峰现象尤为明显。随平均分子量的降低,PAN共聚物的DSC放热峰特征温度变化不大,放热峰形表现为双峰或三峰。PAN聚合物DSC放热曲线的多峰现象是加热过程中聚合物大分子链发生多种热反应的表现。对PAN聚合物在空气气氛中热处理后的结构和性能变化进行表征,结果表明:随着热处理温度的提高,PAN聚合物的颜色从淡黄色逐渐向黑色转变,聚合物中O元素含量逐渐增加,C、N、H元素的含量下降;PAN聚合物的结晶度和晶粒尺寸呈现先增大后减小的趋势,且在预氧化后期代表非晶区的2θ≈25.5°附近的衍射峰逐渐出现并增强;FTIR谱图中,2940cm-1和1455cm-1附近代表亚甲基(CH2)的伸缩振动和弯曲振动、2244cm-1附近代表氰基(C≡N)伸缩振动峰逐渐减弱并消失,1600cm-1附近代表梯形结构的双键基团(C=C和C=N)的伸缩振动峰逐渐出现并增强,1737cm-1附近代表C=O伸缩振动和1180cm-1附近代表C-O单键伸缩振动的两个含氧官能团的红外吸收峰始终存在。
     对不同溶剂类型(二甲基亚砜:DMSO;二甲基甲酰胺:DMF;二甲基乙酰胺:DMAc)配制的PAN共聚物浓溶液和PAN聚合物/DMSO的稀溶液体系进行流变学性能研究。在DMSO稀溶液体系中,PAN均聚物的Huggins曲线在测试浓度区域保持着较好的线性关系。PAN共聚物由于羧基含量的不同,具有或强或弱的聚电解质效应,其Huggins曲线在高浓度区域保持线性关系,而在低浓度区域表现出不同程度的偏离。研究了不同PAN共聚物浓溶液的表观粘度变化规律,结果表明:PAN纺丝溶液是剪切变稀流体,其表观粘度随分子量和原液固含量的提高均增大。对于不同溶剂类型配制的PAN纺丝原液来说,其表观粘度的变化趋势为:PAN/DMSO>PAN/DMAc>PAN/DMF。PAN纺丝溶液表现出较大的温度敏感性,其表观粘度随测试温度的升高而降低。
     对不同PAN原丝的结构和性能进行研究表明,提高PAN原丝的平均分子量和结晶度,有利于提高原丝的拉伸强度。研究发现采用水相沉淀聚合工艺制备的PAN共聚物,通过干喷湿纺工艺可以纺制出高性能的PAN原丝。干喷湿纺工艺纺制的PAN原丝具有不同于相应PAN共聚物的DSC放热曲线和WAXRD曲线。结合实验室多次实验,确定了粘均分子量(My)在20~25万的PAN共聚物有利于制备高性能的PAN原丝。以Mv=24万的PAN共聚物为溶质配制合适浓度的PAN/DMSO纺丝原液,采用干喷湿纺工艺可以获得纤度为1.07dtex,拉伸强度为7.54cN/dtex的PAN原丝。
Polyacrylonitrile (PAN) precursors used to produce carbon fibers are polymerized by acrylonitrile and a small quantity of comonomers. Itaconic acid (IA) is the most frequently employed. The effective approach to manufacture high performance carbon fibers is adopting high molecular weight PAN copolymers as solute to prepare spinning dope. Compared to the conventional homogenous solution radical polymerization, it is propitious to utilize aqueous deposited polymerization to synthesize high molecular weight PAN polymers. And the polymerizations have higher conversions. In this polymerization system, water (H2O) is used as reaction medium, whose chain transfer constant is 0. And chain transfer reactions to AN radicals can be avoided. Chain branching also reduces. The main objective of this paper was specific to preparation of high molecular weight PAN used to manufacture carbon fibers by aqueous deposited polymerization technology. Effects of various polymerization factors on aqueous deposited copolymerization of AN and IA were investigated through Ubbelohde viscometer (UVM), differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), element analysis (EA), wide angle X-ray diffraction (WAXRD), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) and rotational viscometer. Structures and properties of the obtained PAN polymers were studied, whose relationships with the parameters of polymerization technology were also discussed. And valuable theoretical achievements applied to industrialized production stage of carbon fibers were acquired.
     As a single water-soluble ammonium salt, ammonium persulphate [(NH4)2S2O8: APS], was adopted as initiator to polymerize AN and IA. This was not identical with many researches, which employed complex initiation systems containing alkali metal ions. It is indicated that high molecular weight PAN copolymers with proper IA contents can be synthesized by this method. At the beginning, the polymerization system was separated into two phases, monomer phase and water solution phase. During the polymerization process, APS was decomposed into sulfate ion radicals (SO4(?)) under heating to initiate radical copolymerization of AN and IA. When the white PAN polymer precipitate emerged, polymer particle phase appeared. With the consumption of AN in the polymerization system, AN was transported from monomer phase to water solution phase. And then AN was absorbed to polymer particle phase. The polymerizations occurred in both water solution phase and polymer particle phase. With the increase of initiator concentration, total monomer concentration and polymerization temperature, molecular weights of PAN polymers all decreased, while polymerization conversions increased. With the extension of polymerization time, both molecular weights and polymerization conversions heightened.
     Structures and properties of PAN copolymers were affected by copolymerization of AN and IA. Because of different reactivity of monomers, the copolymer composition was not the same as the monomer ratio in the feed. With the increase of IA content in the feed, polymerization conversions and molecular weights firstly increased and then decreased. While the oxygen (O) content in the polymer increased. And the carbon (C), nitrogen (N) and hydrogen (H) contents in the polymer decreased. Stretching vibration of carboxyl group (C=O) around 1737cm-1 in FTIR assigned to IA chain segments increased. When the required IA amount in the feed was 2wt%, the polymerization conversion and molecular weight got the maximum values. Crystallinity and grain size decreased with the introduction of IA in the feed.
     Polymerization conversions and molecular weights of AN/IA copolymers could be controlled by using molecular weight regulators during aqueous deposited copolymerizations of AN and IA. With the increase of isopropanol (IPA) and n-dodecyl mercaptan (n-DDM) in the feed, polymerization conversions and molecular weights of PAN copolymers increased. But there were few changes of C, N, H and O contents in PAN copolymers. Crystallinity and grain size increased with the introduction of IPA in the feed. While chemical structures had few changes. Moreover, triad stereoregularity was not basically affected by IA and IPA.
     When the total monomer concentration C1 was 22wt%, the initiator concentration [APS] was 0.8wt%, the polymerization temperature T was 60℃, and the polymerization conversion was about 6.2%, values of monomer reactivity ratios were calculated by Kelen-Tudos (K-T) method and Fineman-Ross (F-R) method. Corresponding to the former method, the r1(AN) value was 0.64 and r2(IA) was 1.37. And the latter r1(AN) value was 0.61 and r2(IA) was 1.47. Evidently, the reactivity of IA is higher than AN. With the increase of polymerization conversion and temperature, monomer reactivity ratio of AN increased. Whereas monomer reactivity ratio of IA decreased. Kinetics equation of the copolymerization system was obtained, i.e. Rp[APS]0.538[M]1.696. And the activation energy was also figured out, i.e. E=180.8kJ/mol.
