用户名: 密码: 验证码:
基于WAMS信息提高电力系统稳定性的若干控制措施研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代互联电力系统的复杂程度不断增加。近年来国内外发生的多起大停电事故表明,保证电力系统安全稳定运行的难度正在逐渐加大。缺乏快速、有效、适应性强的稳定控制方法是引发大停电事故的重要原因之一。广域同步测量系统在电力系统的逐渐普及,为暂态稳定分析和控制研究提供了新的契机。
     本论文从WAMS实测数据出发,研究了提高电力系统稳定性的全局综合控制、闭环紧急控制及解列控制等多种控制措施。论文的主要工作如下:
     1)提出一种暂态稳定闭环紧急控制方案。提出将开环控制与闭环控制两种方式相结合,扩大了紧急控制的保护范围。分析了稳定性预测过程中电磁功率突变产生的原因及其影响,并提出了计算修正的方法。分析了闭环控制模型和测量过程产生的误差,提出采用校正系数进行补偿,保证控制的有效性。最后,提出了完整的闭环紧急控制方案。根据闭环控制过程中不同阶段的特点,分别采用轨迹外推和数值仿真方法进行受扰轨迹预测。所提控制方案能够有效的提高系统的暂态稳定性。
     2)提出一种多机系统下的可控制动电阻协调控制方法。以各发电机制动电阻吸收功率组成的向量作为控制量,对多机系统中的TCBR控制器建立数学模型。建立优化模型,并求取非线性最优反馈控制规律,实现TCBR之间的最优协调控制。采用如下方法求取非线性最优反馈控制规律:首先求出作为共态变量和状态变量函数的开环最优控制,然后利用共态变量和状态变量之间的非线性关系,消去共态变量,就得到作为状态变量的函数的最优反馈控制律。
     3)提出一种励磁与可动制动电阻相协调的全局综合控制器。控制器采用两层控制结构。下层的每个子系统对TCBR进行闭环反馈控制,而上层的协调控制器利用广域同步信息处理各子系统之间的非线性关联量,不断为各子系统提供优化向量,确保整体控制性能的最优化。所提方案将本地控制信号与WAMS提供的全局控制信号相结合,可有效提高对于大干扰和小扰动的控制效果。
     4)提出一种基于WAMS的自适应解列方法。自适应解列首先采用EEAC法判断失步机群,然后采用最小潮流断面法寻找系统最佳解列断面。最小潮流断面法按照如下原则寻找解列断面:每个子系统各自保持同步运行;解列后各子系统的发电功率与负荷功率能够基本平衡。研究了将解列作为与切机等并列的紧急控制措施在第二道防线中所起的作用。
The increasing of the complicity of modern inter-connecting power system often makes solving a actual problem difficult when traditional analysis and control strategy are used. Several large scale blackouts happened both domestic and abroad approve that ensuring securely and the stable operation of power systems are becoming more and more difficult. One of the most important reasons of blackout is the lacking of fast, effective and adaptive control method for improving stability. The widespread application of Wide Area Measurement System (WAMS) provides a new momentum for the research of the analysis and control of power system transient stability.
     Based on WAMS signal, wide area coordinating control, closed-loop emergency control and islanding control for improving transient stability of power systems are researched in this thesis. The main works of this thesis are:
     1) A closed-loop emergency control scheme to enhance transient stability of power system using WAMS information is proposed. The proposed method combined the open-loop control and the closed-loop control, resulting in extending the protect area of emergency control. The reasons and the influence of sudden change of the electric power of generators during stability prediction are analyzed. Moreover, corresponding correction method is proposed. The error existed in closed-loop control modal and measuring are analyzed and corrected in order to guarantee the effectiveness of control method. Last, a complete solution of closed-loop emergency control is proposed. Different perturbed trajectory prediction method are applied during the control course. Simulation results approve that the proposed control scheme can improving transient stability of power systems effectively.
     2) A coordinated control method of Thyristor Controlled Braking Resistor (TCBR) for multi-machine system is proposed. The basic structure and mathematic model of TCBR controller of multi-machine system is researched. Moreover, nonlinear optimizing control is adopted according to three level co-state prediction algorithm. The optimal mathematic modal is proposed, and the nonlinear optimizing feedback control law is acquired. The proposed controller can greatly improve transient stability of the power system. Simulation tests on a 4-machine system show the effectiveness of the proposed method.
