用户名: 密码: 验证码:
农作物秸秆微波热解实验及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质能一直是人类赖以生存的重要能源,极有可能成为未来可持续能源系统的重要组成部分。热解是生物质热化学转化方式的一种,可以将生物质能转化为气、液、固等三相能源产品。在当前化石燃料日益减少的背景下,通过热解生物质制取生物油、合成气等替代燃料和化学品,成为国内外研究的热点。作为重要的生物质能组成部分,农作物秸秆的利用过程中存在着一些不利因素,如:堆积密度小、能量密度低,收集、运输和储存过程存在困难;预处理能耗高、工序复杂等,以上因素一直制约着农作物秸秆资源的大规模利用。
     微波加热具有即时性、整体性、选择性和高效性的特点,将其应用于农作物秸秆热解,可以降低原料的预处理要求,使预处理成本大幅下降,而热解产物的综合性能和经济价值却不会降低,甚至大幅提高。随着微波技术的不断发展,通过微波热解生物质制取替代能源已经成为当前非常重要的生物质能利用途径,引起国内外科研工作者的广泛关注,并开展了大量研究。
     目前对于生物质微波热解的研究,主要侧重于热解影响因素的考察,包括物料种类和粒径、微波功率、添加物种类及比例等。通常实验采用很少(小)的物料量(尺寸),未能充分发挥微波热解的特点和优势;针对微波加热过程物料的升温和失重特性研究还非常少,而这些参数对于微波热解的深入研究非常重要;定温条件下的微波热解几乎未涉及,而常规热解研究表明温度是影响热解过程的重要因素。此外,针对工业应用的需要,有必要开展大尺寸物料的微波热解特性及经济性研究,而此方面现有研究也几乎空白。
     综合国内外微波技术在能源转化领域的研究现状,结合开展国家自然科学基金项目“生物质微波热解定向转化合成气的基础研究”的需要,本文研发了一套具备热重分析功能的微波热解装置,使用微波作为热源,将生物质热解、催化剂催化和重整等技术进行组合或联用,通过优化反应条件及添加催化剂等手段,探索生物质在较低要求操作条件下定向转化合成气的可行性。基于考察温度对微波热解影响的需要,系统添加了温度控制功能,满足开展生物质物料定温微波热解的实验要求。
     在上述实验台上对小麦秸秆微波热解的升温和失重特性进行了系统研究,得到以下结论:微波功率较小时,只能实现物料的干燥脱水和部分热解,总失重不超过初始物料量的40wt.%,物料最高温度不超过400℃;随着微波功率的增大,内部物料首先热解,随着热解程度的加深,物料的物理化学特性不断转变,达到临界点后,物料吸收微波能力突然增大,内部物料温度快速上升,并通过热传递引发外围物料热解;内部物料的升温和物性转化过程以及内、外部物料间的传热过程,随着微波功率的加大不断缩短;微波功率超过一定限值后,物料内部的温度梯度很小,热解反应由外部传热条件控制。微波加热过程中的传热传质对升温和失重过程存在重要影响。微波功率小,内部物料和外围物料的热解是分开进行的,内部物料迅速发生热解,而在导热和微波加热下,外围物料则是滞后一段时间发生热解,转化过程被内部传热条件控制。添加合适的微波吸收剂或催化剂,特别是热解残炭,可以显著促进热解反应的进行。不同微波功率下物料的升温曲线具有下列规律:随着微波功率的增大,物料升温进入各阶段时刻逐渐提前,最终平衡温度分布与微波功率有相同的分布规律,即微波功率越大,物料的最终温度越高。
     通过产物分析发现,与传统加热方式相比,微波加热方式下热解产物的形成途径和生成机理存在很大差别。纯秸秆自身吸收微波能力有限,整个过程只发生干燥失水和部分热解,物料转化率低,气体产量少,CO2含量接近50vol.%。添加CuO或Fe3O4的混合物料热解后液体产物居多,某些工况下达到原料量的50wt.%。添加CuO所得气体中H2含量更高,而添加Fe3O4所得气体中CO含量较高。添加碱金属盐会降低热解生物油的产量,增加焦炭和气体产物的产量;气体产物中H2的体积含量超过40vol.%,CO2和CO的体积含量较低。添加热解残炭时,高温残炭与CO2发生反应导致气体产物中CO2体积含量低,CO含量高。添加热解残炭及碱金属盐得到的气体产物中合成气(CO+H2)的体积含量超过70vol.%,表明微波热解在制取合成气方面具有一定的优势。温度是影响微波热解的最主要因素,高温有助于提高气体产物产量,以及气体中可燃气体,特别是H2的产量。随着温度的升高,挥发性物质的快速释放和气体的排出使得焦炭内的微孔增多,孔径减小,孔结构更均匀:焦炭中的主要元素组成是C、O,还含有少量的H、N、S等元素。本系统规模小,导致热解过程中的能量转化和散热损失大,能量利用率只有12%;增大反应系统规模可以减小上述损失,提高系统整体的能量利用率。
     综合升温和失重特性研究结果以及产物分析,推测生物质微波热解的能量转化和产物形成途径为:微波穿透物料并不断衰减,微波能转化为热能,由于物料表面的散热作用,造成物料内部温度较高,并向外传热。热解过程由内向外逐层进行,生物质被加热部分迅速分解成炭和挥发分,而挥发分在释放过程中穿越低温区,减小了发生二次裂解的几率。添加微波吸收剂后,由于存在“热点效应”,会促进高温炭粒与CO2、水蒸气的反应,以及挥发分的二次裂解,因而气体产物富含H2和合成气。
     为考察大尺寸物料的微波热解特性,设计搭建了一套秸秆料包微波热解试验装置,对经过压缩打包的小麦和玉米秸秆进行了微波热解试验,并对系统电耗和能量平衡进行了考察。微波加热时料包内部温度场均匀性好,但是由于导热和产物扩散的影响,料包内部三维方向上的温度分布有显著差别;微波功率越大,料包内部温度越均匀,水分蒸发和挥发分析出平台期持续时间缩短;相同微波功率下,微波布置越均匀,料包内部温度分布也越均匀。热解气体的主要成分为CO、CO2、H2、CH4、C2H6和少量低碳不饱和烃,纯热解气中H2最大体积含量超过35vol.%,合成气(H2+CO)的最大含量超过于50vol.%。本试验条件下秸秆料包的微波热解电耗在0.58-0.88kW·h/(kg秸秆)之间,随着物料质量的增大,单位质量秸秆热解能耗减少。与小型微波热解装置对比发现,能量利用率随着装置规模的增大迅速提高,散热及能量转化损失在系统能量平衡中所占比重从54.75%下降到42%,继续扩大装置规模及采用改进措施,能量利用率还能继续提高。
     最后,采用已有参数和相关实验数据,综合考虑微波热解过程中的微波加热、热解反应和传热过程等因素,对秸秆料包微波加热过程的温度分布进行了数值模拟计算,并进行了实验验证。得到以下结论:靠近微波入射面的物料温度升高显著,表面温度超过700℃,部分位置甚至超过了1000℃。微波向内层传输过程中不断衰减,导致内层物料的温度升高逐渐变缓。物料内部的温度分布不对称,可能是采用非均匀网格造成的,但是不能忽视微波加热本身既具有加热不均匀和产生“热点”的特性。“热点”温度上升速度非常快,在加热后段,“热点”位置出现“热失控”现象,温度快速升高超过1100℃;而“冷点”温度整个过程中上升缓慢,加热末期刚刚达到300℃。总体来看,数值模拟结果基本上能揭示微波加热过程中温度分布的基本规律,对微波热解的进一步推广利用有一定指导意义,但是数学模型本身还需进一步完善以更好地描述大尺寸物料的微波加热过程。
Biomass has always been an important energy source and plays an irreplaceable role in energy system, which is highly likely to be one of the important components of the future sustainable energy system. At present, biomass could be used in a clean and efficient way through various conversion technologies. Pyrolysis is one kind of thermochemical conversion methods, through which biomass can be converted into energy products of gas, liquid, solid. At the background of fossil fuels reducing increasingly, conversion of biomass into alternative fuels and chemicals by pyrolysis, becomes a hot research focus at home and abroad. However, as an important part of biomass, some negative factors exist in the utilization of agricultural straws, such as: lower bulk and energy density, some difficulties during collection, transportation and storage, as well as the higher requirements of pretreatment, leading to high energy consumption and complex processing. The factors above restrict the large-scale utilization of agricultural straws.
