用户名: 密码: 验证码:
掺杂V_2O_5正极材料的合成及电化学性质表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钒基化合物因其良好的嵌锂性能一直受到人们广泛的关注,其中五氧化二钒(V_2O_5)具有比容量大、能量密度高等优点,是锂二次电池正极材料研究的热点之一。本文选取了V_2O_5及其掺杂体系作为研究对象,制备了金属元素Cr和Al掺杂的V_2O_5正极材料,并对它们的结构和电化学性质进行了全面系统的研究。
     以草酸为螯合剂,采用溶胶-凝胶法分别合成了Cr~(3+)和Al~(3+)掺杂的V_2O_5材料。通过TGA和XRD确定了制备纯相掺杂V_2O_5材料的最佳合成条件,并采用FTIR和Raman光谱研究了掺杂对材料局域结构性质的影响。结果表明,Cr~(3+)和Al~(3+)掺杂增强了V_2O_5层间的相互作用力,有利于提高材料在Li~+离子嵌入/脱出过程中的结构稳定性。对上述材料进行了恒流充放电和循环伏安测试,研究了不同Cr~(3+)和Al~(3+)掺杂浓度对V_2O_5材料电化学性质的影响。结果表明,掺杂量较高的Cr_(0.1)V_2O_5和Al_(0.2)V_2O_5具有更高的可逆容量和更好的容量保持率。
     采用PITT、CV和EIS技术对掺杂V_2O_5材料的Li~+离子扩散系数及相关电化学动力学参数进行了分析。经过与未掺杂的V_2O_5对比研究发现,虽然掺杂可以显著提高V_2O_5的循环稳定性,但对材料的Li~+离子扩散系数影响不大,甚至在一定程度上还阻碍了Li~+离子的扩散。可见,掺杂V_2O_5材料循环寿命的提高主要归因于材料结构稳定性的改善。而要想提高材料的倍率性能,必须通过其它更有效的途径来解决。作为验证,我们通过改进合成方法制备了颗粒分布均匀的Al_xV_2O_5纳米材料。电化学测试结果表明,结合金属离子掺杂和纳米制备技术可全面提高V_2O_5材料的电化学性能,在提高了材料循环稳定性的同时,又增强了其充放电倍率性能。
The development of Li-battery technology is critical for advancements in a variety of applications ranging from hybrid electric vehicles to consumer electronics. One of the challenges for impoving the performance of lithium ion batteries to meet the increasing requirements for energy storage is the development of suitable catode materials. V_2O_5 is one of interest in the applications of cathode materials for lithium-ion batteries. It has some advantages such as high specific capacity and energy density, low cost, and easy preparation. However, it has been demonstrated that pure crystalline V_2O_5 is not an appropriate cathode material because of its poor capacity retention and poor high-rate performance. In this work, we prepared cation doped vanadium pentoxides (CrxV_2O_5 and Al_xV_2O_5) using a soft chemical method, and gave a systematical study on their crystal structure and electrochemical properties.
     Cr~(3+) and Al~(3+) doped V_2O_5 were synthesized by a sol-gel method assisted by oxalic acid. Thermogravimetric analysis was used to study the synthetic route of the material. X-ray diffraction confirmed the best conditions for synthesis of phase pure cation doped V_2O_5. FTIR and Raman spectra showed that cation doping increased the structural stability of V_2O_5, which would improve the electrochemical properties of the materials. X-ray photoelectron spectroscopy showed that a low level of V4+ ions were still contained in the doped materials. In addition, the morphology features of the materials were studied by scanning electron microscopy. It is showed that the particle size increased with heat treatment temperature. The sample sintered at 350oC for 5h contained homogeneous small particles with an average particle size about 60 nm.
     We studied the effects of Cr~(3+) and Al~(3+) doping on the electrochemical properties of V_2O_5 through galvanostatic charge-discharge and cyclic voltammetry experiments. It reveals that cation doping and nano preparation can prevent the irreversible structure transition of V_2O_5 during Li~+ ion insertion/extraction. However, it seems that slight cation doping does not cause significant improvement in the cycling life of V_2O_5.
     The kinetic properties of Li~+ ion is one of the most important factors for the electrochemical performance of cathode materials. In this study, cyclic voltammetry, electrochemical impedance spectra and potentiostatic intermittent titration technique were employed to evaluate the Li~+ ion diffusion coefficients and correlative kinetic properties of cation doped V_2O_5. It was found that cation doping did not significantly improve the Li~+ ion diffusion coefficients of V_2O_5. This suggests us to prepare nano materials to improve the rate capability of V_2O_5 because nano materials provide higher specific surface area and shorter pathways for lithium ions, leading to efficient Li~+ ion diffusion. Following this suggestion, we prepared Al_(0.2)V_2O_5 nanoparticles. Electrochemical experiments showed that the material showed significant superior performance with high capacity, good rate capability and excellent cycling performance.
