用户名: 密码: 验证码:
仿核酸共聚物的制备和性能以及糖囊泡荧光传感器的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DNA在生物体内能够形成高级有序双螺旋结构,这种双螺旋结构对其发挥遗传、复制等基本生物功能至关重要,从DNA的化学结构特点看,其自身两亲性嵌段结构以及其结构中核酸碱基的存在,使得其在人体水环境中能够依靠亲脂疏水作用和两条核苷酸单链中的核酸碱基间氢键识别作用进行分子自组装,形成有序双螺旋结构。而在超分子化学领域,这种亲脂疏水作用和氢键作用被广泛的应用到人工超分子结构的设计和构筑当中,模拟核酸的结构特点,设计合成仿核酸结构类似物,就有可能使其在水溶液中也能够依靠亲脂疏水和氢键作用自组装成螺旋结构聚集体,这可能为了解DNA螺旋结构的成因以及制备螺旋型聚合物提供了一条新的途径。
     另外核酸具有广泛的医疗、药用价值,能够应用于合成抗病毒抑制剂和抗癌药物等。以核酸为靶的分子识别近年来得到了人们的广泛关注,这种方法能够有效地抑制有害蛋白质的合成,把疾病阻断在早期阶段,是关闭和调整某些不正常酶和受体之合成的有效途径。因此,设计合成仿核酸聚合物不仅可以模拟DNA螺旋结构的形成,了解其成因,而且可以将其应用于医药领域,在水环境下对药物小分子进行包埋,另外仿核酸聚合物与核酸结构的相似性有助于其应用到较难的抗癌医疗领域,这有可能成为抗癌药物合成的另一种方法。
     因此,本文模拟DNA的分子结构,以核酸碱基代间苯二甲酸酯替代DNA结构中的核苷酸,以水溶性的氮杂冠醚代替水溶性的磷酸酯,合成了主链含氮杂冠醚及核酸碱基的并且可以生物降解的仿核酸聚合物。用扫描电镜观测了其在水溶液中的聚集状态,以及其与互补碱基小分子识别后的聚集状态,并尝试用钾离子调整了该聚合物在水溶液中的聚集状态;用傅立叶常温红外研究了其与互补碱基小分子间发生的氢键识别,并用变温红外进一步验证了这一结果。另外本文中还设计合成了一种新型含萘硼酸糖囊泡荧光传感器,检测了其对葡萄糖、果糖、半乳糖、麦芽糖及人体尿糖的检测情况。
Nucleic acids are biological macromolecules and important life genetic materials, including DNA and RNA, DNA can form a double helix structure and which is the basis of replication and genetics. Seen from the chemical structure of DNA ,we found that it is an amphiphilic block copolymer, in which structure the lipophilic segment is nucleotides,and the hydrophilic segment is phosphate, the alternating arrangemernt of lipophilic and hydrophilic segment lead the DNA chains self-assemble into double helix structure,which relys on lipophilic hydrophobic interaction and the hydrogen bonds rccognization between nucleic acid bases on two single nucleotide chain, The lipophilic hydrophobic interaction and hydrogen bonding are also widely exist in supramolecular chemistry, and are offen be applied to design and construct artificial supramoleculars . Simulating the structural features of nucleic acids, design and synthesis polymers imitated to nucleic acids might make it self-assembe into helical aggregates in aqueous solution. Helical polymers have unique asymmetric catalysis and molecular recognition properties, Revealing the molecular characteristics of helix structure and simulating functions of biological spirochetes is an attractive subject.
     In addition, the nucleic acid has a wide range of medical, medicinal value, can be used in synthesis of anti-virus inhibitors and anti-cancer drugs.The molecular rcogniiong based on nucleic acid has a widly attention in recent years. The synthesis of nucleic acid polymers can not only imitate the helix structure of DNA and understand its causes for formation,but also pack the substuate drugs taking advantang of hydrogen bonding identification. effectively preventing competition of water in environment. Reducing the side effects and increased loading of drugs. Because of the imitation of nucleic acid ,the polymer might be used to difficult cancer medical field, which could become a new method to prepare anti-cancer drugs.
     1 Synthesis of copolymers PCASE and PCTSE
     To simulate the structure of DNA, we synthesized two biodegradable copolymers PCASE and PCTSE containing nucleic acid bases and aza-crown ethers in main-chain, using isophthalic acid ester to replace the lipophilic nucleotide, and the water-soluble aza-crown ether to replace the phosphate.. 1H NMR proved that functional groups of nucleic acid bases exist and not chang in the the polymerization process. This is the foundation for next molecule recognition. The average molecular weight of the copolymers are determinated by GPC.