     Microwave heating has the characteristics of immediacy, integrity, selectivity and efficiency. If applied to biomass pyrolysis, the pretreatment requirements of agricultural straw could be greatly decreased, then costs of pretreatment could be reduced significantly, while the comprehensive performances and economic value of pyrolytic products would not be dropped, or even greatly improved.With the development of microwave technology, producing alternative energy sources through microwave pyrolysis of biomass has become an important way of biomass utilization, which attracts extensive attentions and many researches have been carried out.
     Currently, studies of microwave pyrolysis of biomass are mainly focusing on the influences of such factors as material type and particle size, microwave power, catalyst type & ratio on the pyrolysis process. While the volume/size of sample used is usually small, then the advantages of microwave pyrolysis cannot be fully displayed. In addition, researches on the temperature rising and weight loss characteristics of pyrolysis are still little, but these parameters are very important for in-depth study of microwave pyrolysis.Also, microwave pyrolysis carried out at the fixed temperature is almost not concerned. However, it has been proved that temperature is the key factor for conventional pyrolysis.Besides, for practical application, it is nevertheless desirable to further improve the process performance by better design of microwave pyrolysis system. In particular, reduction of specific power consumption should be of significance.
     Based on the research status of microwave technology used in the energy conversion field, combined with the National Natural Science Foundation project"Basic research on the directional transformation process of biomass into synthesis gas by microwave pyrolysis",one apparatus using microwave as heat source was developed for the directional transformation of biomass into various target products by microwave pyrolysis, which had the function of thermogravimetric and combined the technologies of pyrolysis, catalysis and restructuring of catalyst togather. Not only the special heating mechanism and characteristics of microwave, but also the special roles of microwave on chemical reactions, were introduced. In view of studying the impacts of temperature on microwave pyrolysis, the temperature control function was added, which was proved to meet the experimental requirements properly.
     Systematic researches on the temperature rising and weight loss characteristics of wheat straw during microwave pyrolysis were carried out on the apparatus above, and the following conclusions were obtained. Firstly, if microwave power was small, drying and some dehydrated pyrolysis of sample could only be achieved. The total weight loss was not over 40wt.% and the final temperature did not exceed 400℃. The internal sample pyrolyzed first. When the transformation of physico-chemical characteristics of internal sample reached a critical point, its ability to absorb microwave had a sudden increase. As a result, the sample's temperature rose fastly and the external sample pyrolyzed caused by the heat transfer. The temperature rising of internal sample and transformation process of physico-chemical characteristics of material, as well as the heat transfer between the internal and external sample reduced with the increase of microwave power. However, when microwave power was over a threshold, the pyrolysis process was controlled by the external heat transfer conditions. The heat and mass transfer had a significant impact on the process of microwave heating and weight loss. When microwave power was small,pyrolysis of sample inside and outside was carried out separately, which was controlled by internal heat transfer conditions. Pyrolysis reactions were promoted by adding microwave absorbents and catalysts appropriately, particularly for the pyrolytic char. Heating curves of sample under different microwave power were in very good regularity:with the increase of microwave power, the time of sample entering every stages of pyrolysis brought forward gradually, but the final steady temperature distribution had the same tendency with microwave power, that was, the final temperature rose with the increase of microwave power.