     Thermal properties of PAN polymers synthesized by aqueous deposited polymerization were characterized by the measuring methods above. It is shown that thermal properties of PAN polymers were improved with the introduction of IA comonomer. Cyclization reactions could be initiated through ionic mechanism under low temperature. DSC curves of PAN homopolymer and copolymers exhibited multiple peaks under inert atmosphere or air atmosphere. When there was oxygen in heating atmosphere, multiple peaks became more evident. With the increase of molecular weight of PAN copolymers, characteristic temperatures of DSC exothermic peaks had few changes. And the exothermic peaks represented doublets or triplets. The multiple peaks in DSC curves of PAN polymers were attributed to many exothermic reactions in macromolecular chains during heating process. Structure and property changes of PAN polymers heat-treated under air atmosphere were investigated. It is indicated that colours of heat-treated PAN polymers became from faint yellow to black gradually with the increase of the heat treatment temperature. And O contents in the polymers increased. Contents of C, N and H elements decreased. Crystallinity and grain sizes of heat-treated PAN polymers firstly increased and then decreased. At the later period of pre-oxidation reactions, diffraction peaks around 2θ≈25.5°corresponding to amorphous areas in the heat-treated PAN polymers appeared and then increased by degrees. In FTIR spectra, stretching vibrations and bending vibrations of methylene group (CH2) around 2940cm-1 and 1455cm-1, and stretching vibrations of nitrile group (C=N) around 2244cm-1 decreased by degrees and then disappeared. Stretching vibrations of double bond group (including C=C and C=N) around 1600cm-1 representing the ladder structure appeared and then became stronger by degrees. Whereas FTIR absorption peaks of the two oxygen-containing functional groups, including stretching vibrations of C=O around 1737cm-1 and C-O single bond around 1180cm-1, maintained in the PAN polymers and heat-treated PAN polymers all the time.
     Rheological properties of different PAN solutions were discussed. The solvents used in concentrated solutions of PAN copolymers were dimethylsulphoxide (DMSO), dimethyl formamide (DMF) and dimethylacetamide (DMAc). Only DMSO was utilized in dilute solutions of PAN polymers. In the dilute solution system of PAN homopolymer, its Huggins curve owned better linear relation under the testing concentration region. Because of different polyelectrolyte effects in dilute solutions of PAN copolymers, their Huggins curves only had linear relation under the high concentration region. Different degrees of deviations were shown under the low concentration region. Apparent viscosities of different PAN concentrated solutions were studied. It is shown that PAN spinning solution is a shear-thinning fluid. Their apparent viscosities became larger with the increase of molecular weight and solid content. As for PAN spinning solutions prepared by different solvents, the apparent viscosity values changed in sequence as follows, i.e. PAN/DMSO>PAN/DMAc> PAN/DMF. PAN spinning solutions were temperature-sensitive. The apparent viscosities decreased with the increase of testing temperature.
     Structures and properties of different PAN fibers were discussed. It is convenient to enhance tensile strength of PAN fibers by increasing average molecular weights and crystallinity of PAN fibers. It is found that AN/IA copolymers synthesized by aqueous deposited polymerization could be used to prepare high performance PAN fibers by dry-jet wet spinning technology. Furthermore, the PAN fiber had different DSC curve and WAXRD curve from the corresponding PAN copolymer. Combining several laboratory experiments, PAN copolymers with viscosity average molecular weight (Mv) ranging from 20×10 to 25×10 were preferable to manufacture high performance PAN fibers. And the final PAN fiber, whose fiber fineness was 1.07dtex and tensile strength was up to 7.54cN/dtex, had been produced by dry-jet wet spinning technology using the PAN copolymer with Mv equaling to 24×104.
引文
1. Kobets L P, Deev I S. Carbon fibers:Structure and mechanical properties. Composites Science and Technology,1997,57:1571-1580.
    2. 王茂章,贺福.碳纤维制造、性能及其应用.北京:科学出版社,1984.
    3. 贺福.碳纤维及其应用技术.北京:化学工业出版社,2004.
    4. 贺福,赵建国,王润娥.碳纤维工业的长足发展.高科技纤维与应用,2000,25(4):9-13
    5. 罗益锋.新世纪初世界碳纤维透视.高科技纤维与应用,2000,25(1):1-7.
    6. 罗益锋.碳纤维的新形势与新技术.新型炭材料,1995,10(4):13-25.
    7. 吴雪平,杨永岗,郑经堂,贺福.高性能聚丙烯腈基碳纤维的原丝.高科技纤维与应用,2001,26(6):6-10.
    8. Gupta A K, Paliwal D K, Bajaj P. Acrylic precursors for carbon fibers. Journal of Macromolecular Science-Reviews in Macromolecular Chemistry and Physics,1991, C31(1): 1-89.
    9. Sen K, Bahrami S H, Bajaj P. High-performance acrylic fibers. Journal of Macromolecular Science-Reviews in Macromolecular Chemistry and Physics,1991, C36(1):1-76.
    10. Rajalingam P, Radhakrishnan G. Polyacrylonitrile precursor for carbon fibers. Journal of Macromolecular Science Part C:Polymer Reviews,1991, C31(2-3):301-310.
    11.许登堡,吴叙健.聚丙烯腈基碳纤维原丝.广西化纤通讯,2000,(2):19-25.
    12.吴雪平,杨永岗,郑经堂,贺福.高性能聚丙烯腈基碳纤维的原丝.高科技纤维与应用,2001,26(6):6-10.
    13.郑伟.粘胶基碳纤维的制造及其应用.人造纤维,2006,36(4):23-27.
    14.王德诚.PAN基及沥青基碳纤维生产现状与展望.合成纤维工业,1998,21(2):45-48.
    15.赵根祥,邱海鹏.聚酰亚胺基碳纤维的开发.合成纤维工业,2000,23(1):75-77.
    16. Zhang D, Sun Q. Structure and properties development during the conversion of polyethylene precursors to carbon fibers. Journal of Applied Polymer Science,1996,62: 367-373.
    17. Newell A A, Edie D D, Fuller E L. Kinetics of carbonization and graphitization of PBO fiber. Journal of Applied Polymer Science,1996,60:825-832.
    18.贺福,赵建国.世纪之交展望我国的碳纤维工业.化工新型材料,2000,28(3):3-7.
    19. Mukesh K J, Abhiraman A S. Conversion of acrylonitrile-based precursor fibers to carbon fibers:Part 1. A review of the physical and morphological aspects. Journal of Materials Science,1987,22(1):278-300.
    20. Mukesh K J, Balasubramenian M. Conversion of acrylonitrile-based precursor fibers to carbon fibers:Part 2. Precursor morphology and thermooxidative stabilization. Journal of Materials Science,1987,22(1):301-312.
    21. Balasubramanian M, Mukesh K J, Bhattacharya S K, Abhiraman A S. Conversion of acrylonitrile-based precursor fibers to carbon fibers:Part 3. Thermooxidative stabilization and continuous, low temperature carbonization. Journal of Materials Science,1987,22(11): 3864-3872.
    22. Datye K V. Spinning of PAN-fiber. Part Ⅲ:Wet spinning. Synthetic Fibers,1996,4:11-19.
    23. Datye K V. Spinning of PAN-fiber. Part Ⅱ:Dry spinning. Synthetic Fibers,1995,2:7-11.
    24.高健,陈惠芳.聚丙烯腈原丝及其干喷湿纺.合成纤维工业,2002,25(4):35-38.
    25.贺福.高性能碳纤维原丝与干喷湿纺.高科技纤维与应用,2004,29(4):6-12.
    26. Datye K V. Acrylic fibers by melt spinning process. Synthetic Fibers,1994,3:27-31.
    27. Edie D D, Fox N K, Barnett B C. Melt-spun non-circular carbon fibers. Carbon,1986,24: 477-482.
    28·乔福牛.二甲基亚砜一步法碳纤维用聚丙烯腈原丝生产工艺.合成纤维工业,1995,8(4):19-23.
    29. Bhardwaj A, Bhardwaj I S. ESCA characterization of polyacrylonitrile-based carbon fiber precursors during its stabilization process. Journal of Applied Polymer Science,1994, 51(12):2015-2020.