     2 The morphology of copolymers before and after reconnizing with subtrate moleculars
     Scanning electron microscopy showed that copolymer PCASE formed silk ribbon width of about 100nm aggregates in pure aqueous solution , After 20 days at room temperature the silk ribbon reversed and distorted into hollow spiral aggregates. The self-assemble phenomenon of copolymer PCASE in pure aqueous solution is very similar to the behavior of DNA . Unlik copolymer PCASE the copolymer PCTSE form nanospheres , possibly because of their different aggregation tendency cased by different nucleic acid bases in main-chain, The copolymer PCASE can not self-assemble into double helix structure like DNA, probably due to the single adenine in structure,which can not recognize with complementary nucleic acid base in another copolymer chain like DNA. So we observe the morphology of copolymer PCASE and PCTSE after their recognization, we found that these two copolymers did not form expected double helix aggregates,but formed a long strip of willow-shaped aggregates, We believe the different aggragation tendency of two copolymers in aqueous solutions as well as the different polymerization are the reasons why they can not form double-helix aggregates.
     We know that crown ethers exist as soft chain in the water, and after recognizing with metal ions, the crown ethers ring will open. This makes it possible to change the entire crown ether polymer aggregation state in aqueous solution. We chosed potassium ions best for 18-crown-6 to adjust the aggregation of polymers in aqueous solution, The copolymer PCASE aggregates changed from into rod-like, and some show spiral or hollow rod-like nano-tubes in the presence of potassium ions, this phenomenon shows that potassium ions indeed can change the crown ether copolymer aggregation state in aqueous solution . We have also tried to regulate the aggregation morphology of copolymer PCTSE or copolymer with subtrates ,as well as two copolymer after recongnzation.it was found that the potassium ions can not effect the aggregation morphology of copolymer PCTSE(or PCASE/PCTSE+subtrates).but effect the aggregation morphology of the two copolymer aggregation morphology after their recognization,changed from original s willow strips to irregular spindle-shaped aggregates.
     3 Study of molecular recognizaion of the copolymers and complementary bases
     The C2=O of thymine in copolymer PCTSE did not change,and the C4=O peak changed from 1670cm-1 to1664 cm-1.after recognizing with copolymer PCASE, this result shows the formation of hydrogen bonds between C4=O of thymine in copolymer PCTSE and -NH2 of adenine in copolymer PCASE. The C4=O peak changed back from 1664cm-1 to1670 cm-1.after heating to 130℃shows the break of hydrogen bonds. Seen from the changes upon 3000cm-1,we found the -NH2 of copolymer PCASE and-NH of copolymer PCTSE disappeared, a new peak 3409 cm-1 appeared, which will gradually disappeared with the temperature up to130℃, and the -NH 3315 cm-1 of the copolymer PCTSE emergence again, which shows that at room temperature the -NH2 of copolymer PCASE recognized with C4=O of thymine in copolymer PCTSE, and the hydrogen bonds gradually break in high temperature.
     In summary ,we have designed and synthesized two copolymers PCASE and PCTSE,we observed their morphology in aqueous solution,and tried to adjusted their aggregation state.We have also studied their molecular recognization between their themselves and with substrates.This might be a new approach to mimic bio-artificial helix, and develop new nucleic acid drug carrieres .In the fifth chapter, we have also designed and synthesized a new fluorescent vesicular sensor for saccharides,and applied it to testing human urine glcose for the first time.
引文
[1]许坚,刘海云,中国化工学会(IESC)2006,9-10
    [2]陈洪渊,科学中国人,2004,28-29
    [3]江雷,冯琳,仿生智能纳米界面材料,化学化工出版社,2007
    [4]崔福斋,正传林,放生材料,化学工业出版社
    [5] Nakano,T.,Okamoto,Y., Memory ofmacromolecular helicity assisted by interaction with achiral smallmolecules,Nature,1999,399,449-451.
    [6] Hawker C. J.; Wooley, K. L. The Convergence of Synthetic Organic and Polymer Chemistries .[ J ] Science, 2005, 309, 1200.
    [7] Nowick J. S. , Cao T. , Noronha G. Molecular Recognition between Uncharged Molecules in Aqueous Micelles. J. Am. Chem. Soc [J], 1994, 116: 3285-3289.
    [8] Zhang Xi, Shen Jia-Cong. Chinese Science Bulletin [J], 2003, 48:1477~1478.