     On all accounts, this work showed that a combinative technique of cation doping and nano preparation is the most effective way to improve the overall perfroamce of V_2O_5. The new findings presented in this thesis are very useful for further applications of V_2O_5 in rechargeable lithium batteries.
引文
[1]雷永泉,新能源材料[M],天津:天津大学出版社,2000.
    [2] Armand M. and Tarason J.-M., Buliding better batteries [J]. Nature, 2008, 451: 652-657.
    [3] Tarason J.-M. and Armand M., Issues and chanllenges facing rechargeable lithium batteries [J]. Nature, 2001, 414: 359-367.
    [4]魏英进.锂离子电池锰基正极材料的合成与表征[D].吉林:吉林大学材料科学与工程学院,2004.
    [5] Lutgens F.K. and Tarbuck E.J. Essentials of Geology [M]. New York: Prentice Hall, 2000.
    [6] Ward R.D. and Brownlee D. Rare Earth [M]. NewYork, Copernicus, 2000.
    [7] Vincent C.A., Lithium batteries: A 50-year perspective, 1959-2009 [J]. Solid State Ionics, 2000, 134: 159-167.
    [8]吕鸣祥,黄长保,宋玉瑾.化学电源[M].天津:天津大学出版社,1992.
    [9] Brandt K., Historical development of secondary lithium batteries [J]. Solid State Ionics, 1994, 69: 173-183.
    [10] Murphy D.W., DiSalvo F.J., Carides J.N. and Waszczak J.V., Topochemical reactions of rutile related structures with lithium [J]. Mat. Res. Bull., 1978, 13: 1395-1402.
    [11] Lazzari M. and Scrosati B., A cyclable lithium organic electrolyte cell based on two intercalation electrodes [J]. J. Electrochem. Soc., 1980, 127: 773-774.
    [12] Armand M., Chabagno J.M. and Duclot M.J. Fast ion transport in solids electrdes and eelectrolytes [M]. (eds Vashishta P., Mundy J.-N. and Shenoy G.K.) Amsterdam: North-Holland, 1979.
    [13] Armand M., in Materials for Advanced Batteries (Proc. NATO Symp. Materials Adv. Batteries) [M] (eds Murphy D.W., Broadhead J. and Steele B.C.) New York: Plenum, 1980.
    [14] Mizushima K., Jones P.C., Wiseman P.J. and Goodenough J.B. LixCoO2 (0 < x≤1): A new cathode material for batteries of high energy density [J]. Mat. Res. Bull., 1980, 15: 783-789.
    [15] Thomas M.G.S.R., Bruce P.G. and Goodenough J.B. Lithium mobility in the layered oxide Li1-xCoO2 [J]. Solid State Ionics, 1985, 17: 13-19.
    [16] Ozawa K., Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system [J]. Solid State Ionics, 1994, 69: 212-221.
    [17] Fenton D.E., Parker J.M. and Wright P.V., Complexes of alkaline metal ions with poly(ethylene oxide) [J]. Polymer, 1973, 14: 589-592.
    [18] Xu K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries [J] Chem. Rev., 2004, 104: 4303-4417.
    [19] Orsini F., Pasquier A., Beaudouin B. Tarascon J.M., Trentin M. Langenhuizen N. Beer E. and Notten P., In situ SEM study of the interfaces in plastic lithium cells [J]. J. Power Sources, 1999, 81-82: 918-921.
    [20] Amriou T., Khelifa B., Aourag H., Aouadi S.M., Mathieu C., Ab initio investigation of the Jahn-Teller distortion effect on the stabilizing lithium intercalated compounds [J] Mater. Chem. Phys., 2005, 92: 499-504.
    [21] Liu H., Yang Y., Zhang J., Reaction mechanism and kinetics of lithium ion battery cathode material LiNiO2 with CO2 [J] J. Power Sources, 2007, 173: 556-561.
    [22] Rougier A., Bravereau P., Delmas D., Optimization of the composition of the Li1-zNi1+zO2 electrode materials: Structural, magnetic and electrochemical studies [J] J. Electrochem. Soc., 1996, 143(4): 1168-1175.
    [23] Antolini E., LiCoO2: Formation, structure, lithium and oxygen nonstoichiometry, electrochemical behavior and transport properties [J] Solid State Ionics, 2004, 170: 159-171.
    [24] Akimoto J., Gotoh Y., Oosawa Y., Snthesis and structure refinement of LiCoO2 single crystals [J] J. Solid State Chem., 1998, 141: 298-302.
    [25] Belov D., Yang M.H., Investigation of the kinetic mechanism in overcharge process for Li-ion battery [J] Solid State Ionics, 2008, 179: 1816-1821.
    [26] Armstrong A.R., Robertson A.D., Bruce P.G., Structural transformation on cycling layered Li(Mn1?yCoy)O2 cathode materials [J] Electrochim. Acta, 1999, 45: 285-294.
