用户名: 密码: 验证码:
直接驱动数控转台永磁环形力矩电机及其控制策略的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数控转台是多轴联动数控机床的重要部件之一。传统驱动方式的数控转台因为机械传动链的存在而引起弹性变形、摩擦和反向间隙等一系列问题。直接驱动数控转台不仅有效地解决了上述问题,而且具有转矩高、响应速度快和定位精度高等性能优势。近年来,直接驱动数控转台部件是多轴联动高档数控机床领域研究的热点。本论文就是以直接驱动数控转台永磁环形力矩电机及其控制策略为研究对象,针对其关键技术问题展开工作的。
     针对直接驱动数控转台对驱动电机低转矩波动和高转矩密度的要求,在多极分数槽电机设计理论的基础上,研究并设计了一种基于极槽数相近结构的不等齿顶宽间隔绕组外转子型永磁环形力矩电机。极槽数相近结构不仅可以提高绕组短距系数,而且极数和槽数的合理配比能够有效地削弱齿槽转矩。间隔绕组和不等齿顶宽结构可使定子齿磁链和绕组因数最大化,从而有效地提高了电机的转矩密度。另外,分析了不等齿顶宽间隔绕组结构对谐波转矩和齿槽转矩的影响。
     为了进一步提高转台电机输出转矩的能力,配合直接驱动数控转台机械结构的特殊要求,研究了一种双同步串联联接的双转子永磁环形力矩电机。这一新型双转子转台电机结构具有较好的散热能力,一定程度上解决了大转矩转台电机的散热问题,有效地提高了电机的转矩密度。这种双转子转台电机结构还解决了传统双驱动方式下两台独立电机之间的同步驱动和功率分配问题。
     利用双转子永磁环形力矩电机的结构特点,进一步研究了双转子电机齿槽转矩的生成规律。在此基础上,分析了基于移相技术和内外电机槽口宽度配合方法削弱双转子电机齿槽转矩的原理,利用解析计算方法推导出等齿顶宽和不等齿顶宽结构的最佳移相角度计算公式。而且,进一步研究了基于移相技术的双转子永磁环形力矩电机的数学模型。
     在控制策略方面,主要针对永磁环形力矩电机伺服系统对周期性输入信号的跟踪问题,设计了一种插入型的重复控制器。在此基础上,为了提高控制系统对参数变化和负载扰动不确定性的鲁棒性,研究了将重复控制和μ(结构奇异值)理论相结合的控制方法,利用线性分式变换(LFT)将鲁棒重复控制问题转换成H∞最优控制问题,采用D-K迭代法设计鲁棒重复控制器,从而实现了系统的稳定性和鲁棒性,提高了伺服系统的跟踪精度。
     最后,将不等齿顶宽间隔绕组结构的外转子永磁环形力矩电机做成样机,采用合理的机械结构设计制造了直接驱动数控转台。进而,对样机进行了空载转矩波动实验,负载转矩性能实验。并以数字信号处理器TMS320LF2407A为核心构建了转台实验系统平台。在空载、转动惯量变化和负载扰动的情况下,进行了位置跟踪实验,从而验证了电机结构设计方案和控制策略的合理性及正确性。
Numerical control (NC) table is one of the most important assemblies in multiaxial linkage NC machine. It is acknowledged that the elastic distortion, friction, backlash , and any other problems resulting from mechanical drive chain are shown on the traditional drive NC table. The direct drive NC table not only resolves the above problems but also has many advantages, such as high torque, quick response ability, high position precision, and so on. In recent years, the direct drive NC table assembly is the research hot spot in multiaxial linkage high-grade NC machine field. Therefore, taking permanent magnet (PM) ring torque motor and its control strategy used in direct drive NC table as subjects, the key technologie of subjects is dicussed in this dissertation.
     To satisfy the drive motor requirements of low torque ripple and high torque density, used in the NC table, the similar pole and slot number outer-rotor PM ring torque motor with unequal teeth tips width and alternate winding is researched and designed based on the design theory of multipolar fractional-slot motor. The structure of similar pole and slot number can increase the winding pitch coefficient, and reduce cogging torque ripple effectively with the reasonable combination of pole number and slot number. The alternate winding and unequal teeth tips width structure optimize the stator teeth flux linkage and winding coefficient, as a result, the torque density is increased. Furthermore, the influences of unequal teeth tips width and alternate winding structure on the harmonic torque and cogging torque are analyzed.