     Pyrolysis product distribution of wheat straw under different conditions was obtained through effective separation and analysis. Compared with the conventional electric heating method, it was found that a great difference in the formation mechanisms of products existed in pyrolysis using microwave heating method.As capacity of absorbing microwave of pure straw was poor, the sample could only be dried and had a lower conversion ratio during the whole process. The total gas products was few and concentration of CO2 in gas products was close to 50vol.%.Liquid products was the main products when using CuO and Fe3O4 as microwave absorbent, and under certain operating conditions, the amount of liquid products exceeded 50wt.% or more.A higher content of H2 and CO in gas products were obtained using CuO and Fe3O4 as microwave absorbent, respectively. The condensation reactions of larger molecular organics were promoted under high temperature by alkali metal salts. As a result, production of bio-oil decreased, while more char and gas products were obtained when adding alkali metal salts. Mainly due to the gasification reaction of pyrolytic char with CO2 at high temperature, lower volume content of CO2 and higher concentration of CO were obtained when adding residual char. As pyrolytic char was obtained and reused easily, taking pyrolytic char as microwave microwave absorbent is the best choice for producing more gas products. The volume content of H2 in gas product was generally more than 40vol.% when adding alkali carbonate, while the volume of CO2 and CO concentration was relatively low. The volume content of syngas (CO+H2) in gas product was more than 70vol.% when using residual char and alkali carbonate, so microwave pyrolysis has an advantage in the syngas production. Temperature was the most important factor affecting the pyrolysis process, and high temperature promoted the production of gas, as well as the production of combustible gas, especially for H2.In addition, the energy balance analysis for this system was calculated and analyzed. It was found that due to the small scale, energy loss of heat and transformation of this system was large, but it could be reduced by expanding the scale and energy efficiency would be improved.
     Combined the pyrolytic characteristics with product analysis, the microwave pyrolysis and product formation process could be speculated as follows:microwave penetrated the sample and decayed, which was transformed into heat. Due to the heat loss on the surfaces of sample, the internal temperature of sample was higher and heat was transferred to the external continuously. Pyrolysis were carried out layer by layer from inside to outside, and parts of biomass particles heated rapidly were decomposed into char and volatiles, while the volatiles released would pass through the low temperature zone, then the occurrence chance of secondary cracking reactions was reduced greatly. In consequence, the yield of liquid products in microwave pyrolysis was relatively higher. However, when microwave absorbent was added, due to the effects of "hot spot", the reactions of high-temperature char and CO2, water vapor would be promoted significantly, as well as the thermal cracking of volatiles, which promoted to obtain more combustible gases, especially for H2.
     In order to investigate the microwave pyrolytic characteristics of large-sized materials, a microwave pyrolysis device for pyrolysis of straw bale was designed and built. The temperature rising and weight loss characteristics of straw bale, as well as the influences of straw type, microwave power on product distribution and components were investigated. Also, the power consumption and energy balance of microwave pyrolysis process were studied. The results showed that:uniformity of temperature field using microwave heating was better, but due to the impacts of heat transfer and product diffusion, some differences existed in the internal three-dimensional temperature distribution. More uniform internal temperature and shorter lasting time of moisture evaporation and devolatilization plateau was obtained with higher microwave power. Under the same microwave power, more uniform temperature field was obtained with the more uniform arrangement of microwave irradiation. Gas product was mainly composed of CO, CO2, H2, CH4, C2H6, and a small amount of unsaturated hydrocarbons. The maximum content of H2 was higher than 35vol.% and the maximum content of syngas (H2+CO) was more than 50vol.%.
     Finally, based on the parameters and experimental data obtained, the numerical simulation of temperature distribution during microwave pyrolysis process of straw bale has been performed by joint consideration of microwave heating, pyrolysis reactions and heat transfer process during microwave pyrolysis together, and experimental verification were carried out. It was found that the materials close to microwave incident plane absorbed microwave most, so its temperature increased significantly. The surface's temperature exceeded 700℃, and part of the position was even higher than 1000℃.Microwave decayed continuously during transmission to the inner layers leading to the temperature of inner material slowing down gradually. The temperature distribution inside the material was asymmetric,which might be caused by non-uniform grid, but it cannot be ignored that microwave heating had the features of heating unevenly and "hot spot".The temperature of "hot spots" rose fastly, and thermal runaway occurred at the end of heating process, whose temperature quickly rose above 1100℃.The temperature of"cold spots"rose slowly throughout the heating process, just rising to 300℃at the end. Due to the impacts of shape or sizes of sample, microwave power and not perfect of mathematical model itself or not precise enough of measuring data, some differences existed between numerical simulation and experimental results. But the simulation results can reveal basic laws of heat transfer during microwave heating process.However, mathematical model itself needs to be further improved to describe the microwave heating process of large material better.
引文
[1]Demirbas, A. Biomass resource facilities and biomass conversion processing for fuels and chemicals[J].Energy Conversion and Management,2001,42:1357-1378.
    [2]袁振宏,吴创之,马隆龙,等.生物质能利用原理与技术[M].北京:化学工业出版社,2004.
    [3]P. McKendry. Energy production from biomass (part 2):conversion technologies[J].Bioresource Technology,2002,83:47-54.
    [4]刘荣厚,牛卫生,张大雷.生物质热化学转换技术[M].北京,化学工业出版社,2005.
    [5]Serdar Yaman. Pyrolysis of biomass to produce fuels and chemical feedstocks[J].Energy Conversion and Management,2004,45:651-671.
    [6]Fei Yu, Roger Ruan, Shaobo Deng, et al.Microwave Pyrolysis of Biomass[C].ASABE paper, No.066051,2006.
    [7]Yiqin Wan, Paul Chen, Bo Zhang, et al. Microwave-assisted pyrolysis of biomass:Catalysts to improve product selectivity[J].J.Anal.Appl.Pyrolysis,2009,86:161-167.
    [8]A.Dominguez, J.A. Menendez, Y.Fernendez, et al. Conventional and microwave induced pyrolysis of coffee hulls for the production of a hydrogen rich fuel gas[J].J.Anal.Appl. Pyrolysis, 2007,79:128-135.
    [9]Y.F. Huang, W.H. Kuan, S.L. Lo, et al.Hydrogen-rich fuel gas from rice straw via microwave-induced pyrolysis[J],Bioresource Technology,2009,101(6):1968-1973.
    [10]Mingqiang Chen, Jun Wang, Mingxu Zhang, et al. Catalytic effects of eight inorganic additives on pyrolysis of pine wood sawdust by microwave heating[J].J.Anal.Appl.Pyrolysis, 2008,82(1):145-150.
    [11]Menendez, J.A.,Dominguez, A.,Fernandez, et al.Evidence of self-gasification during the microwave-induced pyrolysis of coffee hulls[J].Energy & Fuels,2007,21:373-378.
