用户名: 密码: 验证码:
基于电阻率法与激电法的隧道含水地质构造超前探测与突水灾害实时监测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国的交通、矿山和水利水电等领域正在修建大量的隧道(洞)等地下工程,普遍具有埋深大、洞线长、水文地质条件复杂等显著特点,导致隧道施工中将面临突(涌)水等诸多地质灾害。在国内外隧道特大事故中,突(涌)水地质灾害在死亡人数和发生次数上均居于前列,已经成为制约隧道等地下工程建设的瓶颈问题之一,因此,隧道施工期含水地质构造的超前探测与突涌水灾害实时监测预测已经成为亟待研究和解决的重要科技工程难题。
     针对上述难题,提出了以直流电阻率法和激发极化法等地球物理方法为先导的解决思路,以三维电阻率的正反演理论与水量估算方法研究为出发点,建立了隧道含水构造超前探测三维成像与水量估算技术体系,提出了基于电阻率层析成像法的隧道突涌水灾害实时监测预测系统与方法,相关研究成果在实际工程和物理模型试验中得到了较为成功的应用。本文的主要研究工作如下:
     1)针对三维电阻率正演这一基础性问题,利用有限单元法实现了点源三维电场的求解,提出了基于预条件共轭梯度算法与Cholesky分解算法的大型线性方程组求解效率优化方案,实现了三维电阻率勘探的快速精确正演。在三维电阻率正演的基础上,利用“等效电阻率法”实现了三维极化率的数值正演。
     2)针对三维电阻率反演成像这一核心问题,分别对线性反演方法、非线性反演方法和联合反演方法进行了研究。提出了基于光滑约束的最小二乘线性反演方法及其计算效率优化方案,该方法计算效率较高,但反演结果对初始模型依赖性较强。提出了基于光滑约束的改进遗传算法非线性反演方法,提出了变异方向控制技术解决了搜索效率极低这一阻碍遗传算法用于三维电阻率反演的瓶颈问题,有效降低了反演结果对初始模型的依赖,但存在计算时间成本大的缺陷。提出了线性方法与非线性方法相结合的联合反演方法,降低了对初始模型的依赖,在保证反演效果的前提下有效的提高了反演速度。基于上述方法编制了三维电阻率反演程序3D E-Imager,搭建了一个适用于三维电阻率反演的通用软件平台。
     3)针对隧道含水地质构造超前探测三维成像与定位这一难题,提出了基于直流电阻率法的隧道含水构造超前探测三维成像方法。总结分析了隧道含水地质构造的类型和特点并进行了概化,解答了隧道超前探测的基本问题(如三维全空间点源电场求解、测量工作方式、干扰识别与去除方法),在对含水构造超前探测进行系统正演研究的基础上总结了观测数据响应特征,确定了超前探测反演目标区域,提出了基于三维电阻率反演方法的隧道含水构造超前探测三维成像方法,利用大量的反演算例验证了电阻率法对断层、溶洞等含导水地质构造三维成像的可行性与有效性,总结了不同类型含水构造的三维成像特点。
     4)针对隧道含水构造水量估算与预测这一关键性难题,提出了基于二电流激发极化半衰时之差法的隧道含水构造水量预测方法,研发了二电流激发极化时差仪器设备,通过物理模型试验发现半衰时之差与水量之间存在线性正相关关系,在上述发现的基础上提出了隧道含水构造水量估算方法,为实现实际工程中含水构造的水量预测提供了一条可行的途径。
     5)以三维电阻率反演成像技术和半衰时之差法水量估算方法为实现手段,综合地质分析以及其他预报方法,提出了隧道含水地质构造超前三维成像与水量估算综合技术体系,并将该技术体系应用于三峡翻坝公路鸡公岭隧道、锦屏二级电站4#输水隧洞等多个隧道工程的预报实践工作中,预报结果与实际开挖情况基本一致,从工程应用角度验证了基于直流电阻率法和激发极化法的隧道含水构造超前探测三维成像与水量估算技术的可行性和有效性。
     6)针对隧道施工期突涌水地质灾害的监测与预测难题,提出了基于电阻率层析成像法的隧道突涌水灾害实时监测系统与方法。根据相关资料建立了隧道突水地电模型并进行了数值正演研究。设计了以快速反演成像方法为核心技术的具有全程自动监测、多参数综合判断等特点的电阻率层析成像实时监测系统,并将该系统应用到隧道涌水模型试验和煤矿采区突水模型试验的实时监测工作中,将渗流发展、岩层破断、突水通道形成等重要前兆过程以动态成像的方式直观形象表达出来,有效的捕捉到突水前兆信息,为突涌水灾害的预测提供了重要的参考。
     7)最后,提出了基于直流电阻率法和激电法的“含水构造超前探测——突涌水灾害实时监测与预警”两阶段隧道突涌水灾害全程预报预警技术体系的架构和思路,为本文的下一步研究工作指明了方向,也为实现实际工程中突涌水灾害的全程预报预警奠定了基础。
Massive tunnels are being constructed in the field of transportation, mine and water conservancy and hydropower in China. These tunnels generally have the remarkable characteristics of large buried depth, long tunnel line and complicated geological condition, which lead to a lot of geological hazards such as water inrush in tunnel construction period. Among the tunnel serious accidents in the world, the water inrush hazard is in the front rank from the aspect of death toll and number of occurrence. The water inrush hazard has become one of the bottleneck problems that constrain the construction of underground engineering such as tunnels. Therefore, advanced detection of the water-bearing geological structures and real-time monitoring and prediction of the water inrush hazard in tunnel construction period has become the important scientific and engineering problem to be studied and solved urgently.