    [9]邢其毅,基础有机化学,高等教育出版社
    [10]裘娟萍,生命科学概论,第二版[M].北京:科学出版社,2008
    [11] JIANG X, LIU W, et al. [J]. Progress in Chemistry, 2007, 19: 608-613
    [12] ZUBARY, GEOFFREY,等译.生物化学[M].上海:复旦大学出版社,1989:2-210.
    [13] YASHIMA E, MAEDA K, Detection and amphification of chirality by helical polymers [J]. Chemistry-A European Journal, 2004, 10: 42-51.
    [14]杨铭,李荣昌,药物研究中的分子识别,北京医科大学协和医科大学联合出版社,1999
    [15]刘育,尤长城,超分子化学-合成受体的分子识别与组装,南开大学出版社,2001
    [16] FAUL C F J, ANTONIETTI M. Fabrication of hollow capsules based on hydrogen bonding [J]. Advanced Materials, 2003, 15: 673-683.
    [17] WHITESIDES G M, Self-assembly at all scales [J]. Science, 2002, 295: 2418 - 2421. [18 ]沈家骢,吴玉清.化学进展,[J]. 2007, 19: 1839-1843.
    [19]董建华.高分子科学前沿与进展.北京:科学出版社,2006.
    [20] LV Y F. Supramolecular polymer science and engineering [J]. Polymeric Materials Science & Engineering, 2005, 2: 47-51.
    [21]斯第德J W,译.超分子化学[M],北京:化学工业出版社,2006.
    [22] WHITESIDES G M, et al. Noncovalent synthesis: using physical-organic chemistry to make aggregates [J]. Accounts of Chemical Research, 1995, 28: 37-44.
    [23] Shimizu T., Iwaura R., Masuda M., etal.,Internucleobase-Interaction-Directed Self-Assembly of Nanofibers from Homo- and Heteroditopic 1,?-Nucleobase Bolaamphiphiles J. Am. Chem. Soc.[J], 2001, 123, 5947-5955.
    [24] Dong A., Wan T., Feng S., et al., J. Polymer Sci., B.[J], 1999, 37, 2642-2650.
    [25] HOBZA P, HAVLAS Z. Blue-shifting hydrogen bonds [J]. Chemical Reviews, 2000, 100: 4253-4264.
    [26] BUDESINSKY M, an efficient preparation, some derivatives, and spectra [J]. Synthesis, 1989, 858-860
    [27] YANG Y, et al. Blue-shifted and red-shifted hydrogen bonds: Theoretical study of the CH3CHO NH3 complexes [J]. Journal of Molecular Structure: Theochem, 2005, 732: 33-37.
    [28] Sijbesma R P, Flomer B J B, Lowe J K L, Meijer E W. Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding .[J] Science, 1997, 278, 1601-1604.
    [29] Folmer B J B,Cavini E, Sijbesma R P, Meijer E W. Photo-induced depolymerization of reversible supramolecular polymers. [J] Chem Commun, 1998, 1847-1848.
    [30] Bouteiller L, Assembly via hydrogen bonds of low molar mass compounds into supramolecular polymers .[J]Adv Polym Sci, 2007,207,79-112.
    [31] Ten Cate A T, Sijbesma R P. Coils, Rods and Rings in Hydrogen-Bonded Supramolecular Polymers. [J] Macromol Rapid Commun, 2003, 23, 1094-1112.
    [32] Hofmeier H, Schubert U S. Combination of orthogonal supramolecular interactions in polymeric architectures [J] Chem Commun,2005,2423-2432.
    [33] Smith D K, Brignell S V, Huang B, Self-assembly using dendritic building blocks—towards controllable nanomaterials [J] Prog Polym Sci , 2005, 30, 220-293.
    [34] Jorgensen W L , Pranata J. Importance of secondary interactions in triply hydrogen bonded complexes: guanine-cytosine vs uracil-2,6-diaminopyridine [J] J Am Chem Soc, 1990, 112, 2008-2010.
    [35]王庆文,杨玉桓、高鸿宾,有机化学中的氢键问题,天津大学出版社
    [36] Lehn.J-M. [J] Supramolecular chemistry. New York,VCH,1995.
    [37] Lehn.J-M. Toward Self-Organization and Complex Matter. [J] Science, 2002,2400-2403.
    [38] Ciferri A. Supramolecular polymers. New York, Marcel Dekker,2000.