    30. Gupta D C, Agrawal J P. Effect of comonomers on thermal degradation of polyacrylonitrile. Journal of Applied Polymer Science,1989,38:265-270.
    31. Tsai J S, Lin C H. The effect of the side chain of acrylate comonomers on the orientation, pore-size, and properties of polyacrylonitrile precursor and resulting carbon fiber. Journal of Applied Polymer Science,1991,42:3039-3044.
    32. Bajaj P, Kumari M S. Physicomechanical properties of fibers from blends of acrylonitrile terpolymer and its hydrolyzed products. Textile Research Journal,1989,59(4):191-200.
    33·崔传生.丙烯腈/衣康酸铵共聚物的制备及其溶液性质的研究.山东大学博十学位论文,2006.
    34. Coleman M M, Sivy G T. Fourier transform IR studies of the degradation of polyacrylonitrile copolymers:I. Introduction and comparative rates of the degradation of three copolymers below 200℃ and under reduced pressure. Carbon,1981,19(2):123-126.
    35. Zhang S C, Wen Y F, Yang Y G, Zheng J T, Ling L C. Effects of itaconic acid content on the thermal behavior of polyacrylonitrile. New Carbon Materials,2003,18(4):315-318.
    36·张旺玺.丙烯腈与衣康酸共聚物的合成与表征.山东工业大学学报,1999,29(5):411-416.
    37.张旺玺,姜庆利,刘建军,王艳芝,曹怀华,蔡华甦.丙烯腈与衣康酸的共聚合.山东工业大学学报,1995,28(5):401-406.
    38.张旺玺.衣康酸对聚丙烯腈原丝结构和性能的影响.高分子学报,2000,3:287-291.
    39.张旺玺,李木森,王艳芝,王成国,朱波,刘建军.亚甲基丁二酸对碳纤维前驱体聚丙 烯腈的作用.山东大学学报(工学版),2002,32(3):236-240.
    40.姜庆利,张旺玺,刘建军,蔡华甦.丙烯腈与衣康酸的溶液共聚合.高分子学报,1999,5:640-643.
    41.王占平.丙烯腈-丙烯酸甲酯-衣康酸在氯化锌溶液中的聚合反应.合成纤维工业,1997,20(2):16-18.
    42. Bajaj P, Sen K, Bahrami S H. Solution polymerization of acrylonitrile with vinyl acids in dimethylformamide. Journal of Applied Polymer Science,1996,59:1539-1550.
    43. Bajaj P, Paliwal D K, Gupta A K. Acrylonitrile-acrylic acids copolymers:Ⅰ. Synthesis and characterization. Journal of Applied Polymer Science,1993,49:823-833.
    44. Gupta A K, Paliwal D K, Bajaj P. Effect of the nature and mole fraction of acidic comonomer on the stabilization of polyacrylonitrile. Journal of Applied Polymer Science, 1996,59:1819-1826.
    45.陈厚,张旺玺,蔡华甦.丙烯腈和丙烯酸的水相悬浮聚合及表征.金山油化纤,1999,4:7-11.
    46.胡盼盼,朱德杰,赵炯心,吴承训,钱宝钧.超高相对分子质量聚丙烯腈浓溶液的制备.合成纤维工业,1998,21(3):10-13.
    47. Chang S. Thermal analysis of acrylonitrile copolymers containing methylacrylate. Journal of Applied Polymer Science,1994,54(3):405-407.
    48.彭素云,张旺玺.丙烯腈与丙烯酸甲酯水相悬浮沉淀聚合研究.中原工学院学报,2009,20(2):4-6.
    49.辽宁大学化学系高分子科研组.丙烯腈-甲基丙烯酸甲酯的氯化锌溶液共聚及其直接纺丝.辽宁大学学报(自然科学版),1974,(1):12-18.
    50.夏平,王康成.硫醇引发甲基丙烯酸甲酯与丙烯腈共聚的研究.湖州师专学报,1992,(6):42-46.
    51.吴雪平,张先龙,盛丽华,吕春祥.炭纤维前驱体丙烯腈-丙烯酰胺共聚物溶液的流变性.高分子材料科学与工程,2008,24(10):63-66.
    52.韩娜,张兴祥,王学晨.丙烯腈-丙烯酰胺共聚物的合成与性能研究.材料科学与工程学报,2007,25(1):71-74.
    53.贾瞾,杨明远,毛萍君,张林.用水相沉淀聚合法制备高分子量PAN.山西化纤,1998, 1:1-5.
    54.胡玉洁,王新伟,李青山,朱思君.丙烯腈/乙酸乙烯酯二元共聚物流变性能研究.合成纤维工业,2004,27(5):1-3.
    55.杜中杰,励杭泉.丙烯腈/醋酸乙烯酯单体的室温引发本体聚合.高分子材料科学与工程,2000,16(4):33-35.
    56. Devasia R, Nair C P R, Ninan K N. Solvent and kinetic penultimate unit effects in the copolymerization of acrylonitrile with itaconic acid. European Polymer Journal,2002,38: 2003-2010.
    57.陈厚.高性能聚丙烯腈原丝纺丝原液的制备及纤维成形机理研究.山东大学博士学位论文,2004.
    58.陈厚,王成国,张旺玺,蔡华甦.丙烯腈与N-乙烯基吡咯烷酮共聚体系对单体竞聚率的影响.高分子材料科学与工程,2003,19(3):72-74.
    59.陈厚,王成国,蔡华甦,崔传生.丙烯腈/N-乙烯基吡咯烷酮共聚物结构和热解反应表观活化能.化工学报,2003,54(1):124-127.
    60.陈厚,王成国,崔传生,蔡华甦.丙烯腈与N-乙烯基吡咯烷酮在H2O/DMSO混合溶剂中共聚反应动力学研究.功能高分子学报,2002,15(4):457-460.
    61. Cui C S, Wang C G, Zhao Y Q. Acrylonitrile/ammonium itaconate aqueous deposited copolymerization. Journal of Applied Polymer Science,2006,102:904-908.
    62. Cui C S, Wang C G, Zhao Y Q. Monomer reactivity ratios for acrylonitrile-ammonium itaconate during aqueous-deposited copolymerization initiated by ammonium persulfate. Journal of Applied Polymer Science,2005,100:4645-4648.
    63. Cui C S, Wang C G, Jia W J, Zhao Y Q. Viscosity study of dilute poly(acrylonitrile-ammonium itaconate) solutions. Journal of Polymer Research,2006,13: 293-296.
    64.赵亚奇,王成国.过硫酸铵引发丙烯腈/衣康酸铵的共聚合工艺研究.合成技术及应用,2007,22(1):12-15.
    65.赵亚奇,王成国,崔传生,王延相.过硫酸铵引发丙烯腈/衣康酸铵共聚合研究.化学工程,2007,35(4):53-56.
    66.上海纺织工学院.腈纶生产工艺及其原理.上海:上海人民出版社,1976.
    67.任铃子.丙烯腈聚合及原液制备.北京:纺织工业出版社,1981.
    68.赵天瑜,王华平,张玉梅,郁铭芳.丙烯腈在离子液体中干的三元共聚反应.合成纤维,2005,(6):17-20.
    69.徐燕华,赵天瑜,刘葳葳,王华平,郁铭芳.离子液体中丙烯腈三元共聚的研究.2007,(3):21-25.
    70.张旺玺,王艳芝,王成国,朱波,蔡华姓.聚丙烯腈基碳纤维的制备工艺过程和纤维结构研究.化工科技,2001,9(5):12-15.
    71.李克友,张菊花,向福如.高分子合成原理及工艺学.北京:科学出版社,1999.