    [12]Michael Becidan,0yvind Skreiberg, Johan E. Hustad. Experimental study on pyrolysis of thermally thick biomass residues samples:Intra-sample temperature distribution and effect of sample weight ("scaling effect")[J].Fuel,2007,86:2754-2760.
    [13]Elisabeth Schroder. Experiments on the pyrolysis of large beechwood particles in fixed beds[J]. J. Anal. Appl. Pyrolysis,2004,71:669-694.
    [14]J.M. Mesa-Pereza, L.A.B.Corteza, J.D. Rocha, et al.Unidimensional heat transfer analysis of elephant grass and sugar cane bagasse slow pyrolysis in a fixed bed reactor[J].Fuel Processing Technology,2005,86:565-575.
    [15]杨海平,陈汉平,王贤华,等.生物质热解研究的进展[J].煤气与热力,2006,26(5):18-22.
    [16]李传统.新能源与可再生能源技术[M].江苏:东南大学出版社,2005:116-117.
    [17]马承荣,肖波,杨家宽.生物质热解影响因素分析[J].环境技术,2005,(5):10-12.
    [18]蒋恩臣,何光设.生物质热分解技术比较研究[J].可再生能源,2006,(4):58-62.
    [19]Encinar J M, Beltran F J, Ramiro A, et al. Pyrolysis gasification of agricultural residues by carbon dioxide in the presence of different additives:influence of variables[J].Fuel Processing Technology,1998,55(3):219-233.
    [20]Horne P A, Williams P T. Influence of temperature on the products from the flash pyrolysis of biomass[J].Fuel,1996,75(9):1051-1059.
    [21]Bridgwater A V, Peacocke G V C.Fast pyrolysis processes for biomass[J].Sustainable and Renewable Energy Reviews,2000,4(1):1-73.
    [22]李水清,李爱民,严建华,等.生物质废弃物在回转窑内热解研究Ⅰ.热解条件对热解产物分布的影响[J].太阳能学报,2000,21(4):333-340.
    [23]Encinar J M, Beltran F J, Bernalte A, et al. Pyrolysis of two agricultural residues:olive and grape bagasse, influence of particle size and temperature [J].Biomass and Bioenergy,1996,11(5): 397-409.
    [24]Beaumont O, Schwob Y. Influence of physical and chemical parameters on wood pyrolysis[J]. Industrial & Engineering Chemistry Process Design,1984,23(4):637-641.
    [25]Li S, Xu S, Liu S, et al. Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas [J]. Fuel Processing Technology,2004,85(8-10):1201-1211.
    [26]谭洪,王树荣,骆仲泱,等.金属盐对生物质热解特性影响实验研究[J].工程热物理学报,2005,26(5):742-744.
    [27]WILLIAMS P T, HORNE P A. The influence of catalyst regeneration on the composition of zeolite upgraded biomass pyrolysis oils[J].Fuel,1995,74(12):1839-1851.
    [28]Demirbas. A. Partly chemical analysis of liquid fraction of flash pyrolysis products from biomass in the presence of sodium carbonate [J].Energy Conversion & Management,2002(43): 1801-1809.
    [29]Caglar. A, Demirbas. A. Conversion of cotton cocoon shell to liquid products by pyrolysis [J]. Energy Conversion & Management,2000(41):1749-1756.
    [30]柏雪源,易维明,王丽红,等.玉米秸秆在等离子体加热流化床上的快速热解液化研究[J].农业工程学报.2005,21(12):127-130.
    [31]唐兰.高频等离子体热解处理有机固体废弃物的研究[D].中国科学技术大学博士学位论文,2005.
    [32孔令照.生物质废弃物水热资源化处理过程及机理研究[D].同济大学博士学位论文,2008.
    [33]Masaki Sagehashi, Noritaka Miyasaka, Hiromu Shishido, et al.Superheated steam pyrolysis of biomass elemental components and Sugi (Japanese cedar) for fuels and chemicals[J].Bioresource Technology,2006,97:1272-1283.
    [34]任辉,张荣,王锦凤,等.废弃生物质在超临界水中转化制氢过程的研究[J].燃料化学学报,2003,31(6):595-599.
    [35]D.K.XIA, C.A.PICKLES. Microwave caustic leaching of electric arc furnace dust[J].Minerals Engineering,2000,13(1):79-94.
    [36]E.T. Thostenson, T.W. Chou. Microwave processing:fundamental and application[J]. Composites:Part A,1999,30:1055-1071.
    [37]D.A.Jones, T.P. Lelyveld, S.D. Mavrofidis, et al.Microwave heating applications in environmental engineering-a review[J].Resources, Conservation and Recyling,2002,34:75-90.
    [38]Mijovic J, Wijaya J. Review of cure of polymers and composites by microwave energy[J]. Polymer Composites,1990,11(3):184-190.
    [39]Chen M, Siochi EJ, Ward TC, McGrath JE. Basic ideas of microwave processing of polymers[J]. Polymer Engineering and Science,1993,33(7):1092-1109.
    [40]王涛.整包秸秆微波热解特性试验研究[D].山东大学硕士学位论文,2008.
    [41]J.A. Menendez, M. Inguanzo, J.J.Pis.Microwave-induced pyrolysis of sewage sludge[J].Water Research,2002,36:3261-3264.
    [42]A.Dominguez, J.A.Menendeza,, M. Inguanzo, et al. Gas chromatographic-mass spectrometric study of the oil fractions produced by microwave-assisted pyrolysis of different sewage sludge[J].Journal of Chromatography A,2003,1012:193-206.
    [43]J.A.Menendez, A.Dominguez, M.Inguanzo, et al.Microwave pyrolysis of sewage sludge: analysis of the gas fraction[J].Journal of Analytical and Applied Pyrolysis,2004,71:657-667.
    [44]J.A.Menendez, A.Dominguez, M.Inguanzo, et al. Microwave-induced drying, pyrolysis and gasification (MWDPG) of sewage sludge:Vitrification of the solid residue[J].Journal of Analytical and Applied Pyrolysis,2005,74:406-412.
    [45]A.Dominguez, J.A.Menendez, M. Inguanzo, et al.Investigations into the characteristics of oils produced from microwave pyrolysis of sewage sludge[J].Fuel Processing Technology,2005, 86:1007-1020.