     3) A global control scheme for improving transient stability of power systems by combining exciter and thyristor controlled braking resistor is proposed. The control structure is organized into a two-layer controller by applying hierarchical control strategy of large-scale system principle. The lower layer is composed of decentralized local feedback controllers, each of which takes local feedback signal and controls its connected generator. In the upper layer a global controller is designed to enhance the effectiveness of decentralized local controllers. The global controller coordinates local controllers by generating remote feedback signals which ensuring the global optimal solution of the overall system transient performance. The proposed control scheme can guarantee fast and accurate control actions of local controllers when a power system is subjected to large disturbances. Simulation results show the effectiveness of the proposed control scheme.
     4) A adaptive islanding method based on WAMS is proposed. First, none synchronizing group of generators is recognized by EEAC method. Moreover, the optimal islanding surface is found by applying minimal power flow surface method. Furthermore, the effect of islanding control as a emergency control method in the second defense line is analyzed.
引文
[1]兰洲,倪以信,甘德强.现代电力系统暂态稳定控制研究综述.电网技术,2005,29(15):40~50
    [2]王锡凡.现代电力系统分析.北京:科学出版社,2004:5-6
    [3]卢强,梅生伟.面向21世纪的电力系统重大基础研究.自然科学进展,2000,10(10):870~876
    [4]谢小荣,李红军,吴京涛.同步相量技术应用于电力系统暂态稳定性控制的可行性分析.电网技术,2004,28(1):10~14
    [5]卢强,王仲鸿,韩英铎.输电系统最优控制.北京:科学出版社,1984:12~13
    [6]卢强,梅生伟,孙元章.电力系统非线性控制.北京:清华大学出版社,2008:15~18
    [7]Lu Q, Sun Y Z. Nonlinear stabilizing control of multimachine systems. IEEE Trans on Power Systems,1989,4(1):236-241
    [8]Lu Q, Sun Y, Xu Z et al. Decentralized nonlinear optimal excitation control. IEEE Trans on Power Systems,1996,11(4):1957-1962
    [9]孙郁松,孙元章,卢强.水轮发电机水门非线性控制规律的研究.电力系统及其自动化,1999,23(23):33~36
    [10]Gan D Q, Qu Z H, Cai H Z. Multi machine power system excitation control design via theories of feedback linearization control and nonlinear robust control. International Journal of Systems Science,2000,31(4):519-527
    [11]谢桦,梅生伟,徐政,等.统一潮流控制器的非线性控制和对电力系统稳定性的改善.电力系统及其自动化,2001,25(19):1-5
    [12]赵洋,肖湘宁.基于微分几何方法的静止同步串联补偿器非线性控制.电工技术学报,2008,23(4):132~136
    [13]杨卫东,徐政,韩祯祥.混合交直流电力系统的非线性调制策略.中国电机工程学报,2002,22(7):1~6
    [14]陈思哲,吴捷,姚国兴.基于微分几何的风力发电机组恒功率控制.控制理论与应用,2008,25(2):336-240
    [15]周双喜,汪兴盛.基于直接反馈线性化的非线性励磁控制器.中国电机工程学报,1995,15(4):281~288
    [16]颜伟,吴文胜,华智明,等.SSSC非线性控制的直接反馈线性化方法.中国电机工程学报,2003,23(3):65-68
    [17]赵洋,肖湘宁.级联式SSSC上层非线性控制方法.高电压技术,2008,34(3): 583~586
    [18]葛友,李春文,孙政顺.逆系统方法在电力系统综合控制中的应用.中国电机工程学报,2001,21(4):6-10