     In order to increase the output torque ability of table motor further, combining the special requirements of direct drive NC table mechanical structure, the dual-synchronous dual-rotor PM ring torque motor with series connection structure is researched. The new dual-rotor table motor structure with better ability of heat dissipation, resolves the heat dissipation problem of high torque table motor to some extent and increases the torque density. And it also resolves the synchronous control and power distribution problems between the two independent motors of traditional double-drive mode.
     Based on dual-rotor PM ring torque motor structure characteristics, the generating rule of dual-rotor motor cogging torque is researched further. On the basis of this analysis, the reduction principle of dual-rotor motor cogging torque with phase-shifting technology is studied, and the reduction principle of cogging torque by combination of inner and outer slot notch width is also analysed. The optimal phase-shifting angle calculation formulas both in equal teeth tips motor and unequal teeth tips motor are obtained by analytic calculation method. And the dual-rotor PM ring torque methmatical model is also established.
     In the aspect of control strategy, aiming at the periodic input signal tracking problem of the PM ring torque motor, a plug-in type repetitive controller is designed. On this basis, in order to improve the robustness against load disturbances and parameter variations, the control method of repetitive control combining withμ(structured singular value) theory is researched. The robust repetitive control problem is transformed into H∞optimal control problem using linear fractional transformation(LFT). The D-K iteration is used to design the robust repetitive controller, which realized the stability, the robustness and improved the tracking precision of the servo system.
     In the end, the outer-rotor PM ring torque motor with unequal teeth tips width and alternate winding structure is produced, and the direct drive NC table combining reasonable mechanical structure design is also produced. Consequently, the many prototype experiments are completed, such as noload torque ripple experiment, load torque performance experiment. The table experiment system is established using digital signal processor TMS320LF2407A. The position tracking experiments are completed under the conditions of noload, load disturbance, and rotational inertia parameter variations repectively. All the experiments results prove that the motor design scheme and control strategy are reasonable and correct.
引文
[1]刘鸿雁,黄玉美,高峰等.多轴联动复合加工数控机床的创新开发.西安理工大学学报, 2008, 24(3): 56-59.
    [2]盛伯浩.我国数控机床现况与技术发展策略.制造技术与机床, 2006, (2): 17-21.
    [3]王成元,周美文,郭庆鼎.矢量控制交流伺服驱动电动机.北京:机械工业出版社, 1994.
    [4]刘润爱,张根保.零传动齿轮加工机床关键技术研究.制造技术与机床, 2004, (12): 47-49.
    [5] J. D. Han, Y. C. Wang, D. L. Tan, et al. Acceleration feedback control for direct-drive motor system. IEEE International Conference on Intelligent Robot and System, Piscataway, 2000: 1068-1074.
    [6]马艳娣.第一台五轴联动高速铣削柔性单元——米克朗HSM 400U亮相上海.机械工人, 2005, (9): 29.
    [7]王成元,夏加宽,杨俊友等.电机现代控制技术.北京:机械工业出版社,2006.
    [8]沈捷.直接驱动技术的新进展.欧洲生产工程, 2005, 2(1): 102-104.
    [9]黄海宏,王海欣.多极永磁同步电动机的研究.电气应用,2005, 24(1): 89-91.
    [10] Fujishiro Satoshi, Ishikawa Kazumi, Kikuchi Shinki, et al. Design of outer-rotor-type multipolar switched reluctance motor for electric vehicle. Journal of Applied Physics, 2006, 99(8): 324-326.
    [11] Ando Kazumasa1, Yamada Atsushi1, Miki Ichiro1, et al. Study on improvement of efficiency for outer rotor type of interior permanent magnet synchronous motor. International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Ischia, 2008: 599-602.
    [12]谭建成.三相无刷直流电动机分数槽集中绕组槽极数组合规律研究.微电机, 2008, 41(4): 64-68.
    [13] EI-Refaie A. M., Jahns T. M., Novotny D. W.. Analysis of surface permanent magnet machines with fractional-slot concentrated windings. IEEE Transactions on Energy Conversion, 2006, 20(1): 34-43.
    [14]黄先进.采用集中绕组和高强度冷却的高转矩密度永磁电机.电力电子, 2008,(1): 17-21.
    [15]陈金涛,辜承林.新型横向磁通永磁电机研究.中国电机工程学报,2005, 25(15): 155-160.