    [46]A.Dominguez, J.A.Menendez, M. Inguanzo, et al.Production of bio-fuels by high temperature pyrolysis of sewage sludge using conventional and microwave heating[J].Bioresource Technology,2006,97:1185-1193.
    [47]Masakatsu Miura, Harumi Kaga, Shigenobu Tanaka, et al.Rapid Microwave Pyrolysis of Wood [J].Journal of Chemical Enigineeing of Japan,2000,33(2):299-302.
    [48]Masakatsu Miura, Harumi Kaga, Takashi Yoshida, et al. T Microwave pyrolysis of cellulosic materials for the production of anhydrosugars[J].The Japan Wood Research Society,2001,47: 502-506.
    [49]Masakatsu Miura, Harumi Kaga, Akihiko Sakurai, et al.Rapid pyrolysis of wood block by microwave heating[J].Journal of Analytical and Applied Pyrolysis,2004,71:187-199.
    [50]Parisa Monsef-Mirzai, Mythili Ravindran, William R, et al.Rapid microwave pyrolysis of coal: Methodology and examination of the residual and volatile phases[J].Fuel,1995,74(1):20-27.
    [51]K. El harfi, A.Mokhlisse, M.B.Chana a, et al.Pyrolysis of the Moroccan (Tarfaya) oil shales under microwave irradiation[J].Fuel,2000,79:733-742.
    [52]L. Bilali, M. Benchanaa, K. El harfi, et al. A detailed study of the microwave pyrolysis of the Moroccan (Youssoufia) rock phosphate[J].Journal of Analytical and Applied Pyrolysis,2005,73: 1-15.
    [53]Farid Chemat, Martine Poux. Microwave assisted pyrolysis of urea supported on graphite under solvent-free conditions[J].Tetrahedron Letters,2001,42:3693-3695
    [54]HYUNG CHUN KIM, HEE YONG KIM, SEONG IHL WOO.Fast Pyrolysis of Chlorodifluoromethane in a Microwave-Heated Fluidized Bed[J].Journal of Chemical Enigineeingof Japan,1999,32(2):171-176.
    [55]谭瑞淀.微波处理废印刷电路板的基础研究[D].大连理工大学硕士学位论文,2007.
    [56]刘辉.微波辅助控制热解废印刷电路板的研究[D].大连理工大学硕士学位论文,2009.
    [57]夏莉.微波热解污泥及其产物组成的分析[D].大连理工大学硕士学位论文,2008.
    [58]王君.生物质微波裂解制备液体燃料的基础研究[D].安徽理工大学博士学位论文,2007.
    [59]王凤旵.生物质稻壳微波热解研究[D].安徽理工大学硕士学位论文,2008..
    [60]郭晓兰.生物质(海藻)裂解特性及动力学研究[D].安徽理工大学硕士学位论文,2007.
    [61]Xianhua Wang, Hanping Chen, Xuejun Ding, et al. Properties of gas and char from microwave pyrolysis of pine sawdust[J].Bioresources,2009,4(3):946-959.
    [62]方琳.微波能作用下污泥脱水和高温热解的效能与机制[D].哈尔滨工业大学博士学位论文,2007.
    [63]万益琴,刘玉环,林向阳,等.玉米秸秆的催化微波裂解及生物油成分[J].农业工程学报,2009,25(4):190-195.
    [64]Hanwu Lei, Shoujie Ren, James Julson. The Effects of Reaction Temperature and Time and Particle Size of Corn Stover on Microwave Pyrolysis[J].Energy&Fuels,2009,23:3254-3261.
    [65]罗爱香.竹废料微波裂解及其产物性质的研究[D].南昌大学硕士学位论文,2007.
    [66]马红周,王耀宁,等.微波热解煤的实验研究[J].洁净煤技术,2009,15(4):54-59.
    [67]王擎,桓现坤,寇震,等.微波场中油页岩及半焦升温特性[J].微波学报,2009,25(1):92-96.
    [68]王擎,桓现坤,刘洪鹏,等.桦甸油页岩的微波干馏特性[J].化工学报,2008,59(5):1288-1293.
    [69]赵瑶兴,孙祥玉.光谱解析与有机结构鉴定[M].合肥:中国科学技术大学出版社,1992:132-159.
    [70]Y.F. Huang, W.H. Kuan, S.L. Lo, et al. Total recovery of resources and energy from rice straw using microwave-induced pyrolysis[J].Bioresource Technology,2008,99(17):8252-8258.
    [71]J. P. Robinson, S. W. Kingman, R. Barranco et al. Microwave Pyrolysis of Wood Pellets[J].Ind. Eng.Chem.Res.,2010,49(2):459-463.
    [72]米铁,陈汉平,杨国来,等.农林生物质废弃物的热重实验研究[J].太阳能学报,2008,29(1):109-113.
    [73]C.Di Blasi, C. Branca, Antonio Santoro et al. Weight loss dynamics of wood chips under fast radiative heating[J].Journal of Analytical and Applied Pyrolysis,2001,57:77-90.
    [74]J.A. Menendez, A.Arenillas, B.Fidalgo et al.Microwave heating processes involving carbon materials[J].Fuel Processing Technology,2010,91(1):1-8.
    [75]Emine Yagmur, Emir H. Simsek, Zeki Aktas, et al.Effect of CuO receptor on the liquid yield and composition of oils derived from liquefaction of coals by microwave energy[J].Energy Conversion & Management,2008,49:3043-3050.
    [76]Chunlei Wang, Ding Ma, Xinhe Bao. Transformation of Biomass into Porous Graphitic Carbon Nanostructures by Microwave Irradiation[J].J. Phys. Chem. C,2008,112:17596-17602.
    [77]Demirbas, A.Gaseous products from biomass by pyrolysis and gasification:effects of catalyst on hydrogen yield[J].Energy Conversion and Management,2002,43(7):897-909.
    [78]Wang Jun, Zhang Mingxu, Chen Mingqiang, et al. Catalytic effects of six inorganic compounds on pyrolysis of three kinds of biomass[J].Thermochimica Acta,2006,444:110-114.