    72.潘祖仁.高分子化学.北京:化学工业出版社,2002.
    73.张林,杨明远,毛萍君.悬浮聚合反应制备高相对分子质量PAN.合成纤维工业,1998,21(4):29-31.
    74.吴承训,何建明,施飞舟.丙烯腈的悬浮聚合.高分子学报,1991,(1):121-124.
    75.厉雷,吴承训,张斌,陈彦模.超高分子量聚丙烯腈的制备及其合成动力学的研究.合成纤维,1997,26(7):5-11.
    76.王艳芝,孙春峰,王成国,朱波.混合溶剂法合成高分子量聚丙烯腈.山东大学学报(工学版).2003,33(4):362-366.
    77.张旺玺.丙烯腈与丙烯酸混合介质悬浮聚合工艺研究.合成纤维.2000,29(3):6-9.
    78.李培仁,单洪青.混合溶剂法制备丙烯腈共聚物的特性.北京化工大学学报(自然科学版),1995,22(2):26-29.
    79. Bajaj P, Sreekumar T V, Sen K. Effect of reaction medium on radical coplymerization of acrylonitrile with vinyl acids. Journal of Applied Polymer Science,2001,79:1640-1652.
    80.张引枝,李志敬,贺福,王茂章.混合溶剂法合成高分子量PAN树脂.合成纤维,1993,22(6):22-26.
    81.张斌,赵祥臻,赵炯心,胡盼盼,吴承训,钱宝钧.以含氟自由基为引发剂制备超高相对分子质量聚丙烯腈.合成纤维工业,1997,20(2):19-22.
    82. Tasi J S, Lin C H. The effect of the side chain of acrylate comonomers on the orientation, pore-size distribution, and properties of polyacrylonitrile precursor and resulting carbon fiber. Journal of Applied Polymer Science,1991,42:3039-3044.
    83. Tasi J S, Lin C H. The effect of molecular weight on the cross section and properties of polyacrylonitrile precursor and resulting carbon fiber. Journal of Applied Polymer Science, 1991,42:3045-3050.
    84.[美]Masson J C[编].陈国康,沈新元,林耀,王瑛,杨庆[译].腈纶生产工艺及应用.北京:中国纺织工业出版社,2004.
    85. Zhang C, Gilbert R D, Fornes R E. Preparation of ultrahigh molecular-weight polyacrylonitrile and its terpolymers. Journal of Applied Polymer Science,1995,58: 2067-2075.
    86.吴承训,万锕俊,赵炯心,张斌.阴离子模板聚合法合成较高立构规整性的聚丙烯腈.合成技术及应用,2000,15(1):1-5.
    87. Nakano Y, Kunio H. Synthesis of ultra-high molecular weight polyacrylonitrile with highly isotactic content (mm>0.60) using dialkymagnesium/polyhydric alcohol system as catalyst. Polymer International,1995,36:87-99.
    88. Nakano Y, Kunio H. Synthesis of highly isotactic (mm>0.70) polyacrylonitrile by anionic polymerization using diethylberyllium as a main initiator. Polymer International,1994,35: 207-213.
    89. Wang J S, Matyjaszewski K. Controlled/"living" radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. Journal of the American Chemical Society,1995,117:5614-5615.
    90. Matyjaszewski K, Jo S M, Paik H J, Gaynor S G. Synthesis of well-defined polyacrylonitrile by atom transfer radical polymerization. Macromolecules,1997,30: 6398-6400.
    91. Chen H, Qu R J, Liang Y, Wang C G. Reverse atom transfer radical polymerization of acrylonitrile. Journal of Applied Polymer Science,2006,99:32-36.
    92. Chen H, Qu R J, Ji C N, Wang C H, Wang C G. Synthesis of polyacrylonitrile via reverse atom transfer radical polymerization catalyzed by FeCl3/isophthalic acid. Journal of Polymer Science Part A:Polymer Chemistry,2006,44:219-225.
    93. Chen H, Qu R J, Ji C N, Wang C H, Sun C M. ATRP of acrylonitrile catalyzed by FeCl2/succinic acid under microwave irradiation. Journal of Applied Polymer Science,2006, 101:1598-1601.
    94.张旺玺,王艳芝.高分子量聚丙烯腈的结构表征.中原工学院学报,2004,15(4):19-23.
    95.齐志军,宋威,林树波.PAN原丝生产过程对碳纤维强度的影响因素.高科技纤维与应用,2001,26(5):17-20.
    96. Chari S S, Bahl O P, Mathur R B. Characterisation of acrylic fibres used for making carbon fibres. Fibre Science and Technology,1981,15(2):153-160.
    97. Ebdon J R, Huckerby T N, Hunter T C. Free-radical aqueous slurry polymerizations of acrylonitrile:1. End-groups and other minor structures in polyacrylonitriles initiated by ammonium persulfate/sodium metabisulfite. Polymer,1994,35:250-256.
    98. Ebdon J R, Huckerby T N, Hunter T C. Free-radical aqueous slurry polymerizations of acrylonitrile:2. End-groups and other minor structures in polyacrylonitriles initiated by potassium persulfate/sodium bisulfite. Polymer,1994,35:4659-4664.
    99.高绪珊,吴大诚.纤维应用物理学.北京:中国纺织出版社,2001.
    100.董纪震,赵耀明,陈雪英,曾宪珉.合成纤维生产工艺学.北京:中国纺织出版社,1994.
    101.张旺玺.聚丙烯腈基碳纤维.上海:东华大学出版社,2005.
    102.[苏]彼烈彼尔金K E[编].徐静宜,韩淑君[译].纺织纤维的结构与性能.北京:中国石化出版社,1991.
    103. Bang Y H, Lee S, Cho H H. Effect of methyl acrylate composition on the microstructure changes of high molecular weight polyacrylonitrile for heat treatment. Journal of Applied Polymer Science,1998,68:2205-2213.
    104. Tsuchiya Y, Sumi K. Thermal decomposition products of polyacrylonitrile. Journal of Applied Polymer Science,1977,21:975-980.
    105. Warner S B, Uhlmann D R. Oxidative stabilization of acrylic fibres. Journal of Materials Science,1979,14:1893-1900.
    106. Thorne D J. Distribution of internal flaws in acrylic fibers. Journal of Applied Polymer Science,1970,14:295-305.
    107.万锕俊,赵成学,吴承训,钱宝钧.立构规整性对PAN大分子天生缠结及溶解性的影响.化学学报,2000,58(10):1307-1310.
    108. Edie D D. The effect of processing on the structure and properties of carbon fibers. Carbon,2002,40:25-45.
    109. Bahrami S H, Pajaj P, Sen K. Thermal behavior of acrylonitrile carboxylic acid copolymers. Journal of Applied Polymer Science,2003,88:685-698.
    110. Mittal J, Mathur R B, Bahl O P. Post spinning modification of PAN fibres-a review. Carbon,1997,35(12):1713-1722.
    111.孙春峰.共聚单体与聚丙烯腈原丝及其碳纤维结构性能的相关性研究.山东大学硕士学位论文,2004.
    112. Zhao Y Q, Wang C G, Wang Y X, Zhu B. Aqueous deposited copolymerization of acrylonitrile and itaconic acid. Journal of Applied Polymer Science,2009,111,3163-3169.
    113. Zhao Y Q, Wang C G, Yu M J, Cui C S, Wang Q F, Zhu B. Study on monomer reactivity ratios of acrylonitrile/itaconic acid in aqueous deposited copolymerization system initiated by ammonium persulfate. Journal of Polymer Research,2009,16:437-442.