    [16]邵利,范瑜.盘式永磁同步电机建模及仿真.电机与控制学报, 2006, 10(2): 171-174.
    [17] Wang Xiuhe,Yang Yubo, Fu Dajin. Study of cogging torque in surface-mounted permanent magnet motors with energy method. Journal of Magnetism and Magnetic Material, 2003, 267(11): 80-85.
    [18] Li T., Slemon G.. Reduction of cogging torque in permanentmagnet motors. IEEE Transactions on Magnetics, 1988, 24(11): 2901-2903.
    [19] Hwang C. C., John S. B., Wu S. S. Reduction of cogging torque in spindle motors for CD-ROM drive. IEEE Transations on Magnetics, 1998, 36(2): 468-470.
    [20] Hua K. J., Cho H. S., Cho D. H., et al. Optial core shape desing for cogging torque reduction of brushless DC motor using genetic algorithm. IEEE Transations on Magnetics, 2000, 36(4): 1927-1931.
    [21] ?tumberger Bojan, ?tumberger Gorazd, Hadziselimovic Miralem, et al. High performance permanent magnet brushless motors with balanced concentrated windings and similar slot and pole numbers. Journal of Magnetism and Magnetic Materials, 2006, 304(2): e829-e831.
    [22] Bartonlme J., Benito J. A., Tassinario G., et al. Influence of machine symmetry on reduction of cogging torque in permanent magnet brushless motors. IEEE Transations on Magnetics, 2000, 36(5):3819-3823.
    [23] Nicola B., Silverio B.. Design techniques for reducing the cogging torque in surface-mounted PM motors. IEEE Transations on Magnetics, 2000, 36(5): 179-185.
    [24] Kon C. S., Hee S. Y., et al. Magnetic pole shape optimization of permanent magnet motor for reduction of cogging torque. IEEE Transations on Magnetics, 1997, 33(2): 1822-1827.
    [25] Tae K. C., Hahn S. Y., Kim S. K.. Optimal pole shape design for the reduction of cogging torque of brushless DC motor using evolution strategy. IEEE Transations on Magnetics, 1997, 33(2): 1908-1911.
    [26]宋春华,胡丹,柯坚.内模控制在PMSM矢量控制中的应用.电力电子技术, 2007, (9): 36-38.
    [27] EI-Sousy Fayez F. M.. High-performance neural-network model-following speed controller vector controlled PMSM drive system. IEEE International Conference on Industrial Technology, Tunisia, 2004: 418-424.
    [28]王军,彭宏.永磁同步电动机模糊直接转矩控制的研究.西南交通大学学报, 2004, 39(3): 332-336.
    [29]王钦若,杜玉晓.交流电机直接转矩控制技术研究综述.机电工程技术,2005,34(11): 13-16.
    [30] Lau Jason, Uddin M. Nasir. Nonlinear adaptive position control of an interior permanent magnet synchronous motor. IEEE International Conference on Electric Machines and Drives, San Antonio, 2005: 1689-1694.
    [31] Kim, K. H.. Model reference adaptive control-based adaptive current control scheme of a PM synchronous motor with an improved servo performance. Electric Power Applications, 2009, 3(1): 8-18.
    [32] Plestan F. G., Alain B., Guilherme J.. New robust position control of a synchronous motor by high order sliding mode. IEEE Conference on Decision and Control, New Orleans, 2007: 3697-3702.
    [33] Feng Guihong, Li Yan, Luan Juli, et al. A position sensorless control system of low speed and high torque PMSM based on sliding mode observer. International Conference on Electrical Machines and Systems, Seoul, 2007: 974-978.
    [34]吕刚,焦留成.多模自适应模糊控制器及其在精密伺服系统中的应用.控制理论与应用, 2005, 22(1): 47-51.
    [35] Yang Yansheng, Zhou Changjiu. Robust adaptive fuzzy control for permanent magnet synchronous servomotor drives. International Journal of Intelligent Systems, 2006, 20(2):1506-1511.
    [36]李鸿儒,顾树生.基于神经网络的PMSM自适应滑模控制.控制理论与应用, 2005, 22(3): 461-464.
    [37] Ko J. S., Han B. M.. Precision position control of PMSM using neural network disturbance observer and parameter compensator. IEEE Power Electronic Specialists Conference, Recife, 2005: 1313-1319.