    [79]陈冠益,李强,H.Spliethoff,等.生物质热解气化制取氢气[J],太阳能学报,2004,25(6):776-781.
    [80]任强强,赵长遂.稻秆热解及催化热解的试验研究.太阳能学报[J].2009,30(1):116-121.
    [81]肖军,沈来宏,郑敏,等.基于TG-FTIR的生物质催化热解试验研究[J].燃料化学学报,2007,35(3):280-284.
    [82]胡松,付鹏,向军,等.典型农业生物质催化气化反应动力学特性研究[J].太阳能学报,2008,29(6):716-721.
    [83]谢玉荣,沈来宏,肖军,等.生物质催化气化重整制取富氢气体的实验研究[J].西安交通大学学报,2008,42(5):634-638.
    [84]吕俊复,岳光溪.氧化钙条件下焦油主要组分的催化裂解[J].清华大学学报(自然科学版).1997,37(2):6-10.
    [85]骆仲泱,张晓东,周劲松,等.生物质热解焦油的热裂解与催化裂解[J].高校化学工程学报,2004,18(2):162-167.
    [86]陈鸿伟,庞永梅,王晋权,等.催化热解玉米秸秆实验研究[J].电站系统工程,2007,23(5):14-16.
    [87]王同华,胡俊生,夏莉,等.微波热解污泥及产物组成的分析[J].沈阳建筑大学学报(自然科学版),2008,24(4):662-665.
    [88]杨海平,陈汉平,杜胜磊,等.碱金属盐对生物质三组分热解的影响[J].中国电机工程学报,2009,29(17):70-75.
    [89]宋春财,胡浩权.秸秆及其主要组分的催化热解及动力学研究[J].煤炭转化,2003,26(3):91-97.
    [90]Haiping Yang, Rong Yan, Hanping Chen, et al.Influence of mineral matter on pyrolysis of palm oil wastes[J].Combustion and Flame,2006,146:605-611.
    [91]G. Chen, J. Andries, Z. Luo, et al. Biomass pyrolysis/gasification for product gas production:the overall investigation of parametric effects[J].Energy Conversion and Management,2003, 44:1875-1884.
    [92]Ozlem Onay, O. Mete Kockar. Slow, fast and flash pyrolysis of rapeseed[J].Renewable Energy, 2003,28:2417-2433.
    [93]Rong Yan, Haiping Yang, Terence Chin, et al. Influence of temperature on the distribution of gaseous products from pyrolyzing palm oil wastes[J].Combustion and Flame,2005,142:24-32.
    [94]Ferdous, D., Dalai, A. K.,Bej,S.K.. Production of H2 and medium Btu gas via pyrolysis of lignins in a fixed bed reactor[J].Fuel Processing Technology,2001,70:9-26.
    [95]曹青,鲍卫仁,吕永康,等.玉米芯热解及过程分析[J].燃料化学学报,2004,32(5):557-562.
    [96]A.Dufour, P. Girods, E. Masson, et al. Synthesis gas production by biomass pyrolysis:Effect of reactor temperature on product distribution[J].International Journal of Hydrogen Energy,2009, 34:1726-1734.
    [97]王贤华,陈汉平,王静,等.无机矿物质盐对生物质热解特性的影响[J].燃料化学学报,2008,36(6):679-683.
    [98]郭晓娟.热解技术处理废弃印刷线路板的实验研究[D].天津大学博士论文,2008.
    [99]杨海平.油棕废弃物热解的实验及机理研究[D].华中科技大学博士学位论文,2005.
    [100]孙立.生物质热解制氢机理和实验研究[D].天津大学博士论文,2008.
    [101]Sun Ye, Cheng Jiayang. Hydrolysis of lignoeelluloses materials for ethanol production:a review[J].Bioresource Technology,2002(83):1-11.
    [102]江鸿.木质纤维素气化与热解过程及机理的研究[D].中国科学技术大学博士学位论文,2004.
    [103]廖艳芬.纤维素热裂解机理试验研究[D].浙江大学博士学位论文,2003.
    [104]郑勇.木屑微波裂解制取生物燃料[D].上海大学硕士学位论文,2008.
    [105]Demirbas, A.Mechanisms of liquefaction and pyrolysis reactions of biomass[J].Energy Conversion and Management,2000,41(6):633-646.
    [106]A. Dominguez, Y. Fernandez, B. Fidalgo, et al. Bio-syngas production with low concentrations of CO2 and CH4 from microwave-induced pyrolysis of wet and dried sewage sludge[J].Chemosphere,2007,70(3):397-403.
    [107]Dai, X., Wu, C.,Li, H.B et al. The fast pyrolysis of biomass in CFB reactor[J].Energy & Fuels.2000,14(3):552-557.
    [108]赖艳华,吕明新,马春元,等.程序升温下秸秆类生物质燃料热解规律[J].燃烧科学与技术,
    2001,7(3):245-248.
    [109]Zhengqi Li, Wei Zhao, Baihong Meng, et al. Kinetic study of corn straw pyrolysis:Comparison of two different three-pseudocomponent models[J].Bioresource Technology,2008,99:7616-7622.
    [110]Vadim Mamleev, Serge Bourbigot, Jacques Yvon. Kinetic analysis of the thermal decomposition of cellulose:The main step of mass loss[J].J.Anal.Appl.Pyrolysis,2007,80:151-165.
    [111]J.A. Caballero, J.A. Conesa, R. Font, et al. Pyrolysis kinetics of almond shells and olive stones considering their organic fractions[J].Journal of Analytical and Applied Pyrolysis,1997,42:159-175.
    [112]王树荣,刘倩,文丽华,等.基于热重红外联用分析的生物质热烈解机理研究[J].工程热物理学报,2006,27(2):351-353.
    [113]Jianping Wu, Yuanhua Wang, Yiqin Wan, et al.Processing and properties of rigid polyurethane foams based on bio-oils from microwave-assisted pyrolysis of corn stover[J].Int J Agric & Biol Eng,2009,2(1):40-50.
    [114]赖艳华,吕明新,马春元,等.秸秆类生物质热解特性及其动力学研究[J].太阳能学报,2002,23(2):203-206.
    [115]Fei Yu. Renewable energy from corn residues by thermochemical conversion[D].University of Minnesota,2007.