    114. Bajaj P, Sreekumar T V, Sen K. Thermal behaviour of acrylonitrile copolymers having methacrylic and itaconic acid comonomers. Polymer,2001,42:1707-1718.
    115. Bahrami S H, Pajaj P, Sen K. Thermal behavior of acrylonitrile carboxylic acid copolymers. Journal of Applied Polymer Science,2003,88:685-698.
    116. Zhao Y Q, Wang C G, Bai Y J, Chen G W, Jing M, Zhu B. Property changes of powdery polyacrylonitrile synthesized by aqueous suspension polymerization during heat-treatment process under air atmosphere. Journal of Colloid and Interface Science,2009,329:48-53.
    117. Sen K, Bajaj P, Sreekumar T V. Thermal behavior of drawn acrylic fibers. Journal of Polymer Science Part B:Polymer Physics,2003,41:2949-2958.
    118.于美杰.聚丙烯腈纤维预氧化过程中的热行为与结构演变.山东大学博士学位论文,2007.
    119. Watt W, Johnson W. Mechanism of oxidation of polyacrylonitrile fibers. Nature,1975, 257:210-212.
    120. Fitzer E, Miiller D J. The influence of oxygen on the chemical reactions during stabilization of pan as carbon fiber precursor. Carbon,1975,13 (1):63-69.
    121. Warner S B, Peebles L H Jr, Uhlmann D R. Oxidative stabilization of acrylic fibres. Part 1: Oxygen uptake and general model. Journal of Materials Science,1979,14:556-564.
    122.何曼君,陈维孝,董西侠.高分子物理.上海:复旦大学出版社,2000.
    123. Bajaj P, Paliwal D K, Gupta A K. Influence of metal ions structure and properties acrylic fibers. Journal of Applied Polymer Science,1998,67:1647-1659.
    124.曾小梅,张莹,赵炯心.聚丙烯腈-二甲基亚砜溶液挤出胀大的研究.合成技术及应用,2004,19(3):9-12.
    125.王二轲,陈惠芳,潘鼎.PAN/DM S体系湿法及干喷湿法纺丝可纺性的研究.第十五届全国复合材料学术会议论文集,2008:330-334.
    126.金日光.高聚物流变学及其在加工中的应用.北京:化学工业出版社,1986.
    127. Rahman M A, Ismail A F, Mustafa A. The effect of residence time on the physical characteristics of PAN-based fibers produced using a solvent-free coagulation process. Materials Science and Engineering A,2007,448:275-280.
    128. Bhanu V A, Rangarajan P, Wiles K, Bortner M, Sankarpandian M, Godshall D, Glass T E, Banthia A K, Yang J, Wikes G, Baird D. McGrath J E. Synthesis and characterization of acrylonitrile/methyl acrylate statistical copolymers as melt processable carbon fiber precursors. Polymer,2002,43:4841-4850.
    129. Rangarajan P, Yang J, Bahanu V, Godshall D, McGrath J, Wikes G, Baird D. Effect of comonomers on melt processability of polyacrylonitrile. Journal of Applied Polymer Science,2002,85:69-83.
    1. Misra G S, Mukberjee P K. The relationship between the molecular weight and intrinsic viscosity of polyacrylonitrile. Colloid and Polymer Science,1978,256:1027-1029.
    2. 张美珍,柳百坚,谷晓昱.聚合物研究方法.北京:中国轻工业出版社,2000.
    3. 何曼君,陈维孝,董西侠.高分子物理.上海:复旦大学出版社,2000.
    4. 张兴英,李齐方.高分子科学实验.北京:化学工业出版社,2004.
    5. 高绪珊,吴大诚.纤维应用物理学.北京:中国纺织出版社,2001.
    6. Bell J P, Dumbleton J H. Changes in the structure of wet-spun acrylic fibers during processing. Textile Research Journal,1971,41:196-203.
    7. Hinrichsen G. Structural changes of drawn polyacrylonitrile during annealing Journal of Polymer Science Part C:Polymer Symposia,1972,38(1):303-314.
    8. Gupta A K, Singhal R P. Effect of copolymerization and heat treatment on the structure and x-ray diffraction of polyacrylonitrile. Journal of Polymer Science Part B:Polymer Physics, 1983,21(11):2243-2262.
    9. 高家武,张复盛,张秋禹,伍必兴.高分子材料近代测试技术.北京:北京航空航天大学出版社,1994.
    1. 王茂章,贺福.碳纤维制造、性能及其应用.北京:科学出版社,1984.
    2. 贺福.碳纤维及其应用技术.北京:化学工业出版社,2004.
    3. 徐樑华.突破原丝瓶颈效应加速我国PAN碳纤维技术的发展.炭素科技,2001,11(3):3-5.
    4. 贺福.优质原丝是制取高性能碳纤维的基础.化工新型材料,1993,21(2):9-14.
    5. Gupta A K, Paliwal D K, Bajaj P. Acrylic precursors for carbon fibers. Journal of Macromolecular Science-Reviews in Macromolecular Chemistry and Physics,1991, C31(1): 1-89.
    6. Sen K, Bahrami S H, Bajaj P. High-performance acrylic fibers. Journal of Macromolecular Science-Reviews in Macromolecular Chemistry and Physics,1991, C36(1):1-76.
    7. 上海纺织工学院.腈纶生产工艺及其原理.上海:上海人民出版社,1976.
    8. 贾瞾,杨明远,毛萍君,张林.用水相沉淀聚合法制备高分子量PAN.山西化纤,1998,1:1-5.
    9. 崔传生.丙烯腈/衣康酸铵共聚物的制备及其溶液性质的研究.山东大学博士学位论文,2006.
    10. Cui C S, Wang C G, Zhao Y Q. Monomer reactivity ratios for acrylonitrile-ammonium itaconate during aqueous-deposited copolymerization initiated by ammonium persulfate. Journal of Applied Polymer Science,2005,100:4645-4648.
    11. Cui C S, Wang C G, Jia W J, Zhao Y Q. Viscosity study of dilute poly(acrylonitrile-ammonium itaconate) solutions. Journal of Polymer Research,2006,13: 293-296.
    12.陈厚.高性能聚丙烯腈原丝纺丝原液的制备及纤维成形机理研究.山东大学博士学位论文,2004.
    13.张旺玺.聚丙烯腈基碳纤维.上海:东华大学出版社,2005.
    14.潘祖仁.高分子化学.北京:化学工业出版社,2002.
    15.上海纺织工学院.腈纶生产工艺及其原理.上海:上海人民出版社,1976.
    16.李克友,张菊花,向福如.高分子合成原理及工艺学.北京:科学出版社,1999.
    17. Zhao Y Q, Wang C G, Yu M J, Cui C S, Wang Q F, Zhu B. Study on monomer reactivity ratios of acrylonitrile/itaconic acid in aqueous deposited copolymerization system initiated by ammonium persulfate. Journal of Polymer Research,2009,16:437-442.
    18. Bajaj P, Paliwal D K, Gupta A K. Acrylonitrile-acrylic acids copolymers:I. Synthesis and characterization. Journal of Applied Polymer Science,1993,49:823-833.
    19. Bajaj P, Sen K, Bahrami S H. Solution polymerization of acrylonitrile with vinyl acids in dimethylformamide. Journal of Applied Polymer Science,1996,59:1539-1550.
    20.孙春峰.共聚单体与聚丙烯腈原丝及其碳纤维结构性能的相关性研究.山东大学硕士学位论文,2004.
    21.余木火,唐建国.高分子化学.北京:中国纺织出版社,1999.
    22.张美珍,柳百坚,谷晓昱.聚合物研究方法.北京:中国轻工业出版社,2000.