    [38] Jia Qingxuan, Zhang Xiaodong, Sun Hanxu. Integral backstepping sliding-mode control for space manipulator modular joint using RBFN observer. International Conference on Information Acquisition, South Korea, 2007: 385-390.
    [39] Hemici B., Nezli L., Tadjine M., et al. Robust PID/backstepping control design for permanent magnet synchronous motor drive. Control and Intelligent Systems, 2006, 34(3): 194-204.
    [40] Li H., Bai X., Gu S.. Neural-network-based robust control of PM synchronous motor. Journal of Northeastern University, 2001, 22(4): 362-365.
    [41]梅生伟,申铁龙,刘康志.现代鲁棒控制理论与应用.北京:清华大学出版社,2003.
    [42]汤伟,施颂椒,王孟效等.鲁棒控制理论中三种主要方法综述(一).西北轻工业学院学报,2000, 18(4): 54-59.
    [43] M. Uchiyama. Formulation of high-speed motion pattern of a mechanical arm by trial. Transactions of the society for instrumentation and control engineers, 1978, 14(6):706-712.
    [44] Inoue T., Iwai S., Nakano M.. High accuracy control of a proton synchrotron magnet power supply. Proceeding of the International Federation of Automatic Control, 1982, 6:3137~3142.
    [45] S. Arimoto, S. Kawamura, F. Miyazaki. Bettering operation of robots by learning. Journal of Robotic Systems, 1984, 1(2):123-140.
    [46] R. H. Middleton, G. C. Goodwin, R. W. Longman. A method for improving the dynamic accuracy of a robot performing a repetitive task. International Journal of Robotics Research, 1989, 8(5): 67-74.
    [47] R. W. Longman, E. J. Solcz. Small gain robustness issues in the p-integrator repetitive controller. AIAA/AAS Astrodynamics conference, Oregon, 1990: 537-551.
    [48] R. W. Longman. Iterative learning control and repective control for engineering practice. International Journal of Control, 2000, 73(10): 930-954.
    [49]李翠艳,张东纯,庄显义.重复控制综述.电机与控制学报, 2005, 9(1): 37-43.
    [50]曹正才,金艳艳.基于重复控制的高精度平台控制系统设计.雷达与对抗, 2005, (4): 57-59.
    [51]陈宗云,南余荣.基于重复控制的位置伺服系统.控制工程,2006, 13(增刊): 208-211.
    [52]杨松,曾鸣,苏宝库.重复控制算法在转台伺服系统中的应用.电机与控制学报, 2007, 11(5): 508-511.
    [53] Walker J. H.. Large synchronous machines, design, manufacture and operation. Oxford: Oxford University Press, 1981.
    [54]谭建成.降低永磁无刷直流电动机齿槽转矩的设计措施.微电机, 2008, 41(4): 64-68.
    [55] Z. Q. Zhu, D. Howe. Influence of design parameters on cogging torque in permanent magnet machines. IEEE Transactions on Energy Conversion, 2000, 15(4):407-412.
    [56] Hwang S. M., Eom J. B., et al. Cogging torque and acoustic noise reduction in permanent magnet motors by teeth pairing. IEEE Transactions on Magnetics, 2000, 36(5): 3144-3146.
    [57] Hwang S. M., Eom J. B., Jung Y. H., et al. Various design techniques to reduce cogging torque by controlling energy variation in permanent magnet motors. IEEE Transactions on Magnetics, 2001, 37(4): 2806-2809.
    [58]杨玉波,王秀和,陈谢杰等.基于不等槽口宽配合的永磁电动机齿槽转矩削弱方法.电工技术学报, 2005, 20(3): 40-44.
    [59] Zhang Fengge, Nikolaus Neuberger, Eugen Nolle, et al. A new type of induction machine with inner and outer double rotors. International Power Electronics and Motion Control Conference, Xi'an, 2004: 286-289.
    [60]孙广贵,张凤阁,王凤翔.一种新型结构的内外双转子感应电机.辽宁工程技术大学学报, 2005, 24(6): 874-877.
    [61]冯浩,刘玉军,钟德刚等.双转子异步电动机的研究.中小型电机, 2002, 29(1): 19-22.
    [62] Ronghai Qu, Thomas A. Lipo. Design and parameter effect analysis of dual-rotor, radial flux, toroidally wound, permanent-magnet machines. IEEE Transations on Industry Applications, 2004, 40(3): 771-779.