    [116]Yongbin Ji, Tiehu Li, Li Zhu, et al.Preparation of activated carbons by microwave heating KOH activation[J].Applied Surface Science,2007,254:506-512.
    [117]阴秀丽,常杰,汪俊锋,等.生物质合成气合成甲醇[J].太阳能学报,2005,26(4):518-522.
    [118]Weijie Mao, Manabu Watanabe, Noboru Sakai. Analysis of temperature distributions in Kamaboko during microwave heating[J].Journal of Food Engineering,2005,71:187-192.
    [119]Ayappa, K.G.,Davis, H.T., Davis, E.A.,et al. Two-dimensional finite element analysis of microwave heating[J].AIChe Journal,1992,38(10):1577-1592.
    [120]S.S.R. Geedipalli, V. Rakesh, A.K. Datta. Modeling the heating uniformity contributed by a rotating turntable in microwave ovens[J].Journal of Food Engineering,2007,82:359-368.
    [121]S.Curet, O. Rouaud, L. Boillereaux. Microwave tempering and heating in a single-mode cavity:Numerical and experimental investigations[J].Chemical Engineering and Processing, 2008,47(9-10):1656-1665.
    [122]M.E.C.Oliveira, A.S.Franca. Microwave heating of foodstuffs[J].Journal of Food Engineering,2002,53:347-359.
    [123]B.Abbasi Souraki, D.Mowla. Experimental and theoretical investigation of drying behaviour of garlic in an inert medium fluidized bed assisted by microwave[J].Journal of Food Engineering, 2008,88:438-449.
    [124]Hing Wa So, Alexander Taube. Modelling and experimental investigation of microwave heating of adhesively bonded polypropylene joint[J].International Journal of Adhesion&Adhesives, 2004,24:307-312.
    [125]李勇.微波场中温度分布的数值模拟研究[D].云南师范大学硕士学位论文,2006.
    [126]何芳,徐梁,柏雪源,等.生物质热解过程吸热量[J].太阳能学报,2006,27(3):237-241.
    [127]Madhuchhanda Bhattacharya, Tanmay Basak, K.G.Ayappa. A fixed-grid finite element based enthalpy formulation for generalized phase change problems:role of superficial mushy region[J]. International Journal of Heat and Mass Transfer,2002,45:4881-4898.
    [128]J. Zhang, A.K. Datta. Mathematical modeling of bread baking process[J].Journal of Food Engineering,2006,75:78-89.
    [129]纪海翔.基于FDTD的微波加热模型分析[D].西安电子科技大学硕士论文,2004.
    [130]J. M. Hill, T. R. Marchant. Modelling microwave heating[J].Appl. Math. Modelling,1996,20: 3-15.
    [131]Givoli, D., Keller, J.B..Exact non-reflecting boundary conditions[J].Journal of Computational Physics,1989,82:172-192.
    [132]唐莹.微波加热CaO-SiO2体系材料的数值模拟研究[D].武汉理工大学硕士学位论文,2007.
    [133]王喜鹏.微波真空干燥过程的特性及应用研究[D].东北大学硕士学位论文,2006.
    [134]Campanone, L. A., Zaritzky, N.E.. Mathematical analysis of microwave heating process[J]. Journal of Food Engineering,2005,69(3):359-368.
    [135]V.R. Romano, F. Marra, U. Tammaro. Modelling of microwave heating of foodstuff:study on the influence of sample dimensions with a FEM approach[J].J. Food Eng,2005,71(3):233-241.
    [136]C.M. Liu, Q.Z.Wang, N. Sakai. Power and temperature distribution during microwave thawing, simulated by using Maxwell's equations and Lambert's law[J].Int.J.Food Sci. Technol, 2005,40:9-21.
    [137]H.W. Yang, S.Gunasekaran.Comparison of temperature distribution in model food cylinders based on Maxwell's equations and Lambert's law during pulsed microwave heating[J].Journal of Food Engineering,2004,64:445-453.
    [138]Sourav Chatterjee, Tanmay Basak, Sarit K. Das. Microwave driven convection in a rotating cylindrical cavity:A numerical study[J].Journal of Food Engineering,2007,79:1269-1279.
    [139]Barringer, S.A.,Davis, E. A., Gordon, J., et al.Microwave heating temperature profiles for thin slabs compared to Maxwell and Lambert law predictions[J].Journal of Food Science,1995, 60(5):1137-1142.
    [140]Datta, A.K., Prosetya, H.,Hu, W. Mathematical modeling of batch heating of liquids in a microwave cavity[J].Journal of Microwave Power and Electromagnetic Energy,1992,27(1):38-48.
    [141]W.B.Fu, A.C.Metaxas. A mathematical derivation of power penetration depth for thin lossy materials[J].Microwave Power Electromagn. Energy,1992,27:217-222.
    [142]Ayappa, K.G.,Davis, H.T., Crapiste, G., et al. Microwave heating:an evaluation of power[J]. Chemical Engineering Science Journal,1991,46:1005-1016.
    [143]Cheng, Y., Sakay, N., Hanzawa, T.. Effects of dieletric properties on temperature distributions in food model during microwave heating[J].Food Science Technology International,1997,3(4): 324-328.
    [144]Lin, Y. E., Anantheswaran, R. C.,Puri, V. M. Finite element analysis of microwave heating of solid foods[J].Journal of Food Engineering,1995,25:85-112.
    [145]Zhou, L.,Puri, V. M., Anantheswaran, R. C.,Yeh, G. Finite-element modeling of heat and mass transfer in food materials during microwave-heating-model development and validation[J]. Journal of Food Engineering, 1995,25(4):509-529.
    [146]Ayappa, K. G.,Davis, H.T., Davis, E. A.,et al.Analysis of microwave heating of materials with temperature-dependent properties[J].American Institute of Chemical Engineering,1991,37(3): 313-322.
    [147]孙萍.微波清洁加热的热场研究[D].华中科技大学硕士学位论文,2002.
    [1]Yu Fei, Ruan Roger, Deng Shaobo,Chen Paul and Lin Xiangyang, "Microwave Pyrolysis of Biomass," ASABE 2006,.Paper No.066051.St.Joseph, Mich:ASABE
    [2]Nott K P, Hall L D, "Advances in temperature validation of foods," Trends in Food Science & Technology, vol.10,pp.366-374,1999.