    [27] Ammundsen B., Desilvestro J., Groutso T., Hassell D., Metson J.B., Regan E.,Steiner R., Pickering P.J., Formation and structural properties of layered LiMnO2 cathode materials [J] J. Electrochem. Soc., 2000, 147 (11): 4078-4082.
    [28] Xu H.Y., Wang Q.Y., Chen C.H., Synthesis of Li[Li0.2Ni0.2Mn0.6]O2 by radiated polymer gel method and impact of deficient Li on its structure and electrochemical properties [J] J. Solid State Electrochem., 2008, 12: 1173-1178.
    [29] Reimers J.N. and Dahn J.R., Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2 [J]. J. Electrochem. Soc., 1992, 139: 2091-2097.
    [30] Ohzuku T., Ueda A., Solid-state redox reaction of LiCoO2 (R3m) for 4 volt secondary lithium cells [J] J. Electrochem. Soc., 1994, 141(11): 2677–2972.
    [31] Takahashi Y., Tode S., Kinoshita A., Fujimoto H., Nakane I., Fujitani S., Development of lithium-ion batteries with a LiCoO2 cathode toward high capacity by elevating charging potential [J] J. Electrochem. Soc., 2008, 155(7): A537-A541.
    [32] Thomas M.G.S.R., Bruce P.G. and Goodenough J.B., AC impedance of the Li1-xCoO2 electrode [J]. Solid State Ionics, 1986, 18-19: 794-798.
    [33] Nishi Y. in Lithium Ion Batteries [M]. (eds Wakihara M. and Yamamoto O.) Tokyo: Kodansha, 1998.
    [34] Tukamato H. and West A.R. Electronic conductivity of LiCoO2 and its enhancement by magnesium doping [J]. J. Electrochem. Soc., 1997, 144: 3146-3168.
    [35] Ju S.H., Jang H.C., Kang Y.C., LiCo1?xAlxO2 (0≤x≤0.05) cathode powders prepared from the nanosized Co1?xAlxOy precursor powders [J] Mater. Chem. Phys., 2008, 112: 536-541.
    [36] Bang H., Kim D.H., Bae Y.C., Prakash J., Sun Y.K., Effects of metal ions on the structural and thermal stabilities of Li[Ni1?x?yCoxMny]O2 (x + y≤0.5) studied by in situ high temperature XRD [J] J. Electrochem. Soc., 2008, 155(12): A952–A958.
    [37] Stoyanova R., Zhecheva E. and Zarkova L., Effect of Mn-substitution for Co on the crystal structure and acid delithiation of LiMnyCo1-yO2 solid solutions [J]. Solid State Ionics, 1994, 73: 233-240.
    [38] Sakamoto K., Hirayama M., Sonoyama N., Mori D., Yamada A., Tamura K., Mizuki J., Kanno R., Surface structure of LiNi0.8Co0.2O2: A new experimental technique using in situ x-ray diffraction and two-dimensional epitaxial film electrodes [J] Chem. Mater., 2009, 21; 2632-2640
    [39] Nitta Y., Okamura K. Haraguchi K., Kobayashi S. and Ohta A., Crystal structure study of LiNi1-xMnxO2 [J]. J. Power Sources, 1995, 54: 511-515.
    [40] Ma M., Chernova N.A., Toby B.H., Zavalij P.Y. and Whittingham M.S., Structural and electrochemical behavior of LiMn0.4Ni0.4Co0.2O2 [J]. J. Power Sources, 2007, 165: 517-534.
    [41] Wang L., Li J., He X., Pu W., Wan C., Jiang C., Recent advances in layered LiNixCoyMn1?x?yO2 cathode materials for lithium ion batteries [J] J. Solid State Electrochem., 2009, 13: 1157-1164.
    [42] Cushing B.L. and Goodenough J.B., Influence of carbon coating on the performance of a LiMn0.5Ni0.5O2 cathode [J]. Solid State Sciences, 2002, 4: 1487-1493.
    [43] Martha S.K., Sclar H., Framowitz Z.S., Kovacheva D., Saliyski N., Gofer Y., Sharon P., Golik E., Markovsky B., Aurbach D., A comparative study of electrodes comprising nanometric and submicron particles of LiNi0.50Mn0.50O2, LiNi0.33Mn0.33Co0.33O2, and LiNi0.40Mn0.40Co0.20O2 layered compounds [J] J. Power Sources, 2009, 189: 248-255.
    [44] Shaju K.M., Subba Rao G.V. and Chowdari B.V.R., Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries [J]. Electrochim. Acta, 2002, 48: 145-151.
    [45] Lu C.H., Lin Y.K., Microemulsion preparation and electrochemical characteristics of LiNi1/3Co1/3Mn1/3O2 powders [J] J. Power Sources, 2009, 189: 40-44.
    [46] Thackeray M.M., David W.I.F., Bruce P.G. and Goodenough J.B., Lithium insertion into manganese spinels [J]. Mat. Res. Bull., 1983, 18: 461-472.