    [63] Ronghai Qu, Aydin Metin, Thomas A. Lipo. Performance comparison of dual-rotor radial-flux and axial-flux Machine Drives permanent-magnet BLDC machines. Proceeding of the Electric Machinesand Drives Conference, Madison, 2003: 1948-1954.
    [64]范岩.多电机同步控制策略的改进.机电工程,2007,24(6): 65-66.
    [65]张承慧,石庆升.程金.一种基于相邻耦合误差的多电机同步控制策略.中国电机工程学报, 2007, 27(15): 59-63.
    [66]陈世坤.电机设计.北京:机械工业出版社, 2000.
    [67]宋伟,王秀和,杨玉波.削弱永磁电机齿槽转矩的一种新方法.电机与控制学报, 2004, 8(3): 214-217.
    [68]王秀和,杨玉波,丁婷婷等.基于极弧系数选择的实心转子永磁同步电动机齿槽转矩削弱方法研究.中国电机工程学报. 2005, 25(15): 146-149.
    [69]杨玉波,王秀和,丁婷婷等.极弧系数组合优化的永磁电机齿槽转矩削弱方法.中国电机工程学报, 2007, 27(6): 7-11.
    [70]王道涵,王秀和,丁婷婷等.基于磁极不对称角度优化的内置式永磁无刷直流电动机齿槽转矩削弱方法.中国电机工程学报,2008, 28(9): 66-70.
    [71] Ronghai Qu, Thomas A. Lipo. Dual-rotor radial-Flux toriodally-wound permanent-magnet machines. IEEE Transactions on Industry Applications, 2003, 39(6): 1665-1673.
    [72]王正平.径向磁场双转子永磁电机研究(硕士学位论文).山东大学, 2006.
    [73]王江,李涛,曾启明.基于观测器的永磁同步电动机微分代数非线性控制.中国电机工程学报,2005, 25(2): 87-92.
    [74]吴丹,王先逵,易旺民等.重复控制及其在变速非圆车削中的应用.中国机械工程学报,2004,15(5): 446-449.
    [75] S. Hara, Y. Yamammoto, T.Omata, et al. Repetive control system: a new type servo system for periodic exogenous signals. IEEE Transations Automatic Control, 1988, 33(7): 659-666.
    [76]中野道雄.重复控制.长沙:中南工业大学出版社, 1993.
    [77]张东纯.重复控制及其应用研究(博士学位论文).哈尔滨:哈尔滨理工大学, 2004.
    [78] Miklosovic R., Gao Zhiqiang. A robust two-degree-of-freedom control design technique and its practical application. IEEE Industrial Application Conference, Seattle, 2004: 1495-1502.
    [79]李宁刚,代作晓. PDFF调节在交流永磁同步电机控制中的应用.科学技术与工程,2006,6(13): 1907-1910.
    [80] Doyle J. C., Stein G.. Multivariable feedback design concepts for a classical/modern synthesis. IEEE Transations on Automatic Control, 1981, 26(1): 4-16.
    [81] Pacard A., Doyle J. C.. The complex structured singular value. Automatica,1993,29(1):71-109.
    [82]史忠科,吴方向,王蓓等.鲁棒控制理论.北京:国防工业出版社, 2003.
    [83]石春,吴刚,王嵩等. DVD聚焦系统鲁棒重复控制器设计.系统仿真学报, 2007, 19(7): 1642-1645.
    [84] Kneppova V., Kiffneier U., Unbehauen H.. Weighting function selection in H∞-optimal control with application to a thyristor-driven DC motor. American Control Conference, Seattle, 1995: 3002-3006.
    [85] Tayebi A., Abdul S., Zaremba M. B.. Robust iterative learning control design viaμ-synthesis. IEEE International Conference on Control Applications, Toronto, 2002: 416-421.
    [86] K. Krishnamoorthy, Chi-Ying Lin, Tsu-Chin Tsao. Design and control of a dual stage fast tool servo for precision machining. IEEE International Conference on Control Applications, Taiwan, 2004: 742- 748.
    [87]清源科技编著. TMS320LF240x DSP应用程序设计教程.北京:机械工业出版社,2003.
    [88]刘和平,严利平,张学锋等. TMS320LF240x DSP结构、原理及应用.北京:北京航空航天大学出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700