    [19]陆翔,戴先中,张腾,等.多目标励磁控制的神经网络逆系统方法.电力系统自动化,2002,26(12):35~39
    [20]梁有伟,胡志坚,陈允平.基于神经网络逆系统的电力系统稳定器的研究.电工技术学报,2004,19(5):61~65
    [21]郑恩让,马壮.火电机组免疫单神经元非线性控制方法仿真研究.系统仿真学报,2008,20(18):4964~4970
    [22]Samarasinghe V G, Pahalawaththa N C. Stabilization of a multi-machine power system using nonlinear robust variable structurecontro. Electric Power Systems Research, 1997,43(4):11-17
    [23]张亮,孙玉坤.基于微分几何的磁悬浮开关磁阻电机径向力的变结构控制.中国电机工程学报,2006,26(19):121~126
    [24]刘贤兴,胡育文,卜言柱.基于滑模变结构的永磁同步电机精确线性化控制.航空学报,2008,29(5):1269~1273
    [25]Cao Y J, Jiang L. A nonlinear variable structure stabilizer for power system stability[J]. IEEE Trans on Energy Conversion,1994,9(3):489-495
    [26]amarasinghe V G, Pahalawaththa N C. Stabilization of a multi-machine power system using nonlinear robust variable structure control. Electric Power Systems Research, 1997,43(4):11-17
    [27]万黎,陈允平.使用零动态和变结构控制的发电机非线性综合控制.中国电机工程学报,2008,28(13):26~32
    [28]Ghazi R, Azemi A, Badakhshan K P. Adaptive fuzzy sliding mode control of SVC and TCSC for improving the dynamic performance of power systems. IEE Proceedings of AC-DC Power Transmission Conference,2001:333-337
    [29]赵葵银.PWM整流器的模糊滑模变结构控制.电工技术学报,2006,21(7):49~53
    [30]唐杰,罗安,周柯,等.STATCOM的变结构神经网络模糊控制研究.湖南大学学报(自然科学版),2007,34(7):48~52
    [31]Ghandhari M, Andersson G, Hiskens I A. Control Lyapunov functions for controllable series devices. IEEE Trans on Power Systems,2001,16(4):689-694
    [32]常鲜戎,潘云江,万军,等.基于Lyapunov稳定性理论的发电机非线性励磁控制研究.电力系统自动化,1994,18(10):25~29
    [33]郭文勇,赵彩宏,张志丰,等.电压型超导储能系统统一非线性控制策略.电力系统自动化,2007,31(19):54~58
    [34]马燕峰,赵书强,常鲜戎.Lyapunov和最优控制理论相结合的非线性励磁控制器 设计及仿真.电力自动化设备,2003,23(7):58~60
    [35]李文磊,井元伟,刘晓平.汽轮发电机主汽门开度非线性鲁棒控制.控制理论与应用,2003,20(3):387~390
    [36]张冬雯,高峻岭.不确定中立型时滞系统的鲁棒控制.电机与控制学报,2007,11(6):666~671
    [37]孙丽颖,冯佳听,赵军.STATCOM的非线性鲁棒控制器设计.东北大学学报(自然科学版),2009,30(4):466-470
    [38]梅生伟,申铁龙,刘康志.现代鲁棒控制理论与应用.北京:清华大学出版社,2003:48~49
    [39]王文聪,梅生伟,刘峰.区域间联络线上的STATCOM的鲁棒控制器设计.清华大学学报(自然科学版),2004,44(4):433~437
    [40]S.S.Ahmed, L.Chen,A.Petroianu. Design of suboptimal H infinity excitation controllers. IEEE Transactions on Power Systems,1996,11(1):312-318
    [41]董清,高曙,鲍海.同步发电机调速系统附加H∞鲁棒分散控制.中国电机工程学报,2002,22(2):47~51
    [42]Y.Wang, Y.L.Tan, G.Guo. Robust nonlinear coordinated generator excitation and SVC control for power systems.International. Journal of Electrical Power and Energy System,2000,22(3):187-195
    [43]胡国强,贺仁睦,王鹏,等.应用遗传算法的多机系统阻尼控制器协调优化.华北电力大学学报,2006,33(1):10~19
    [44]常勇,徐政.一种广域滑模模糊HVDC附加控制器设计方法.高电压技术,2006,32(9):6-10
    [45]王辉,韦泽垠,王耀南.可控串补自适应模糊阻尼控制策略研究.电力自动化设备,2006,26(10):10~16
    [46]乔志杰,王维庆.水力发电机组的模糊神经网络参数自整定PID控制及仿真.水力发电,2007,33(12):44~46
    [47]郭力,张尧,胡金磊.基于强化学习算法的自适应直流附加阻尼控制器.电力自动化设备,2007,27(10):87~91