    [47] Tarascon J.M., Wang E., Shokoohi F.K., Mckinnon W.R. and Colson S., The spinel phase of LiMn2O4 as a cathode in secondary lithium cells [J]. J. Electrochem. Soc., 1991, 138: 2859-2864.
    [48] Gummow R.J., Kock A. and Thackeray M.M., Improved capacity retention in rechargeable 4V lithium/lithium-manganese oxide (spinel) cells [J]. Solid State Ionics, 1994, 69: 59-67.
    [49] Yu.G. Mateyshina, U. Lafont, N.F. Uvarov, E.M. Kelder, Physical and electrochemical properties of LiFe0.5Mn1.5O4 spinel synthesized by different methods [J] Russ. J. Electrochem., 2009, 45: 602-605.
    [50] Amarilla J.M., Petrov K., PicóF., Avdeev G., Rojo J.M., Rojas R.M., Sucroseaided combustion synthesis of nanosized LiMn1.99?yLiyM0.01O4 (M = Al3+, Ni2+, Cr3+, Co3+, y = 0.01 and 0.06) spinels. Characterization and electrochemical behavior at 25 and at 55oC in rechargeable lithium cells [J] J. Power Sources, 2009, 191: 591-600.
    [51] Myung S.T., Komaba S. and Kumagai N., Enhanced structural stability and cyclability of Al-doped LiMn2O4 spinel synthesized by the emulsion drying method [J]. J. Electrochem. Soc., 2001, 148: A482-A489.
    [52] Wang C., Lu S., Kan S., Pang J., Jin W., Zhang X., Enhanced capacity retention of Co and Li doubly doped LiMn2O4 [J] J. Power Sources, 2009, 189: 607-610.
    [53] Li G., Ikuta H., Uchida T. and Wakihara M., The spinel phases LiMyMn2-yO4 (M = Co, Cr, Ni) as the cathode for rechargeable lithium batteries [J]. J. Electrochem. Soc., 1996, 143: 178-182.
    [54] Bellitto C., DiMarco M.G., Branford W.R., Green M.A. and Neumann D.A., Cation distribution in Ga-doped Li1.02Mn2O4 [J]. Solid State Ionics, 2001, 140: 77-81.
    [55] Lee S.W., Kim K.S., Moon H.S., Kim H.J., Cho B.W., Cho W., Ju J.B. and Park J.W., Electrochemical characteristics of Al2O3-coated lithium manganese spinel as a cathode material for a lithium secondary battery [J]. J. Power Sources, 2004, 126: 150-155.
    [56] Liu D.Q., He Z.Z. and Liu X.Q., Increased cycling stability of AlPO4-coated LiMn2O4 for lithium ion batteries [J]. Mater. Lett., 2007, 61: 4703-4706.
    [57] Pasquier A.D., Huang C.C., Spitler T., Nano Li4Ti5O12-LiMn2O4 batteries with high power capability, improved cycle-life [J] J. Power Sources, 2009, 186: 508-514.
    [58] Belharouak I., Sun Y.K., Lu W., Amine K., On the safety of the Li4Ti5O12/LiMn2O4 lithium-ion battery system [J] J. Electrochem. Soc., 2007, 154: A1083-A1087.
    [59] Padhi A.K., Nanjundaswamy K.S. and Goodenough J.B., Phospho-olivines as positive electrode materials for rechargeable lithium batteries [J]. J. Electrochem. Soc., 1997, 144: 1188-1194.
    [60] Streltsov V.A., Belokoneva E.L., Tsirelson V.G. and Hansen N., Multipole analysis of the electron density in triphylite, LiFeO4, using X-ray diffraction data [J]. Acta Cryst., 1993, B49: 147-153.
    [61] Ojczyk W., Marzec J., ?wierczek K., Zaj?c W., Molenda M., Dziembaj R., Molenda J., Studies of selected synthesis procedures of the conducting LiFePO4-based composite cathode materials for Li-ion batteries [J] J. Power Sources, 2007, 173: 700-706.
    [62] Zhi X.K., Liang G.C., Wang L., Qu X.Q., Zhang J.P. and Cui J.Y., The cycling performance of LiFePO4/C cathode materials [J]. J. Power Sources, 2009, 189: 779-782.
    [63] Myung S.T., Komaba S., Hirosaki N., Yashiro H. and Kumagai N., Emulsion drying synthesis of olivine LiFePO4/C composite and its electrochemical properties as lithium intercalation material [J]. Electrochim. Acta, 2004, 49: 4213-4222.
    [64] Liu H., Cao Q., Fu L.J., Li C., Wu Y.P. and Wu H.Q., Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries [J]. Electrochem. Commun., 2006, 8: 1553-1557.
    [65] Wang D., Li H., Shi S.Q., Huang X.J. and Chem L.Q., Improving the rate performance of LiFePO4 by Fe-site doping [J]. Electrochim. Acta, 2005, 50: 2955-2958.
    [66] Burba C M, Frech R. Vibrational spectroscopic studies of monoclinic and rhombohedra Li3V2(PO4)3 [J]. Solid Stated Ionics, 2007, 177: 3445-3454.