    [39] ZimmermanN, Moore J S, Zimmerman S C . Polymer Chemistry Comes Full CircleChem Ind(London),1998, 604-610.
    [40] Lehn J-M. Dynamers: dynamic molecular and supramolecular polymers [J] Prog Polym Sci, 2005, 30, 814-831.
    [41] Brunsveld L ,Folmer B J B , Meijer E W , Sijbesma R P . Supramolecular Polymers. [J] Chem Rev , 2001,101, 4071-4097.
    [42]吕亚非,超分子聚合物科学与工程,高分子材料科学与工程,2005,21,48-51
    [43] Mathias J P ,Seto C T ,Simanek E E , Whitesides G M . [J]J Am Chem Soc, 1994, 116, 1752-1736.
    [44] Jolliffe K A, Fokkens R, Timmerman P , Reinhoudt D N . Characterization of Hydrogen-Bonded Supramolecular Assemblies by MALDI-TOF Mass Spectrometry after Ag+ Labeling. [J] Angew Chem Int Ed , 1998, 37, 1247-1251.
    [45] Kerckhoffs J M C A , van Leeuwen F W B,Snellink-Ruel B,Spek A L,Kooijman H,Crego-Calama M,Reinhoudt D N. Selective Self-Organization of Guest Molecules in Self-Assembled Molecular Boxes [J] J Am Chem Soc, 2005, 127, 12697-12708.
    [46] Zimmerman S C,Zeng F, Reichert D E C , Kolotuchin S V. Self-assembling dendrimers [J] Science, 1996, 271, 1095-1098.
    [47] Zeng F,Zimmerman S C, Kolotuchin S V, Reichert D E C, Ma Y. Supramolecular polymer chemistry: design, synthesis, characterization, and kinetics, thermodynamics, and fidelity of formation of self-assembled dendrimers. [J] Tetrahedron, 2002, 58, 825-843.
    [48] Scarso A, Shivanyuk A, Rebeek J Je. Individual Solvent/Solute Interactions through Social Isomerism [J] J Am Chem Soc, 2003, 125, 13981-13983.
    [49] Iwasawa T, Mann E, Rebek J Jr. Self-Assembly Dynamics of a Cylindrical Capsule Monitored by Fluorescence Resonance Energy Transfer [J] J Am Chem Soc, 2007, 129, 8818-8824.
    [50] Barrett E S, Dale T J, Rebek J Jr, Assembly and Exchange of ResorcinareneCapsules Monitored by Fluorescence Resonance Energy Transfer [J] J Am Chem Soc, 2007, 129, 3818-3819.
    [51] Nakazawa J, Mizuki M , Shimazaki Y ,Tani F,Naruta Y. Encapsulation of Small Molecules by a Cavitand Porphyrin Self-Assembled via Quadruple Hydrogen Bonds. [J] Org Lett, 2006, 8, 4275-4278.
    [52] Kobayashi K, Yamanaka M,Suematsu T,Sei Y,Yamaguchi K. Orientational Isomerism Controlled by the Difference in Electronic Environments of a Self-Assembling Heterodimeric Capsule. [J] J Org Chem, 2007, 72, 3242-3246.
    [53] Clegg W, Leigh D A, Murphy A, Slawin A M Z,,Teat S J. Smart”Rotaxanes: Shape Memory and Control in Tertiary Amide Peptido[2]rotaxanes [J] J Am Chem Soc, 1999, 121, 4124-4129.
    [54] Leigh D A, Perez E M. Shuttling through reversible covalent chemistryElectronic supplementary information (ESI) available: experimental procedures and physical data for Cp-1 and Cp-2. [J] Chem Commun, 2004, 2262-2263.
    [55] Perez E M, Leigh D A, Teobaldi G, Aerbetto F. A Generic Basis for Some Simple Light-Operated Mechanical Molecular Machines [J] J Am Chem Soc, 2004, 126, 12210-12211.
    [56] Johnson J R, Fu N, Piwnica–Worms D, Smith B D. Squaraine Rotaxanes: Superior Substitutes for Cy-5 in Molecular Probes for Near-Infrared Fluorescence Cell Imaging. [J] Angew Chem Int Ed, 2007, 46, 5528-5531.
    [57] Marlines-Diaz M V, Spencer N, Stoddart J F. The Self-Assembly of a Switchable Rotaxane [J] Angew Chem Int Ed Engl, 1997, 36, 1904-1907.