    23. Minagawa M, Miyano K, Takahashi M, Yoshii F. Infrared characteristic absorption bands of highly isotactic poly(acrylonitrile). Macromolecules,1988,21:2387-2391.
    24. Bajaj P, Padmanaban M. Copolymerization of acrylonitrile with 3-chloro,2-hydroxy-propyl acrylate and methacrylate. Journal of Polymer Science:Polymer Chemistry Edition,1983, 21(8):2261-2270.
    25. Usami T, Itoh T, Ohtani H, Tsuge S. Structural study of polyacrylonitrile fibers during oxidative thermal degradation by pyrolysis-gas chromatography, solid-state carbon-13 NMR, and Fourier-transform infrared spectroscopy. Macromolecules,1990,23:2460-2465.
    26. Sivy G T, Coleman M M. Fourier transform IR studies of the degradation of polyacrylonitrile copolymers. Carbon,1981,19:127-131.
    27. Deng S B, Bai R B, Chen J P. Behaviors and mechanisms of copper adsorption on hydrolyzed polyacrylonitrile fibers. Journal of colloid and interface science,2003,260: 265-272.
    28. Varma S P, Lal B B, Srivastava N K. IR studies on preoxidized PAN fibers. Carbon,1976, 14:207-209.
    29. Bohn G R, Schaefgen J R. Laterally ordered polymers:Polyacrylonitrile and poly(vinyl trifluoroacetate). Journal of Applied Polymer Science,1961,55(162):531-549.
    30. Mukesh K J, Abhiraman A S. Conversion of acrylonitrile-based precursor fibers to carbon fibers:Part 1. A review of the physical and morphological aspects. Journal of Materials Science,1987,22(1):278-300.
    31. Mukesh K J, Balasubramenian M. Conversion of acrylonitrile-based precursor fibers to carbon fibers:Part 2. Precursor morphology and thermcexidative stabilization. Journal of Materials Science,1987,22(1):301-312.
    32. Gupta A K, Singhal R P. Effect of copolymerization and heat treatment on the structure an x-ray diffraction of polyacrylonitrile. Journal of Applied Polymer Science:Polymer Physics Edition,1983,21(11):2243-2262.
    33. Ko T H, Yang C C, Chang W T. The effect of stabilization on the properties of PAN-based carbon films. Carbon,1993,31(4):583-590.
    34. Bahl O P, Mathur R B, Kundra K D. Structure of PAN fibres and its relationship to resulting carbon fibre properties. Fibre Science and Technology,1981,15:147-151.
    35. Bahl O P, Manocha L M. Characterization of oxidised PAN fibres. Carbon,1974,12: 417-423.
    36. Allen R A, Ward I M. An investigation into the possibility of measuring an'X-ray modulus' and new evidence for hexagonal packing in polyacrylonitrile. Polymer,1994,35(1): 2063-2071.
    37. Kumamaru F, Kajiyama T, Takayanagi M. Formation of single-crystals of poly(acrylonitrile) during the process of solution polymerization. Journal of Crystal Growth,1980,48(2): 202-209.
    38. Mathur R B, Bahl O P, Nagpal K C. Structure of thermally stabilized PAN fibers. Carbon, 1991,29(7):1059-1061.
    39.于晓强,庄光山,丁洪太,蔡华甦.聚丙烯腈基碳纤维预氧化过程中环构化机理.山东工业大学学报,1995,25(4):301-306.
    40. Katsuraya K, Hatanaka K, Matsuzaki K, Minagawa M. Assignment of finely resolved I3C NMR spectra of polyacrylonitrile. Polymer,2001,42:6323-6326.
    1. 王茂章,贺福.碳纤维制造、性能及其应用.北京:科学出版社,1984.
    2. 贺福.碳纤维及其应用技术.北京:化学工业出版社,2004.
    3. Gupta A K, Paliwal D K, Bajaj P. Acrylic precursors for carbon fibers. Journal of Macromolecular Science-Reviews in Macromolecular Chemistry and Physics,1991, C31(1): 1-89.
    4. Sen K, Bahrami S H, Bajaj P. High-performance acrylic fibers. Journal of Macromolecular Science-Reviews in Macromolecular Chemistry and Physics,1991, C36(1):1-76.
    5. 崔传生.丙烯腈/衣康酸铵共聚物的制备及其溶液性质的研究.山东大学博士学位论文,2006.
    6. 陈忠仁,于在璋,潘祖仁.AN-MA-SMAS水相沉淀聚合动力学:Ⅲ.竞聚率与共聚速率.石油化工,1989,18(2):96-100.
    7. 李克友,张菊花,向福如.高分子合成原理及工艺学.北京:科学出版社,1999.
    8. 杨超,黎钢,何彦刚.沉淀聚合机理及反应条件因素影响的研究.化工中间体,2005,(12):22-25.
    9. Dainton F S, James D G L. The polymerization of acrylonitrile in aqueous solution. Part Ⅱ. The reaction photosensitized by Fe3+, Fe3+OH-, Fe2+and I- ions. Journal of Polymer Science, 1959,39 (135):299-312.
    10.潘祖仁.高分子化学.北京:化学工业出版社,2002.
    11.上海纺织工学院.腈纶生产工艺及其原理.上海:上海人民出版社,1976.
    12.赵建青,李伯耿,袁惠根,潘祖仁.丙烯腈水相沉淀聚合研究进展.高分子通报,1992,(1):1-8.
    13.吴林波.丙烯腈连续水相沉淀聚合工艺及工业装置扩能可行性研究.浙江大学硕士学位论文,1998.
    14. Manivannan G. Peroxo salts as initiators in vinyl polymerization:4. Polymerization of AN initiated by the permonosulphate-oxovanadium (Ⅳ) system. Polymer Journal,1988,20(11): 1011-1019.
    15. Manivannan G. Peroxo salts as initiators in vinyl polymerization:5. Polymerization of AN initiated by the permonosulphate-thioglyic acid system. European Polymer Journal,1989, 25(5):487-589.
    16. Shessshappa K R. Aqueous polymerization of AN initiated by Mn (Ⅲ) pyrophosphate-thiocyanate redox system:a kinetic study. Transition Metal Chemistry,1995, 20:630-633.
    17. Hsu W C. Studies on aqueous polymerization of vinyl monomers initiated by metal oxiandant-chelating agent redox initiators. Journal of Polymer Science Part A:Polymer Chemstry,1993,31:3213-3222.
    18.吴林波,曹壁,李宝芳,李伯耿,宋晓东,康健.高单体进料浓度下丙烯腈连续水相沉淀共聚的研究:Ⅰ.转化率和分子量及其分布.化学反应工程与工艺,1999,15(4):364-372.
    19.吴林波,李宝芳,曹堃,李伯耿,宋晓东,王桂兰,李惠枫.高单体进料浓度下丙烯腈连续水相沉淀共聚的研究:Ⅱ.聚合物颗粒形态.化学反应工程与工艺,1999,15(4):373-381.
    20. Ebdon J R, Huckerby T N, Hunter T C. Free-radical aqueous slurry polymerizations of acrylonitrile:1. End-groups and other minor structures in polyacrylonitriles initiated by ammonium persulfate/sodium metabisulfite. Polymer,1994,35:250-256.
    21. Ebdon J R, Huckerby T N, Hunter T C. Free-radical aqueous slurry polymerizations of acrylonitrile:2. End-groups and other minor structures in polyacrylonitriles initiated by potassium persulfate/sodium metabisulfite. Polymer,1994,35:4659-4664.
    22. Bajaj P, Sen K, Bahrami S H. Soltion polymerization of acrylonitrile with vinyl acids in dimethylformamide. Journal of Applied Polymer Science,1996,59:1539-1550.