    [67] Yin S C, Grondey H, Strobel P, Anne M, Nazar L F. Electrochemical property: Structure relationships in monoclinic Li3-yV2(PO4)3 [J]. J. Am. Chem. Soc., 2003, 125: 10402-10411.
    [68] Huang H., Faulkner T., Barker J., Saidi M.Y., Lithium metal phosphates, power and automotive applications [J] J. Power Sources, 2009, 189: 748-751.
    [69] Patoux S, Wurm C, Morcrette M, Rousse G, Masquelier C. A comparative structural and electrochemical study of monoclinic Li3Fe2(PO4)3 and Li3V2(PO4)3 [J]. J. Power Sources, 2003, 119: 278-284.
    [70] Zhu X., Liu Y., Geng L., Chen L., Liu H., Cao M., Synthesis and characteristics of Li3V2(PO4)3 as cathode materials for lithium-ion batteries [J] Solid State Ionics, 2008, 179: 1679-1682.
    [71] Wang J W, Liu J, Yang G L, Zhang X F, Yan X D, Pan X M, Wang R S. Electrochemical performance of Li3V2(PO4)3/C cathode material using a novel carbon source [J]. Electrochimi. Acta, 2009, 54: 6451-6454.
    [72] Chen Q., Wang J., Tang Z., He W., Shao H., Zhang J., Electrochemical performance of the carbon coated Li3V2(PO4)3 cathode material synthesized by a sol-gel method [J] Electrochim. Acta, 2007, 52: 5251-5257.
    [73] Ren M M, Zhou Z, Li Y Z, Gao X P, Yan J. Preparation and electrochemical studies of Fe-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries [J]. J. Power Sources, 2006, 162: 1357-1362.
    [74] Liu S Q, Li S C, Huang K L, Gong B L, Zhang G. Kinetic study on Li2.8(V0.9Ge0.1)(PO4)3 by EIS measurement [J]. J. Alloys Compd., 2006, 450: 499-504.
    [75] 75 Gover R K B, Bryan A, Bums P, Barker J. The electrochemical insertion properties of sodium vanadium fluorophosphates, Na3V2(PO4)2F3 [J]. Solid State Ionics, 2006, 177: 1495-1500.
    [76] 76 Barker J, Gover R K B, Burns P, Bryan J. Li4/3Ti5/3O4 Na3V2(PO4)2F3: An example of a hybrid-ion cell using a non-graphitic anode [J]. J. Electrochem. Soc., 2007, 154: A882-A887.
    [77] Haber J., Witko M., Tokarz R., Vanadium pentoxide I. structures and properties [J]. Appl. Catal. A-Gen., 1997, 157: 3-22.
    [78] Whittingham M.S., The role of ternary phases in cathode reactions [J]. J. Electrochem. Soc., 1976, 123: 315-320.
    [79] Cocciantelli J.M., Doumerc J.P., Pouchard M., Broussely M., Labat J., Crystalchemistry of electrochemically inserted LixV2O5 [J]. J. Power Sources, 1991, 34: 103-111.
    [80] Cocciantelli J.M., Ménétrier M., Delmas C., Doumerc J.P., Pouchard M., Broussely M., Labat J., On theδ→γirreversible transformation in Li/V2O5 decondary batteries [J]. Solid State Ionics, 1995, 78: 143-150.
    [81] Rozier P., Savariault J.M., Galy J., A new interpretation of the LixV2O5 electrochemical behaviour for 1 < x < 3 [J]. Solid State Ionics, 1997, 98: 133-144.
    [82] Delmas C., Cognac-Auradou H., Cocciantelli J.M., Ménétrier M., Doumerc J.P., The LixV2O5 system: an overview of the structure modifications induced by the lithium intercalation [J]. Solid State Ionics, 1994, 69: 257-264.
    [83] Passerini S., Chang D., Chu X., Le D.B., Smyrl W., Spin-coated V2O5 xerogel thin films. 1. microstructure and morphology [J]. Chem. Mater., 1995, 7: 780-785.
    [84] Le D.B., Passerini S., Guo J., Ressler J., Owens B.B., Smyrl W.H., High surface area V2O5 aerogel intercalation electrodes [J]. J. Electrochem. Soc., 1996, 143: 2009-2104.
    [85] Guillaume S., Baudrin E., Dunn B., Tarascon J.M., Synthesis and electrochemical properties of vanadium oxide aerogels prepared by a freeze-drying process [J]. J. Electrochem. Soc., 2004, 151: A666-A671.
    [86] Coustier F., Hill J., Owens B.B., Passerini S., Smyrl W.H., Doped vanadium oxides as host materials for lithium intercalation [J]. J. Electochem. Soc., 1999, 146: 1355-1360.
    [87] Coustier F., Passerini S., Smyrl W.H., Dip-coated silver-doped V2O5 xerogels as host materials for lithium intercalation [J]. Solid State Ionics, 1997, 100: 247-258.