    [58] Nguyen T D, Liong M, Pentecost C D, Stoddart J F, Zink J I . Construction of a pH-Driven Supramolecular Nanovalve [J] Org Lett, 2006, 8, 3363-3366.
    [59] Leung K C-F,Arico F, Cantrill S J, Stoddart J F. Template-Directed Dynamic Synthesis of Mechanically Interlocked Dendrimers [J] J Am Soc,2005, 127, 5808-5810.
    [60] Leung K C-F, Kim S,Patel K, Flood A H, Tseng H-R, Stoddart J F. Supramolecular Self-Assembly of Dendronized Polymers: Reversible Control of the Polymer Architectures through Acid?Base Reactions. [J] J Am Chem Soc, 2006, 128, 10707-10715.
    [61] Ben-Naim, A. Hydrophobic Interactions; Plenum Press: New York, 1980.
    [62] Saenger W. Princip les of Nucleic Acid Structure [M] , New York: SpringerVerlag, 1984.
    [63] Zhu M.Y., H, et al., Nature of the Alternate CF2CH2 Chain: Study Based on the Measurement and Comparison of the CAgC's of Aggregators with Alternate Chains and with Hydrocarbon Chains [J] Langmuir, 1997, 13, 3603-3609.
    [64] Nowick J. S., Cao T., Noronha G., Molecular Recognition between Uncharged Molecules in Aqueous Micelles [J] J. Am. Chem. Soc. 1994, 116, 3285-3289.
    [65] Berti D., Luisi P. L., Baglioni P., Molecular recognition in supramolecular structures formed by phosphatidylnucleosides-based amphiphiles. [J] Colloids & Surfaces, 2000, 167, 95-103.
    [66] Luttringhaus, Ann.Chim., 1937, 528, 181-210
    [67] Pedersen, C., Cyclic polyethers and their complexes with metal salts. [J] J. Am.Chem. Soc.,1967, 89, 7017-7036.
    [68] Lehn, J-M. Supramolecular Chemistry - Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture) [J]Angew. Chem Int Ed Engl. 1988, 27, 89 ;
    [69] Cram,D. J., The Design of Molecular Hosts, Guests, and Their Complexes (Nobel Lecture) [J] Angew. Chem., Int. Ed, Engl., 1988, 27, 1009-1020.
    [70] Murillo, O., Murray, C. L., Jin, T., Gokel, G. W., Synthetic Transmembrane Channels: Functional Characterization Using Solubility Calculations, Transport Studies, and Substituent Effects [J] J. Am. Chem. Soc., 1997, 119, 5540-5549.
    [71] Lehn, J. M., Supramolecular Chemistry, Concepts and Perspectives, Wiley-VCH, Weinheim, 1995.
    [72] Schulta, R. A; Dishong, D. N.; Gokel, G, W. Crown-cation complex effects. 15. Lariat ethers. 4. Chain length and ring size effects in macrocyclic polyethers having neutral donor groups on flexible arms [J] J. Am. Chem, Soc.1982, 104, 625.
    [73] Schulta, R. A;White, B. D.; Arnold, K. A.; Gokel, G. W. 12-, 15-, and 18-Membered-ring nitrogen-pivot lariat ethers: syntheses, properties, and sodium and ammonium cation binding properties . [J] J. Am. Chem. Soc. 1985, 107, 6659.
    [74] Arnold, K. A.; Mallen, J.; Fronczek, F. R.; Gehrig, L. M., Gandour,R. D.;J. Ring-sidearm cooperativity in cation inclusion complexes of 12-membered ring lariat ethers: effect of sidearm chain length and a clarification of long-sidearm binding strengths. [J] Org. Chem.1988, 53, 5652.
    [75] Sharma, C. V. K.; Clearfield,A. Macrocyclic Leaflets .[J] J. Am. Chem. Soc. 2000,122, 1558.
    [76] Szuromi, P. D. [J] Science 2000, 287, 1713.
    [77] Inoue, Y.; Tong, L.-H.;Ouchi, M.;Hakushi, T. Complexation thermodynamics of crown ethers. Part 3. 12-Crown-4 to 36-crown-12: from rigid to flexible ligand [J]J. Chem. Soc., Perkin Trans.2 1993, 1947.
    [78]颜德岳,周永丰.仿生自组装,高分子科学前沿与进展,北京:科学出版社,2006.
    [79] Eschenmoser, A., Chemical etiology of nucleic acid structure [J] Science, 1999, 284, 2118-2124.
    [80] Zhang, L., Peritz,A., Meggers, E., A Simple Glycol Nucleic Acid [J] J. Am. Chem. Soc., 2005, 127, 4174 -4175.