    [48]王健,王昆,陈全世.风力发电和飞轮储能联合系统的模糊神经网络控制策略.系统仿真学报,2007,19(17):4017~4020
    [49]程飞,过学迅,别辉.电动车用永磁同步电机的双模糊控制研究.中国电机工程学报,2007,27(18):18~22
    [50]何致远;瞿晓;基于电源滤波的三相PWM整流器模糊控制策略研究.电工技术学报,2006,21(4):107~126
    [51]何晓峰,王钢,李海锋.电力系统粒子群优化模糊聚类算法及其应用.继电器,2007,35(22):40-44
    [52]吴蓓,张焰,陈闽江.基于负荷模糊聚类的电压稳定概率评估.电力系统自动化,2007,31(4):23~26
    [53]杨秀媛,董征,唐宝,等.基于模糊聚类分析的无功电压控制分区.中国电机工程学报,2006,26(22):6-10
    [54]吴捷,陈巍,刘永强.现代控制技术在电力系统控制中的应用(二).中国电机工程学报,1998,18(6):383~387
    [55]王爽心,杨辉,李亚光.协调控制系统神经网络PID优化控制与仿真研究.中国电机工程学报,2007,27(35):96~101
    [56]郑常宝,张力,郑长勇,等.小波变换和神经网络在SVC中的应用研究.系统仿真学报,2007,19(21):5011~5014
    [57]李洪美,李振然,汪旎.基于人工神经网络的静止无功发生器的控制.继电器,2007,35(5):54~62
    [58]康锦萍,张粒子,徐英辉,等.基于神经网络的快速汽门暂态稳定控制器的研究.电网技术,2003,27(11):22~25
    [59]马进,席在荣,梅生伟,等.基于Hamilton能量理论的发电机汽门与励磁非线性稳定控制器的设计.中国电机工程学报,2002,22(5):88~93
    [60]王玉振,程代展,李春文.广义Hamilton实现及其在电力系统中的应用.自动化学报,2002,28(5):745~753
    [61]孙元章,彭疆南.基于Hamiltonian理论的受控电力系统暂态稳定分析方法.电网技术,2002,26(9):1-6
    [62]刘孙贤,张敏,钟义长,等.基于Hamilton能量函数含SVC的电力系统非线性控制.电力系统及其自动化学报,2006,18(4):24~28
    [63]韩英铎,王仲鸿,陈淮金.电力系统最优分散协调控制.北京:清华大学出版社,1997:115~116
    [64]李兴源,刘晓川,宋永华,等.电力系统暂态稳定励磁和快关汽门综合非线性控制.电力系统自动化,1997,21(3):39~46
    [65]陈菊明,梅生伟,卢强,等.多机系统中TCSC设备与发电机励磁的分散协调控制.清华大学学报(自然科学版),2001,41(4/5):136~141
    [66]谢小荣,崔文进,陈远华,等.多机电力系统中STATCOM与发电机励磁的协调控制.电力系统自动化,2002,26(1):14~17
    [67]鲜艳霞,李兴源.HVDC与发电机励磁的非线性综合控制策略.电网技术,2004,28(14):32-35
    [68]So P L, Yu T. Coordination of TCSC and SVC for inter-area stability enhancement. Proceedings of International Conference on Power System Technology, 2000,1:553-558
    [69]Cong L, Wang Y. Decentralized control of generator excitation and UPFC in large-scale power systems. Proceedings of IEEE Power Engineering Society Summer Meeting,2001,2:893-898
    [70]谢小荣,肖晋宇,童陆园,等.采用广域量测信号的互联电网区间阻尼控制.电力系统自动化,2004,28(2):37~40
    [71]Chaudhuri B, Pal B C. Robust damping of multiple swing modes employing global stabilizing signals with a TCSC. IEEE Trans on Power Systems,2004,19(1):499-506
    [72]Hui N, Heydt G T, Mili L. Power system stability agents using robust wide area control. IEEE Trans on Power Systems,2002,17(4):1123-1131
    [73]常乃超,郭志忠.基于广域量测的全局非线性控制.中国电机工程学报,2004,24(2):43~48
    [74]Chang Naichao, Guo Zhizhong. Global nonlinear control based on wide area measurement. Proceedings of the CSEE,2004,24(2):43-48
    [75]杨晓静,赵书强,马燕峰.考虑信息结构约束的多机系统励磁控制协调.电力系统及其自动化专业第二十一届学术年会论文集.广西,2005:1340~1343
    [76]颜泉,李兴源,王路.基于PMU的多馈入交直流系统的分散协调控制.电力系统及其自动化,2004,28(20):26-30
    [77]Yu C S, Liu C W. Self-correction two-machine equivalent model for stability control of FACTS system using real-time phasor measurements. IEE Proceedings-Generation, Transmission and Distribution,2002,149(4):389-396