    [88] Coustier F., Jarero G., Passerini S., Smyrl W.H., Performance of copper-doped V2O5 xerogel in coin cell assembly [J]. J. Power Sources, 1999, 83: 9-14.
    [89] Giorgetti M., Passerini S., Smyrl W.H., Berrettoni M., Identification of an unconventional zinc coordination site in anhydrous ZnxV2O5 aerogels from X-ray absorption spectroscopy [J]. Chem. Mater., 1999, 11: 2257-2264.
    [90] Choi J.H., Park H.K., CuxFeyV2O5 xerogel cathodes for lithium secondary batteries [J]. Electrochim. Acta, 2004, 50: 405-409.
    [91] Murphy D.W., Christian P.A., Disalvo F.J., Carides J.N., Vanadium oxide cathode materials for secondary lithium cells [J]. J. Electrochem. Soc., 1979, 126: 497-499.
    [92] Bergstr?m ?., Gustafsson T., Thomas J.O., Electrochemically lithiated vanadium oxide, Li2V6O13 [J]. Acta Crystallogr., 1997, C53: 528-530.
    [93] H?wing J., Gustafsson T., Thomas J.O., Low-temperature structure of V6O13 [J]. Acta Crystallogr., 2003, B59: 747-752.
    [94] Bj?rk H., Lidin S., Gustafsson T., Thomas J.O., Superlattice formation in the lithiated vanadium oxide phases Li0.67V6O13 and LiV6O13 [J]. Acta Crystallogr., 2001, B57: 759-765.
    [95] Andrukaitis E., Lithium intercalation in electrodeposited vanadium oxide bronzes [J]. J. Power Sources, 2003, 119-121: 205-210.
    [96] Andrukaitis E., Reversible lithium intercalation in alkali metal vanadium bronzes (MxV6O13+δ, where M = K, Rb or Cs) [J]. J. Power Sources, 1995, 54: 470-474.
    [97] Andrukaitis E., Hill L., Diffusion of lithium in electrodeposited vanadium oxides [J]. J. Power Sources, 2004, 136: 290-295.
    [98] Wadsley A.D., Crystal chemistry of nonstoichiometric quinquevalent vanadium oxides: Crystal structure of Li1+xV3O8 [J]. Acta Crystallogr., 1957, 10: 261-267.
    [99] Liu Q.Y., Liu H.W., Zhou X.W., Cong C.J., Zhang K.L.A soft chemistry synthesis and electrochemical properties of LiV3O8 as cathode material for lithium secondary batteries [J]. Solid State Ionics, 2005, 176: 1549-1554.
    [100] Picciotto L.A., Adendorff K.T., Liles D.C., Thackeray M.M., Structural characterization of Li1+xV3O8 insertion electrodes by single-crystal X-ray diffraction [J]. Solid State Ionics, 1993, 62: 297-307.
    [101] Wu F., Wang L., Wu C., Bai Y., Structural characterization and electrochemical performance of lithium trivanadate synthesized by microwave sol-gel method [J]. Electrochim. Acta, 2009, 54: 4613-4619.
    [102] Brylev O.A., Shlyakhtin O.A., Egorov A.V., Tretyakov Y.D., Phase formationand electrochemical properties of cryochemicallly processed Li1+xV3O8 materials [J]. J. Power Sources, 2007, 164: 868-873.
    [103] Dai J.X., Li S.F.Y., Cao Z.Q., Siow K.S., Low-temperature synthesized LiV3O8 as a cathode material for rechargeable lithium batteries [J]. J. Electrochem. Soc., 1998, 145: 3057-3062.
    [104] Liu L., Jiao L.F., Sun J.L., Zhao M., Zhang Y.H., Yuan H.T., Wang Y.M., Electrochemical performance of LiV3-2x NixMnxO8 cathode materials synthesized by the sol-gel method [J]. Solid State Ionics, 2008, 178: 1756-1761.
    [105] Liu Y.M., Zhou X.C., Guo Y.L., Effects of fluorine doping on the electrochemical properties of LiV3O8 cathode material [J]. Electrochim. Acta, 2009, 54: 3184-3190.
    [106] Feng C.Q., Chew S.Y., Guo Z.P., Wang J.Z., Liu H.K., An investigation of polypyrrole- composite cathode materials for lithium-ion batteries [J]. J. Power Sources, 2007, 174: 1095-1099.
    [107] Reddy C.V. S., Wicker S.A., Walker E.H., Williams Q.L., Kalluru R.R., Vanadium oxide nanorods for Li-ion battery applications [J]. J. Electrochem. Soc., 2008, 155: A599-A602.
    [108] Ponzio E.A., Benedetti T.M., Torresi R.M., Electrochemical and morphological stabilization of V2O5 nanofibers by the addition of polyaniline [J]. Electrochim. Acta, 2007, 52: 4419-4427.
    [1] Whittingham M.S., Lithium batteries and cathode materials [J]. Chem. Rev., 2004, 104: 4271-4301.