    [3]Liu Xitao, Quan Xie, Bo Longli, Zhao Yazhi, Chang Ming, "Temperature measurement of GAC and decomposition of PCP loaded on GAC and GAC-supported copper catalyst in microwave irradiation," Applied Catalysis A:General,,vol.264,pp:53-58,2004.
    [4]ZHAO Tinglin, WANG Peng, DENG Dajun, SHU Wei CAO Donghui, "Research actuality and prospect of pyrolysis of biomass," New energy industry, vol 5, pp:54-60,2007.
    [5]YUAN Zhenghong, WU Chuangzhi, MA Longlong, "Principle and technology of utilization of biomass energy," Chemical industrial Press.Beijing,289~290,2005.
    [6]Cao Qing, Xie KeChang, Bao WeiRen, Shen Shu-Guang, "Pyrolytic behavior of waste corn cob," Bioresource Technology, vol.94,pp:83-89,2004.
    [7]L Bilali, M Benchanaa, K El harfi, A Mokhlisse, "A Outzourhit. A detailed study of the microwave pyrolysis of the Moroccan (Youssoufia) rock phosphate'"Journal of Analytical and Applied Pyrolysis, vol.73,pp:l-15.,2005
    [8]LI Xianjun, ZHANG Biguang, LI Wenjun, LI Yanjun, "Temperature distribution inside wood during microwave-vacuum drying," Journal of Beijing Forestry University, vol.28,pp:128-131,2006.
    [9]Masakatsu Miura, Harumi Kaga, Akihiko Sakurai, Toyoji Kakuchi, Kenji Takahashi, "Rapid pyrolysis of wood block by microwave heating,"Journal of Analytical and Applied Pyrolysis, vol.71,pp:187-199,2004
    [10]LIANG Canbin, QIN Guangrong, LIANG Zhujian, "Electromagnetics," Higher Education Press. Beijing,2004.
    [1]E. Antonakou, A.Lappas, M.H. Nilsen, A.Bouzga, M. Stocker, Fuel 85(14) (2006) 2202.
    [2]W.T. Tsai, M.K. Lee, Y.M.Chang, Bioresource Technology 98(26) (2007) 22.
    [3]J.Shen, X.S.Wang, M. Garcia-Perez, D. Mourant, J.M. Rhodes, C.Z. Li, Fuel 88(10) (2009) 1810.
    [4]Q. Lu, W.M. Xiong, W.Z. Li, Q.X. Guo, X.F. Zhu, Bioresource Technology 100, (2009) 4871.
    [5]G. Chen, J. Andries, Z.Luo, H. Spliethoff, Energy Conversion and Management 44(11)(2003) 1875.
    [6]H.P. Yang, R. Yan, H.P. Chen, D.H.Lee, D.T. Liang, C.G. Zheng, Fuel Processing Technology 87(10) (2006) 935.
    [7]H.Huang, L. Tang, Energy Conversion and Management 50(3) (2008) 611.
    [8]W.K. Tu, J.L. Shie, C.Y. Chang, C.F. Chang, C.F. Lin, S.Y. Yang, J.T. Kuo, D.G. Shaw, Y.D. You, D.J. Lee, Bioresource Technology 100(6) (2009) 2052.
    [9]F. Yu, R. Ruan, S.B.Deng, P. Chen, X.Y. Lin, ASABE Meeting Presentation Paper (2006) Number:066051.
    [10]M. Miura, H. Kaga, A.Sakurai, T. Kakuchi, K. Takahashi, Journal of Analytical and Applied Pyrolysis 71(1)(2004) 187.
    [11]M.Q. Chen, J. Wang, M.X. Zhang, M.G. Chen, X.F. Zhu, F.F. Min, Z.C.Tan, Journal of Analytical and Applied Pyrolysis 82(1)(2008) 145.
    [12]Y.F. Huang, W.H.Kuan, S.L. Lo, C.F. Lin, Bioresource Technology 99(17) (2008) 8252.
    [13]L. Bilali, M. Benchanaa, K. El Harfi, A.Mokhlisse, A.Outzourhit, Journal of Analytical and Applied Pyrolysis 73(1)(2005)1.
    [14]K. El Harfi, A.Mokhlisse, M.B.Chanaa, A.Outzourhit, Fuel 79(7) (2000) 733.
    [15]A.Dominguez, J.A.Menendez, Y.Fernandez, J.J.Pis, J.M. Valente Nabais, P.J.M.Carrott, M.M.L. Ribeiro Carrott, Journal of Analytical and Applied Pyrolysis 79 (2007) 128.
    [16]C.D. Blasi, C.Branca, A.Santoro, B.R.A. Perez, Journal of Analytical and Applied Pyrolysis 57 (2001)77.
    [17]O. Ioannidou, A.Zabaniotou, E.V. Antonakou, K.M. Papazisi, A.A.Lappas, C.Athanassiou, Renewable and Sustainable Energy Reviews 13 (2009) 750.
    [18]C.D. Blasi, Fuel 76(10)(1997) 957.
    [19]R. Bilbao, J.Arauzo, M.B.Murillo, M.L.Salvador, Journal of Analytical and Applied Pyrolysis 43(1)(1997) 27.
    [20]M. Becidan,0. Skreiberg, J.E. Hustad, Fuel 86 (2007) 2754.
    [21]B.V. Babu, A.S.Chaurasia, Energy Conversion and Management 45(1)(2004) 53.
    [22]E.Schroder, Journal of Analytical and Applied Pyrolysis 71(2) (2004) 669.
    [23]M. Becidan,0. Skreiberg, J.E. Hustad, Journal of Analytical and Applied Pyrolysis 78(1)(2007) 207.
    [24]C.D.Blasi, C.Branca, A. Santoro, H.E. Gonzalez, Combustion and Flame 124 (2001)165.
    [25]J.M. Mesa-Perez, L.A.B.Cortez, J.D. Rocha, L.E. Brossard-Perezc,E.Olivares-Gomez,Fuel Processing Technology 86(5) (2005) 565.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700