    [78]Naduvathuparambil B, Valenti M C, Feliachi A. Communication delays in wide area measurement systems. Proceedings of the Thirty-Fourth Southeastern Symposium on SystemTheory,2002:118-122
    [79]Wu H X, Ni H, Heydt G T. The impact of time delay on robust control design in power systems. IEEE Power Engineering Society Winter Meeting,2002,2:1511-1516
    [80]江全元,曹一家,韩祯祥,等.考虑时滞影响的电力系统稳定分析和广域控制研究进展.电力系统及其自动化,2005,29(3):1-7
    [81]丛伟,潘贞存,丁磊,等.满足“三道防线”要求的广域保护系统及其在电力系统中的应用.电网技术,2004,28(18):29~33
    [82]吕志来,张保会,哈恒旭.电力系统暂态稳定紧急控制现状与展望.中国电力,1999,32(12):48~54
    [83]方勇杰,范文涛,陈永红,等.在线预决策的暂态稳定控制系统.电力系统自动化,1999,23(1):8~11
    [84]徐泰山,许剑冰,鲍颜红,等.电网多区域安全稳定紧急控制在线预决策系统.电力系统自动化,2006,30(7):1-4
    [85]Centeno V, de la Ree J, Phadke A G, et al. Adaptive out-of-step relaying using phasor measurement techniques. IEEE Computer Applications in Power,1993,6(4):12-17
    [86]Rovnyak S, Liu Chih-Wen, Lu Jin, et al. Predicting future behavior of transient events rapidly enough to evaluate remedial control options in real-time. IEEE Trans on Power Systems,1995,10(3):1195-1203.
    [87]DANIEL RUIZ-VEGA, MEVLUDIN GLAVIC, DAMIEN ERNST. Transient Stability Emergency Control Combining Open-loop and Closed-loop Techniques. In: Proceedings of IEEE Power Engineering Society General Meeting, Canada,2003: 522-527
    [88]DAMIEN ERNST, MANIA PAVELLA. Closed-loop Transient Stability Emergency Contro. In:IEEE Power Engineering Society Winter Meeting, Singapore,2000: 220-225
    [89]LI Yiqun, TENG Lin, Liu Wanshun, et al. the Study on Real-time Transient Stability Emergency Control in Power System. Canadian Conference on Electrical and Computer Engineering,2002:632-636
    [90]彭疆南,孙元章,王海风.基于广域量测数据和导纳参数在线辨识的受扰轨迹预测.电力系统自动化,2003,27(22):6-11
    [91]彭疆南,孙元章,程林.基于受扰轨迹的紧急控制新方法.电力系统自动化,2002,26(21):17~22
    [92]滕林,刘万顺,贠志皓,等.电力系统暂态稳定实时紧急控制的研究.中国电机工程学报,2003,23(1):64~69
    [93]王俊.电力系统实时紧急控制的研究:[硕士学位论文].杭州:浙江大学电气工程学院,2005:52~62
    [94]潘贞存,桑在中,戴方涛,等.电网自动解列的新判据.电力系统自动化,1995,19(7):34~37
    [95]金华烽,何奔腾.电力系统振荡闭锁判别方法的研究.继电器,1999,27(2):24~25
    [96]朱声石.高压电网继电保护原理与技术.北京:中国电力出版社,1995:101-102
    [97]王维俭.电气主设备继电保护原理与应用.北京:中国电力出版社,1996:259~263
    [98]丛伟,潘贞存,肖静,张荣.电力系统振荡解列原理的分析与研究.继电器,2003,31(10):51~57
    [99]陈青,潘贞存,王慧,等.失步预测算法研究.电力自动化设备,1997,17(8):19~22
    [100]Phadke A G, et al. Synch Ronized Samp Ling and Phasor Measurements for Relaying and Control. IEEE Transact ions of Power Delivery,1994,9(l):314-319
    [101]Ohura Y.A. predictive out of step Protecton Sygtem Based on Observation of the Phase Difference Between Substations. IEEE Trans on Power Delivery,1990,5(4): 1695-1704
    [102]Burnett R O. Synchronized Phasor Measurements of a Power System Event. IEEE Trans on Power System,1994,9(3):1643-1650