    [2] Delmas C., Cognac-Auradou H., Cocciantelli J.M., Ménétrier M. and Doumerc J.P., The LixV2O5 system: An overview of the structure modifications induced by the lithium intercalation [J]. Solid State Ionics, 1994, 69: 257-264.
    [3] Owens B.B., Passerini S. and Smyrl W.H., Lithium ion insertion in porous metal oxides [J]. Electrochim. Acta, 1999, 45: 215-224.
    [4] Roy R., Gel route to homogeneous glass preparation [J]. J. Am. Ceram. Soc., 1969, 52: 344-344.
    [5] Dislich H., New routes to multicomponent oxide glasses [J]. Angew. Chem. Int. Ed., 1971, 10: 363-370.
    [6]吴刚,材料结构表征及应用[M].北京:化学工业出版社,2002.
    [7]常铁军,祁欣,材料近代分析测试方法[M].黑龙江:哈尔滨工业大学出版社,2003.
    [8] Celref for windows unit cell refinement program, developed by J.Laugier, B. Bochu, Ecole Nationale Supérieure de Physiquede Grenoble (INPG), Domaine Universitaire, BP46, 38402 Saint Martin d’Hères. Http://www.inpg.fr/LMGP.
    [9]赵藻藩,周性尧,张悟铭,赵文宽,仪器分析[M].北京:高等教育出版社, 1990.
    [10] Talledo A. and Granqvist C.G., Infared absorption in lithium-intercalated vanadium pentoxide films [J]. J. Phys. D: Appl. Phys., 1994, 27: 2445-2447.
    [11] Murugan A.V., Kwon C.W., Campet G., Kale B.B., Maddanimath T. and Vijayamohanan K., electrochemical lithium insertion into a poly(3,4-ethylenedioxythiophene) PEDOT/V2O5 nanocomposite [J]. J. Power Sources, 2002, 105: 1-5.
    [12] Baddour-Hadjean R., Pereira-Ramos J.P., Navone C. and Smirnov M., Raman microspectrometry study of electrochemical lithium intercalation into sputtered crystalline V2O5 thin films [J]. Chem. Mater., 2008, 20: 1916-1923.
    [13] Ibidapo T.A., Polymeric structure in some molten groups IIA and IIB metaldicarboxylates [J]. Macromolecules, 1989, 22: 1480-1484.
    [14] Wei Y.J., Nam K.W., Chen G., Ryu C.W., Kim K.B., Synthesis and structural properties of stoichiometric and oxygen deficient CuV2O6 prepared via co-precipitation method [J]. Solid State Ionics, 2005, 176: 2243-2249.
    [15] Lee S.-H., Cheong H.M., Seong M.J., Liu P., Tracy C.E., Mascarenhas A., Pitts J.R., S.K. Deb, Raman spectroscopic studies of amorphous vanadium oxide thin films [J]. Solid State Ionics, 2003, 165: 111-116.
    [16] Wei Y.J., Ryu C.W., Chen G., Kim K.B., X-ray diffraction and Raman scattering studies of electrochemically cycled CuV2O6 [J]. Electrochem. Solid-State Lett., 2006, 9: A487-A489.
    [17]郭沁林, X射线光电子能谱[J].实验技术, 2007, 36: 405-410.
    [18] Zhao H., Bennici S., Shen J. and Auroux A., The influence of the preparation method on the structural, acidic and redox properties of V2O5-TiO2/SO42- catalysts [J]. Appl. Catal. A-Gen., 2009, 356: 121-128.
    [19] Bliznakov G., Pesheva Y., Klissurski D., Marinov M. and Kozhukharov V., Methanol oxidation on V2O5- MoO3-TeO3 catalysts [J]. Appl. Catal., 1987, 29: 211-218.
    [20] Maurice V., Cadot S. and Marcus P., Hydroxylation of ultra-thin film ofα-Cr2O3(001) formed on Cr(110) [J]. Surf. Sci., 2001, 471: 43-58.
    [21] Pokhrel S., Huo L., Zhao H. and Gao S., Solid-state electrical conductivity and alcohol sensing properties of radio frequency sputtered thin films of Ti4+ doped eskolaite Cr2O3 derived from citrate combustion technique [J]. Thin Solid Film, 2008, 516: 3332-3337.
    [1]滕岛昭,相泽益男,井上辙,电化学测试方法[M].陈震,姚建年译,北京:北京大学出版社,1995.
    [2] Livage J., Vanadium pentoxide gels [J]. Chem. Mater., 1991, 3: 578-593.
    [3] Anaissi F.J., Demets G.J.F. and Toma H.E., Electrochemical conditioning of vanadium (V) pentoxide xerogel films [J]. Electrochem. Commun., 1999, 1: 332-335.
    [4] Wei Y.J., Ryu C.W. and Kim K.B., Improvement in electrochemical performance of V2O5 by Cu doping [J]. J. Power Sources, 2007, 165: 386-392.