    [81] Nielsen, P. E., [J] Peptide Nucleic Acid. A Molecule with Two Identities Acc. Chem. Res., 1999, 32, 624-630.
    [82]江龙,胶体化学概论,北京:科学出版社,2004
    [83] K.霍姆博格B琼森,韩丙勇翻译,水溶液中的表面活性剂和聚合物,北京:化学工业出版社,2005
    [84] JONS M C, Polymeric micelles– a new generation of colloidal drug carriers [J]. European Journal of Pharmaceutics and Biopharmaceutics, 1999, 48: 101-111
    [85] SLUDDEN J, The encapsulation of bleomycin within chitosan based polymeric vesicles does not alter its biodistribution [J]. Journal of Pharmacy and Pharmacology, 2000, 52: 377-382
    [86] Koschinsky, T.;. Glucose-responsive vesicular sensor based on boronic acid–glucose recognition in the ARS/PBA/DBBTAB covesicles [J] Diabetes-Met. Res. Rev. 2001, 17, 113-123.
    [87] Daniloff, G. Y. Renin-angiotensin system inhibition prevents type 2 diabetes mellitus. [J] Diabetes Tech. Ther. 1999, 1, 261.
    [88] Arimori, S.; Fluorescent Internal Charge Transfer (ICT) Saccharide Sensor.[J] Tetrahedron Lett. 2001, 42, 4553–4555.
    [89] Yan, J.; Wang, B. Boronolectins and fluorescent boronolectins: An examination of the detailed chemistry issues important for the design. [J] Med. Res. Rev. 2005, 25, 490–520.
    [1] ZUBARY,曹凯鸣,等译.生物化学[M].上海:复旦大学出版社,1989,2-210
    [2] ESCHENMOSER A. Chemical Etiology of Nucleic Acid Structure. [J]. Science, 1999, 284: 2118-2124.
    [3] ZHANG L, PERITZ A, MEGGERS E. A Simple Glycol Nucleic Acid. [J]. J. Am. Chem. Soc., 2005, 127: 4174-4175.
    [4] Francesco Bottino, Michele Di Grazia,Paolo Reaction of tosylamide monosodium salt with bis(halomethyl) compounds: an easy entry to symmetrical N-tosyl aza macrocycles [J] J. Org. Chem. 1988,53, 3521-3529
    [5] Mikio Ouchi,Yoshihisa,Convenient and Efficient Tosylation of Oligoethylene Glycols and the Related Alcohols in Tetrahydrofuran-Water in the Presence of Sodium Hydroxide. [J] Bull.Chem.Soc.Jpn.,63,1260-1262(1990)
    [6] W. RaJhofer und F. Vogtle,Justus ,Neue bequeme Azakronenether-Cyclisierungen ohne Verdunnungs-prinzip. [J]Liebigs Ann. Chem. 1978, 552-558
    [7] Silvio Quici, Amedea Manfredi: and Angelo SironiSynthesis and Properties of New Lipophilic Macrotricyclic Cylindrical Cryptands. [J] J. Org. Chem. 1995, 60, 6379-6388
    [8] S.KULSTAD and L. ?.MALMSTEN ,Diaza-crown Ethers.i.Alkali Ion Promoted Fromoted of Diaza-crown Ethers and Syntheses of Some N’N-Disubstituted Derivatives. [J] Acta Chemica Scandinavica B33 (1979) 469-474
    [9] Toshiharu Yoshino, Syntheses of aromatic and the optically active aliphatic segments. [J]Tetrahedron, Vol. 53, 10239-10252, 1997
    [10] Stephen J. Gardiner, Bradley D. Tetrahedron 55 (1999) 2857-2864
    [11] WHITE E, Mass spectra of trimethylsilyl derivatives of pyrimidine and purine bases [J]. The Journal of Organic Chemistry, 1972, 37: 430-438.
    [12] MALIK V, KUMAR S. Unique chlorine effect in regioselective one-pot synthesis of 1-alkyl-/allyl-3-(o-chlorobenzyl) uracils: anti-HIV activity of selected uracil derivatives [J]. Tetrahedron 2006, 62: 5944–5951.