    23.贾矍,杨明远,毛萍君,张林.用水相沉淀聚合法制备高分子量PAN.山西化纤,1998,1:1-5.
    24. Cui C S, Wang C G, Zhao Y Q. Monomer reactivity ratios for acrylonitrile-ammonium itaconate during aqueous-deposited copolymerization initiated by ammonium persulfate. Journal of Applied Polymer Science,2005,100:4645-4648.
    25. Cui C S, Wang C G, Jia W J, Zhao Y Q. Viscosity study of dilute poly(acrylonitrile-ammonium itaconate) solutions. Journal of Polymer Research,2006,13: 293-296.
    26.赵亚奇,王成国.过硫酸铵引发丙烯腈/衣康酸铵的共聚合工艺研究.合成技术及应用,2007,22(1):12-15.
    27. Thomas W M. AN polymerization in aqueous suspension. Journal of Polymer Science,1957, 24:43-56.
    28.秦一秀.丙烯腈和醋酸乙烯酯水相沉淀连续共聚合研究.浙江大学硕士学位论文,2007.
    29.杉森辉彦,田原二郎.丙烯腈水相沉淀聚合的速率.化学工学论文集,1977,3(4):323-330.
    30.杉森辉彦,田原二郎.丙烯腈水相沉淀聚合析出粒子的考察.化学工学论文集,1979,5(1):96-101.
    31.杉森辉彦,西川新三.氧化还原体系引发丙烯腈水相沉淀聚合的速率.高分子化学,1972,29(331):817-825.
    32. Peebles L H Jr. Copolymerization. New York:Wiley Interscience Press,1964.
    33.伊藤精一,吉田完尔.低水/单体比条件下丙烯腈连续水相聚合研究:1.水/单体比和亚硫酸盐/过硫酸盐比对聚合物性质和聚合行为的影响.高分子论文集,1983,40(5):307-315.
    34.伊藤精一.低水/单体比条件下丙烯腈连续水相聚合研究:2.丙烯腈和醋酸乙烯酯水相连续共聚的粒子形成过程.高分子论文集,1984,41(8):445-452.
    35.任国强,史子瑾,童克锦.混合对丙烯腈连续水相沉淀共聚的影响:Ⅰ.转速和挡板数的影响.合成树脂及塑料,1993,10(1):29-38.
    36.任国强,史子瑾,童克锦.混合对丙烯腈连续水相沉淀共聚的影响:Ⅱ.丙烯腈共聚物的颗粒形态.合成树脂及塑料,1993,10(2):13-18.
    37.陈娟.聚丙烯腈湿法纺丝凝固过程的研究.山东大学博士学位论文,2006.
    38. Bajaj P, Paliwal D K, Gupta A K. Acrylonitrile-acrylic acids copolymers:I. Synthesis and characterization. Journal of Applied Polymer Science,1993,49:823-833.
    39. Bajaj P, Sen K, Bahrami S H. Solution polymerization of acrylonitrile with vinyl acids in dimethylformamide. Journal of Applied Polymer Science,1996,59:1539-1550.
    40.孙春峰.共聚单体与聚丙烯腈原丝及其碳纤维结构性能的相关性研究.山东大学硕士学位论文,2004.
    41.张旺玺.丙烯腈与衣康酸共聚物的合成与表征.山东工业大学学报,1999,29(5):411-416.
    42.王成国,赵亚奇,王启芬.连续水相沉淀聚合法合成聚丙烯腈的反应机理研究进展.现代化工,2008,28(1):18-21.
    43.应圣康.共聚合原理.北京:化学工业出版社,1984.
    1. 王茂章,贺福.碳纤维制造、性能及其应用.北京:科学出版社,1984.
    2. 贺福.碳纤维及其应用技术.北京:化学工业出版社,2004.
    3. Gupta A K, Paliwal D K, Bajaj P. Acrylic precursors for carbon fibers. Journal of Macromolecular Science-Reviews in Macromolecular Chemistry and Physics,1991, C31(1): 1-89.
    4. Sen K, Bahrami S H, Bajaj P. High-performance acrylic fibers. Journal of Macromolecular Science-Reviews in Macromolecular Chemistry and Physics,1991, C36(1):1-76.
    5. Gupta A K, Singhal R P. Effect of copolymerization and heat treatment on the structure and X-ray diffraction of polyacrylonitrile. Journal of Polymer Science, Part B:Polymer Physics, 1983,21(11):2243-2262.
    6. Edie D D. The effect of processing on the structure and properties of carbon fibers. Carbon, 1998,36(4):345-362.
    7. Mittal J, Mathur R B, Bahl O P. Post spinning modification of PAN fibres-a review. Carbon, 1997,35(12):1713-1722.
    8. Tsai J S, Lin C. The effect of the distribution of composition among chains on the properties of polyacrylonitrile precursor for carbon fiber. Journal of Materials Science, 1991,26:3996-4000.
    9. Fitzer E, Frohs W, Heine M. Optimization of stabilization and carbonization treatment of PAN fibres and structural characterization of the resulting carbon fibres. Carbon,1986, 24(4):387-394.
    10. Grassie N,McGuchan R. Pyrolysis of polyacrylonitrile and related polymers:Ⅰ. Thermal analysis of polyacrylonitrile. European Polymer Journal,1970,6(9):1277-1292.
    11. Grassie N, McGuchan R. Pyrolysis of polyacrylonitrile and related polymers:Ⅲ. Thermal analysis of preheated polymers. European Polymer Journal,1971,7(10):1357-1371.
    12. Grassie N,McGuchan R. Pyrolysis of polyacrylonitrile and related polymers:Ⅳ. Thermal analysis of polyacrylonitrile in the presence of additives. European Polymer Journal,1971, 7(11):1503-1514.
    13. Grassie N, McGuchan R. Pyrolysis of polyacrylonitrile and related polymers:VI. Acrylonitrile polymers containing carboxylic acid and amide structures. European Polymer Journal,1972,8(2):257-269.
    14. Grassie N, McGuchan R. Pyrolysis of polyacrylonitrile and related polymers:VII. Copolymers of acrylonitrile with acrylate, methacrylate and styrene type monomers. European Polymer Journal,1972,8(7):865-878.
    15. Grassie N, McGuchan R. Pyrolysis of polyacrylonitrile and related polymers:VIII. Copolymers of acrylonitrile with vinyl acetate, vinyl formate, acrolein and methyl vinyl ketone. European Polymer Journal,1973,9(2):113-124.
    16. Zhang S C, Wen Y F, Yang Y G, Zheng J T, Ling L C.Effects of itaconic acid content on the thermal behavior of polyacrylonitrile. New Carbon Materials,2003,18(4):315-318.
    17.陈厚,王成国,崔传生,蔡华甦.丙烯腈共聚物低温热解反应动力学.高分子材料科学与工程,2004,20(4):181-184.
    18. Zhang W X, Liu J J, Wang Y Z, Cai H S. The effect of different comonomer on the properties of PAN precursor for carbon fiber. China Synthetic Fiber Industry,1999,22(1): 24-25.
    19.张旺玺.丙烯腈与衣康酸共聚物的合成与表征.山东工业大学学报,1999,29(5):411-416.
    20.孙春峰,王成国,张旺玺.不同共聚单体与丙烯腈的共聚合及其表征.合成技术及应用,2003,18(4):9-12.
    21. Bajaj P, Paliwal D K, Gupta A K. Acrylonitrile-acrylic acids copolymers:Ⅰ. Synthesis and characterization. Journal of Applied Polymer Science,1993,49:823-833.
    22. Gupta A K, Paliwal D K, Bajaj P. Effect of an acidic comonomer on thermooxidative stabilization of polyacrylonitrile. Journal of Applied Polymer Science,1995,58: 1161-1174.