    [5] Murugan A.V., Kwon C.W., Campet G., Kale B.B., Maddanimath T. and Vijayamohanan K., Electrochemical lithium insertion into a poly(3,4-ethylenedioxythiophene)PEDOT/ V2O5 nanocomposite [J]. J. Power Sources, 2002, 105: 1-5.
    [6] McGraw J.M., Bahn C.S., Parilla P.A., Perkins J.D., Readey D.W. and Ginley D.S., Li ion diffusion measurements in V2O5 and Li(Co1-xAlx)O2 thin-film battery cathodes [J]. Electrochim. Acta, 1999, 45: 187-196.
    [7]陈权启,磷酸钒锂和磷酸铁锂锂离子电池正极材料研究[D].浙江:浙江大学化学系,2008.
    [8] Kudo T., Ikeda Y., Watanabe T., Hibino M., Miyayama M., Abe H. and Kajita K., Amorphous V2O5/carbon composites as electrochemical supercapacitor electrodes [J]. Solid State Ionics, 2002, 152-153: 833-841.
    [9] Yamada H., Tagawa K., Komatsu M., Moriguchi I. and Kudo T., High power battery electrodes using nanoporous V2O5/carbon composites [J]. J. Phys. Chem., 2007, 111: 8397-8402.
    [10] Crank J., The Mathematics of Diffusion, 2nd edn. [M]. Oxford, UK: Oxford Science Publications, 1975.
    [11] Leger C., Bach S., Soudan P. and Pereira-Ramos J.P., Evaluation of the sol-gel mixed oxide Cr0.11V2O5.16 as a rechargeable positive electrode working in the potential range 3.8/1.5 V vs. Li [J]. Solid State Ionics, 2005, 176: 1365-1369.
    [12] Farcy J., Maingot S., Soudan P., Pereira-Ramos J.P. and Baffier N.,Electrochemical properties of the mixed oxide Fe0.11V2O5.16 as an intercalation compound [J]. Solid State Ionics, 1997, 99: 61-69.
    [13] Baddour-Hadjean R., Farcy J. and Pereira-Ramos J.P., A kinetic study of lithium transport in a new Li intercalation material synthesized via a sol-gel process [J]. J. Electrochem. Soc., 1996, 143: 2083-2088.
    [1] West A.R., Solid State Chemistry and Its Applications [M]. New York: John Wiley and Sons, 1984.
    [2] Beran A., Woll D. and Schneider H., Dehydration and structural development of mullite precursors: an FTIR spectroscopic study [J]. J. Eur. Ceram. Soc., 2001, 21: 2479-2485.
    [3] Breitinger D.K., Belz H.H., Hajba L., Komlósi V., Mink J., Brehm G., Colognesi D., Parker S.F. and Schwab R.G., Combined vibrational spectra of natural wardite [J]. J. Mol. Struct., 2004, 706: 95-99.
    [4] Breitinger D.K., Belz H.H., Schukow H., Mohr J. and Schwab R.G., Second-order transitions in IR and NIR spectra of augelites Al2(OH)3(XO4) (X = P, As, V) [J]. J. Mol. Struct., 2003, 651-653: 177-180.
    [5] Zhao H., Bennici S., Shen J. and Auroux A., The influence of the preparation method on the structural, Acidic and redox properties of V2O5-TiO2/SO42- catalysts [J]. Appl. Catal. A-Gen., 2009, 356: 121-128.
    [6] Romanyuk A., Steiner R., Marot L., Spassov V. and Oelhafen P., nc-VO2/Al2O3 nanocomposite films prepared by dual target magnetron sputtering [J]. Thin Solid Films, 2008, 516: 8513-8516.
    [7] Briggs D. and Seah M.P., Practical Surface Analysis by Auget and X-ray Photoelectron Spectroscopy [M]. New York: Wiley, 1993.
    [1] Levi M.D. and Aurbach D., The mechanism of lithium intercalation in graphite film electrodes in aprotic media. part 1. High resolution slow scan rate cyclic voltammetric studies and modeling [J]. J. Electroanal. Chem., 1997, 421: 79-88.
    [2] Tang S.B., Lai M.O. and Lu L., Study on Li+-ion diffusion in nano-crystalline LiMn2O4 thin film cathode grown by pulsed laser deposition using CV, EIS and PITT techniques [J]. Mater. Chem. Phys., 2008, 111: 149-153.
    [3]曹楚南,张鉴清,电化学阻抗谱导论[M].北京:科学出版社,2002.
    [4]查全性,电极过程动力学导论[M].北京:科学出版社,1976.
    [5]田昭武,电化学研究方法[M].北京:科学出版社,1984.
    [6] Leger C., Bach S., Soudan P., Pereira-Ramos J.P., Evaluation of the sol-gel mixed oxide Cr0.11V2O5.16 as a rechargeable positive electrode working in the potential range 3.8/1.5 V vs. Li [J]. Solid State Ionics, 2005, 176: 1365-1369.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700