    [13] Susumu Arimori, Frimat and Tony D. Modular fluorescence sensors for saccharides .[J]J. Chem. Soc., Perkin Trans. 1, 2002, 803–808
    [14] Zhang Yong, Acta. Polymerica Sinica, 2002 (2): 167~171
    [15]樊能廷,有机合成事典,1992,北京理工大学出版社
    [16]李国文,含核酸碱基混合脂质体的制备与膜内分子识别. [J]化学学报,1991,49,121-127
    [17]刘纯晶,李国文,含萘(2,6)生色基的合成双分子膜研究. [J]高等学校化学学报,1993(14),97-101
    [18] Binghe Wang .Naphthalene-based water-soluble fluorescent boronic acid isomers suitable for ratiomtric and off-on sensing of saccharides at physiological PH. New J.Chem., 2005,29,579-586
    [1] Ben-Naim, A. Hydrophobic Interactions; Plenum Press: New York, 1980.
    [2] Saenger W. . Princip les of Nucleic Acid Structure[M] , New York: Sp ringer2Verlag, 1984
    [3] Zhu M.Y., Zhang T. X., Zeng J.H, et al., Nature of the Alternate CF2CH2 Chain: Study Based on the Measurement and Comparison of the CAgC’s of Aggregators with Alternate Chains and with Hydrocarbon Chains [J] Langmuir, 1997, 13, 3603-3609.
    [4] JONS M C, Polymeric micelles– a new generation of colloidal drug carriers [J]. European Journal of Pharmaceutics and Biopharmaceutics, 1999, 48: 101-111.
    [5] ZHANG L, Ion-induced morphological changes in "Crew-Cut" aggregates of amphiphilic block copolymers .[J]. Science, 1996, 272: 1777-1779.
    [6] Nakano,T.,Okamoto,Y., Synthetic helical polymers: Conformation and function.Chem Rev.,2001,101,4013-4038.
    [7] Hawker C. J.; Wooley, K. L. The convergence of synthetic organic and polymer chemistries [ J ] Science, 2005, 309, 1200.
    [8] DAVIS S S, ILLUM L. Polymeric microspheres as drug carriers [J]. Biomaterials, 1988, 9: 113-115.
    [9] MOSS R A, Molecular recognition between uncharged molecules in aqueous micelles [J].J. Am. Chem. Soc., 1994, 116: 805-806.
    [10]Luttringhaus, [J] Ann Chim.,1937,528,181-210; Pedersen,C., Cyclic polyethers and their complexes with metal salts [J] J.Am.Chem.Soc.,1967,89, 7017-7036.
    [11] Cram,D.,J., The Design of Molecular Hosts, Guests, and Their Complexes (Nobel Lecture) [J] Angew Chem Int Int Ed Engl.,1988,27,1009-1020.
    [12] Murillo,O.,Suzuki,I..,Abel,E.,Murray,C.L.,Meadows,E.S.,Jin,T.,Gokel,G..W. Synthetic Transmembrane Channels: Functional Characterization Using Solubility Calculations, Transport Studies, and Substituent Effects. [J] J,Am,Chem.Soc.,1997,119,5540-5549.
    [13] WEI J, The progress of molecular studies with 5-FU-related drug efficacy and toxicity prediction. [J].World Chinese Journal of Digestology, 2005, 13: 1885-1893.
    [14] WANG L J. Riboflavin and health .[J] Academic Journal of Guangdong College of Pharmacy, 2000, 16: 223-225.
    [1] GHADIRI M R, et al. Self-assembling organic nanotubes based on a cyclic peptide architecture [J]. Nature, 1993, 366: 324-327.
    [2] CORBIN P S, LAWLESS L J, LI Z, et al. Discrete and polymeric self-assembled dendrimers: Hydrogen bond-mediated assembly with high stability and high fidelity [J]. Proc. Natl. Acad. Sci. USA, 2002, 99: 5099-5104.
    [3] RINGSDORF H, SIMON J. Snap-together vesicles [J]. Nature, 1994, 371: 284.
    [4] Berti D., Luisi P. L., Baglioni P., Molecular recognition in supramolecular structures formed by phosphatidylnucleosides-based amphiphiles, [J]Colloids & Surfaces, 2000, 167, 95-103.
    [5] YIN C, The application of amphiphilic polymer aggregates as drug carrier The [J] Chemistry 2006, 69: 04
    [6] MASUDA M, OKADA Y, et al. Polymerization in nanometer-sized fibers: molecular packing order and polymerizability [J]. Macromolecules, 2000, 33: 9233-9238.
    [7] MIAO W, Molecular recognition of nucleolipid monolayers of 1-(2-octadecyloxycarbonylethyl)cytosine to guanosine at the air-water interface and Langmuir-Blodgett films [J]. Langmuir, 2003, 19: 5389-5396.