    23. Gupta A K, Paliwal D K, Bajaj P. Effect of the nature and mole fraction of acidic comonomer on the stabilization of polyacrylonitrile. Journal of Applied Polymer Science, 1996,59:1819-1826.
    24. Bajaj P, Sreekumar T V, Sen K. Thermal behaviour of acrylonitrile copolymers having methacrylic and itaconic acid comonomers. Polymer,2001,42:1707-1718.
    25. Bahrami S H, Pajaj P, Sen K. Thermal behavior of acrylonitrile carboxylic acid copolymers. Journal of Applied Polymer Science,2003,88:685-698.
    26. Zhao Y Q, Wang C G, Bai Y J, Chen G W, Jing M, Zhu B. Property changes of powdery polyacrylonitrile synthesized by aqueous suspension polymerization during heat-treatment process under air atmosphere. Journal of Colloid and Interface Science,2009,329:48-53.
    27. Sen K, Bajaj P, Sreekumar T V. Thermal behavior of drawn acrylic fibers. Journal of Polymer Science Part B:Polymer Physics,2003,41:2949-2958.
    28.于美杰.聚丙烯腈纤维预氧化过程中的热行为与结构演变.山东大学博士学位论文,2007.
    29. LaCombe E M. Color formation in polyacrylonitrile. Journal of Polymer Science,1957, 24(105):152-154.
    30. Grassie N, Hay J N, McNeill I C. Coloration in acrylonitrile and methacrylonitrile polymers. Journal of Polymer Science,1958,31(122):205-206.
    31. Warner S B, Uhlmann D R. Oxidative stabilization of acrylic fibres. Journal of Materials Science,1979,14:1893-1900.
    32.季敏霞.PAN原丝在预氧化和碳化过程中微观结构的演变.山东大学博士学位论文,2008.
    1. 贺福.碳纤维及其应用技术.北京:化学工业出版社,2004.
    2. Gupta A K, Paliwal D K, Bajaj P. Acrylic precursors for carbon fibers. Journal of Macromolecular Science-Reviews in Macromolecular Chemistry and Physics,1991, C31(1): 1-89.
    3. Sen K, Bahrami S H, Bajaj P. High-performance acrylic fibers. Journal of Macromolecular Science-Reviews in Macromolecular Chemistry and Physics,1991, C36(1):1-76.
    4. 王鹏.PAN/DMSO溶液的流变性能及干湿纺可纺性能研究.东华大学硕士学位论文,2005.
    5. Streeter D J, Boyer R F. Viscosities of extremely dilute polystyrene solutions. Journal of Polymer Science,1954,14(73):5-14.
    6. 张美珍,柳百坚,谷晓昱.聚合物研究方法.北京:中国轻工业出版社,2000.
    7. 何曼君,陈维孝,董西侠.高分子物理.上海:复旦大学出版社,2000.
    8. 张兴英,李齐方.高分子科学实验.北京:化学工业出版社,2004.
    9. Gomes D, Borges C P, Pinto J C. Evaluation of parameter uncertainties during the determination of the intrinsic viscosity of polymer solution. Polymer,2000,41:5531-5534.
    10. Cheng R S, Shao Y F, Liu M Z, Qian R Y. Effect of adsorption on the viscosity of dilute polymer solution. European Polymer Journal,1998,34:1613-1619.
    11. Cheng R S, Yang Y, Yan X H. The wall effect on viscosity measurement of dilute aqueous solutions of polyethylene glycol and polyvinyl alcohol using a paraffin-coated capillary viscometer. Polymer,1999,40:3773-3779.
    12. Cai J L, Cheng R S, Bo S Q. Effect of concentration reduction due to adsorption on the reduced viscosity of polymer solution in extremely dilute concentration regime. Polymer, 2005,46:10457-10465.
    13. Dondos A, Tsitsilianis C, Staikos G. Viscometric study of aggregation phenomena in polymer dilute solutions and determination of the critical concentration c**. Polymer,1989, 30:1690-1695.
    14. Dondos A, Papanagopoulos D. The intrinsic viscosity of polymers in the region of extremely dilute solutions:Detection of the conformational transitions of polymers. Die Makromolekulare Chemie, Rapid Communications,1993,14(1):7-11.
    15.崔传生.丙烯腈/衣康酸铵共聚物的制备及其溶液性质的研究.山东大学博士学位论文,2006.
    16.董兴广.聚丙烯腈纤维纺丝成形机理及工艺相关性研究.山东大学博士学位论文,2009.
    17.吴雪平.炭纤维前驱体丙烯腈-丙烯酰胺共聚物的制备及其性能研究.中国科学院山西煤炭化学研究所博士学位论文,2005.
    18.潘雁,程铬时.高分子稀溶液粘度的浓度依赖性.高分子通讯,2000,(2):10-17.
    19. Moore W R, Russell J. Critical concentration effects in the viscosities of dilute solutions of high polymers. Journal of Polymer Science,9(5):472-475.
    20. Pepper D C, Rutherford P P. The viscosity anomaly at low concentrations with polystyrenes of low molecular weight. Journal of Polymer Science,1959,35(128):299-301.
    21. Cutler M, Kimball G E. Effect of adsorption on measurements of viscosities of very dilute polymer solutions. Journal of Polymer Science,1951,7(4):445-447.
    22. Ohrn O E. Preliminary report on the influence of adsorption on capillary dimensions of viscometers. Journal of Polymer Science,1955,17(83):137-140.
    23. Ohrn O E. Further comments on the influence of adsorption on viscosity measurements. Journal of Polymer Science,1956,19(91):199-200.
    24.程璐,王浩静,欧阳琴,郭向云.丙烯腈-衣康酸共聚物稀溶液的粘度行为.功能高分子学报,2008,21(3):306-311.
    25.董纪震,赵耀明,陈雪英,曾宪珉.合成纤维生产工艺学.北京:中国纺织出版社,1994.
    26.吴雪平,凌立成,吕春祥,吴刚平,李永红,李开喜,宋燕,张睿,贺福.不同分子量丙烯腈-丙烯酰胺共聚物溶液的流变性研究.新型炭材料,2007,19(2):103-108.
    1. 贺福.碳纤维及其应用技术.北京:化学工业出版社,2004.
    2. 贺福.高性能碳纤维原丝与干喷湿纺.高科技纤维与应用,2004,29(4):6-12.
    3. Bajaj P, Sreekumar T V, Sen K. Structure development during dry-jet-wet spinning of acrylonitrile/vinyl acids and acrylonitrile/methyl acrylate copolymers. Journal of Applied Polymer Science,2002,86(3):773-787.
    4. 高健,陈惠芳.聚丙烯腈原丝及其干喷湿纺.合成纤维工业,2002,25(4):35-38.
    5. Qian B J, Pan D, Wu Z Q. The mechanism and characteristics of dry-jet wet-spinning of acrylic fibers. Advances in Polymer Technology,1986,6(4):509-529.
    6. 徐樑华.PAN干湿法纺丝工艺中原丝的表面沟槽形态.高科技纤维与应用,2001,26(2): 21-24.
    7. Gupta A K, Paliwal D K, Bajaj P. Acrylic precursors for carbon fibers. Journal of Macromolecular Science-Reviews in Macromolecular Chemistry and Physics,1991, C31(1): 1-89.
    8. Sen K, Bahrami S H, Bajaj P. High-performance acrylic fibers. Journal of Macromolecular Science-Reviews in Macromolecular Chemistry and Physics,1991, C36(1):1-76.
    9. 王启芬,王成国,王延相,杨茂伟,于美杰.PAN纤维的结构对纤维强度的影响.功能材料,2006,37(11):1787-1789.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700