    [103]Romyak Set al. Predicting Future Behavior of Transient Events Rapidly Enough to Evaluate Remedial Control Options in Real time. IEEE Trans on Power System,1995, 10(3):1195-120
    [104]Kosterev D N, Esztergalyos J, Stigers C A.Feasibility Study of Using Synchronized Phasor Measurements for Generator Dropping Controls in the Colstrip System. IEEE Trans on Power System,1998,13(3):755-761
    [105]卢志刚,郝玉山,等.电力系统实时相角监控系统结构研究.电网技术,1998,22(5):18~21
    [106]闵勇,丁仁杰,韩英铎,等.一次系统事故的同步相量测量结果分析.电力系统自动化,1998,22(7):10-13
    [107]高厚磊,贺家李.基于GPS的同步采样及在保护与控制中的应用.电网技术,1995,19(7):30~32
    [108]Ahmed S S, Sarkor N C, Khairuddin A B, et al. A Scheme for Controlled Islanding to Prevent Subsequent blackout. IEEE transactions on power systems,2003,18(1): 136-143
    [109]王世祯.电网调度运行技术.沈阳:东北大学出版社,2000:52-53
    [110]袁季修.电力系统稳定控制.北京:中国电力出版社,1996:155~156
    [111]Archer B A, Davies J B. System Islanding Considerations for Improving Power System Restoration at Manitoba Hydro. IEEE Canadian conference on electrical and computer engineering (CCECE),2002:60-65
    [112]宗洪良,孙光辉,刘志,王荣.大型电力系统失步解列装置的协调方案.电力系统自动化,2003,22(27):72~75
    [113]孙凯.大型电网灾变下基于OBDD的搜索解列策略的三阶段方法:[博士学位论文].北京:清华大学电机系,2004:25~32
    [114]段振国,高曙,卢强,等.基于图论理论的电力系统解列策略生成方法.中国电力,1998,31(3):7-9
    [115]Kai Sun, Da-Zhong Zheng, Qiang Lu. Splitting Strategies for Islanding Operation of Large-Scale Power Systems Using OBDD-Based Methods. IEEE Trans. on Power System,2003,18(5):912-923.
    [116]Ali M H, Park M, Yu I K, et al. Coordination of Fuzzy Controlled Braking Resistor and Optimal Reclosing for Damping Shaft-Torsional Oscillations of Synchronous Generator. In:Proceedings of International Conference on Electrical Machines and Systems. Seoul, Korea:IEEE,2007:1259-1264
    [117]彭疆南,孙元章,王海风.基于能量整形的可控制动电阻暂态稳定控制器设计—单机无穷大系统篇.现代电力,2005,22(1):13~20
    [118]王红月,梁志珊.基于李雅普诺夫直接法的电力系统的可控制动电阻的非线性预测控制.电力系统及其自动化学报,2002,14(3):24~26
    [119]付蓉,韩敬东,鞠平等.可控制动电阻的模糊神经网络控制.电网技术,2001,25(2):13~16
    [120]Ali M H, Yuki S, Toshiaki M, et al. A Fuzzy Logic Controlled Braking Resistor Scheme For Stabilization of Synchronous. In:Proceedings of IEEE International Electric Machines and Drives Conference. Cambridge, USA:IEEE,2001:548-550
    [121]崔建业,骆济寿,彭文娟.用先进的动态电气制动提高电力系统稳定性.电网技术,1997,21(10):23~27
    [122]Clark K, Fardanesh B, Adapa R. Thyristor controlled series compensation application study-control interaction considerations. IEEE Transactions on Power Delivery, 1995,10(2):1031-1037
    [123]李人厚,邵福庆.大系统的递阶与分散控制.西安:西安交通大学出版社,1986:245-249
    [124]辛格M G.大系统的动态递阶控制.北京:科学出版社,1983:188-190
    [125]Kundur P. Power system stability and control. New York, USA:McGraw-Hill Inc., 1994:520-521
    [126]薛禹胜.滑步与发散,运动系统与一般动力学系统-兼谢廖浩辉和唐云先生.电力系统自动化,2003,27(7):17~21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700