    [8] Florian J., Scaled quantum mechanical force fields and vibrational spectra of solid state nucleic acid constituents V: thymine and uracil [J]Spectrochimica Acta, 1993, 49A, 921-938.
    [9]R.Buchet,C.Sandorfy Perturbation of the hydrogen-bond equilibrium in nucleic bases. An infrared study. [J] J.PHYS.CHEM.1983,87,275-280
    [10] ALABUGIN I V, et al. Electronic basis of improper hydrogen bonding: a subtle balance of hyperconjugation and rehybridization [J]. J. Am. Chem. Soc, 2003, 125: 5973-5987.
    [11] WEI J, The progress of molecular studies with 5-FU-related drug efficacy and toxicity prediction [J]. World Chinese Journal of Digestology, 2005, 13: 1885-1893.
    [12] DUSCHINSKY R, The synthesis of 5-fluoropyrimidines [J]. J. Am. Chem. Soc, 1957, 79: 4559-4560.
    [13] PITARRESI G, et al. Composite nanoparticles based on hyaluronic acidchemically cross-linked withα,β-polyaspartylhydrazide [J]. Biomacromolecules, 2007, 8: 1890-1898.
    [14] HE Z. Barbiturates clinical applications [J]. Shanxi Medical Journal, 1992, 21: 367-368.
    [15] KURIHAR K, OHTO K, et al. Molecular recognition of sugars by monolayers of resorcinol-dodecanal cyclotetramer [J]. J. Am. Chem. Soc, 1991, 113: 444-450.
    [16] Kulstad S., Malmsten L. ?., [J] Acta Chemica Scandinavica,1979, B33,469-474
    [17] Kyogoku Y., Lord R.C., Rich A., An Infrared Study of Hydrogen Bonding between Adenine and Uracil Derivatives in Chloroform Solution [J] J. Am. Chem. Soc., 1967, 89, 496-504. .
    [1]SUBRAHMANYAM S, PILETSKY S A, et al.‘Bite-and-Switch’approach using computationally designed molecularly imprinted polymers for sensing of creatinine [J]. Biosensors and Bioelectronics, 2001,16, 631-637.
    [2] Robertson. R. N. The Lively Membranes; Cambridge University Press: New York, 1983.
    [5] De Marchi, S.; Departments of Nephrology and Dialysis, Diagnostic Radiology, Pathology. [J] F. Am. J. Nephrol. 1984, 4, 280
    [6] Baxter, P.; Goldhill, J.; Enhanced intestinal glucose and alanine transport in cystic fibrosis. [J] J. Gut 1990, 31, 817.
    [3] Yasuda, H.; Kurokawa, T.; glucose transport across renal brush-border membrane vesicles from streptozotocin-induced diabetic rats [J] Biochim. Biophys. Acta 1990, 1021, 114.
    [7] Yamamoto, T.; Harris RC, Brenner BM, Seifter JL: Sodium-hydrogen exchange and glucose transport in renal microvillus membrane vesicles from rats with diabetes mellitus. [J] Biochem. Biophys. Res.Commun. 1990, 170, 223.
    [8]王煜,广西师范大报,2003,21,146-147
    [9] Moss R. A. , Okumura Y. . Surface-differentiated model phospholipid bilayers. [J] J. Am. Chem. Soc., 1992, 114, 1750-1756
    [10] T. Kunitake,Y. Okahata, Formation of the stable bilayer assemblies in dilute aqueous solution from ammonium amphiphiles with the diphenylazomethine segment Formation of the stable bilayer assemblies in dilute aqueous solution from ammonium amphiphiles with the diphenylazomethine segment. [J] J. Am. Chem. Soc., 1980,102, 549-553.
    [12] X Gao, Y. Zhang, B. Wang, [J] Tetrahedron, 2005,61, 9111-9117.
    [13] K.R.A.S. Shinkai, Calix[4]arene as a polyoxo matrix for functionalizable and reducible niobium(V) and tantalum(V) chlorides and oxochlorides.[J] J. Chem. Soc., Chem.Commun. 1994,1083-1084.
    [14] T.D. James, Novel Saccharide-Photoinduced Electron Transfer Sensors Based on the Interaction of Boronic Acid and Amine. [J] J. Am. Chem. Soc., 1995, 117, 8982-8987.
    [15] J. Fine, Glucose Content of Normal Urine .[J] Brit. Med. J., 1 (1965) 1209-1214..

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700