     For the above problems, the solving methods with the electrical resistivity method and Induced Polarization (IP) method as the guide is proposed. Taking 3D resistivity forward modeling and inversion theory and water volume estimation method as the starting point, the technical system of 3D tomography and water volume estimation for tunnel water-bearing geological structures prediction is established. And the system and method of water inrush hazard real-time monitoring and prediction based on Electrical Resistivity Tomography (ERT) is put forward. And the research results have got successful application in practical engineering and physical model test. The main research work focuses on the following.
     1) For 3D resistivity forward modeling problem, Finite Element Method (FEM) is used to solve 3D point source electric field. And the optimization scheme of computation efficiency for solving the large linear systems based on Preconditioned Conjugate Gradient algorithm and Cholesky decomposition algorithm is proposed and rapid and accurate forward modeling of 3D resistivity detection is realized. Based on the 3D resistivity forward modeling method, equivalent resistivity method is used for 3D polarizability forward modeling.
     2) For 3D resistivity inversion and tomography problem, the linear inversion method, nonlinear inversion method and combined inversion method are studied respectively. Least square method as a linear-inversion method based on smooth constraint and its optimization scheme of computation efficiency are put forward. Least square method for inversion is efficient in computation but has a strong dependence on the initial model. The improved Genetic Algorithm (GA) as nonlinear inversion method based on smooth constraint is proposed. And the mutation direction control technology is studied for solving the problem of low searching efficiency that hinders the usage of GA method in 3D resistivity inversion. By this method, inversion result dependence on the initial model is basically eliminated, but it is quite time-consuming. The integrated inversion method combined with linear and nonlinear inversion methods is presented, by which inversion result dependence on the initial model is basically eliminated and the inversion speed is efficiently improved by the premise of guarantee of inversion effect. The 3D resistivity inversion program 3D E-Imager is compiled, building a general software platform for 3D resistivity inversion and forward modeling.
     3) 3D tomography method for tunnel water-bearing geological structure advanced detection based on direct current (DC) resistivity method is proposed. The types and characteristics of water-bearing structures are analyzed and generalized. The basic problems of tunnel advanced detection are solved (e.g., solution of point source field in 3D whole space, measurement mode, recognition and removal of the measurement disturbance).The response characters of observation data are summarized on the foundation of further study on the forward modeling of advanced detection of water-bearing structures. And the inversion object region of advanced detection is determined.3D tomography and location method for water-bearing geological structure advanced detection based on 3D resistivity inversion method is put forward. The feasibility and effectiveness of 3D tomography for water-bearing structures (e.g., water-bearing faults, water-bearing caves) has been proved by massive inversion examples. And the tomography characters for different kinds of water-bearing structures are analyzed and summarized.
     4) For the problem of water volume estimation in water-bearing structure, the water volume estimation method based on half-decay time difference of two-current induced polarization is proposed. The time domain two-current induced polarization equipment is developed. It is found that the relation between difference of half-decay time and water volume is linear positive correlation by physical model test. And the method of water volume estimation is established on the basis of above discovery, providing a feasible way for solving the problem of water volume estimation in practical engineering.
     5) Taking 3D resistivity inversion technique and water volume estimation method with half-decay time difference as the solving way, the technical system of 3D tomography and water volume estimation for tunnel water-bearing geological structures prediction is established combined with the geological analysis method and other prediction technique. And this technical system is introduced into geological forecast work in tunnel engineering (e.g., Jigongling Tunnel in Fanba Highway,4# diversion tunnel in Jinping II Hydropower Station). The prediction result is basically identical with the practical excavation result, by which the feasibility and effectiveness of 3D tomography and water volume estimation technique for water-bearing geological structures is verified in the aspect of engineering application.
     6) For the problem of water inrush geological hazard real-time monitoring and prediction in tunnel construction, the system and method of water inrush hazard real-time monitoring and prediction based on ERT method is put forward. The geo-electrical models of tunnel water inrush are established according to related data, and numerical forward modeling is performed. Taking rapid inversion and tomography method for 3D resistivity as key technology, the real-time monitoring system with ERT is designed. This system has advantages of automatic monitoring and comprehensive judgment with multiple parameters. And this system is used in tunnel water gushing model test and mining area water bursting model test for real-time monitoring work. The intuitive dynamic images of important precursory process is obtained, e.g., seepage development, rock fracture, water inrush channel formation. And the precursory information for water inrush is captured, providing an important reference for water inrush hazard prediction.
     7) In the end, the thought and framework of two-stage prediction and early-warning system for tunnel water inrush is proposed based on the DC resistivity and IP method, pointing out the direction for future study work of this paper and laying a solid foundation for prediction and early-warning of water inrush hazards in practical engineering.
引文
[1]SUN Jun, WANG Sijing. Rock mechanics and rock engineering in China:developments and current state-of-the-art [J]. International Journal of Rock Mechanics and Mining Sciences,2000(37):447-465.
    [2]王思敬.中国岩石力学与工程的世纪成就与历史使命[J].岩石力学与工程学报,2003,22(6):867-871.
    [3]钱七虎,戎晓力.中国地下工程安全风险管理的现状、问题及相关建议[J].岩石力学与工程学报,2008,27(4):649-655.
    [4]王梦恕.对岩溶地区隧道施工水文地质超前预报的意见[J].铁道勘查,2004,(1):7-9.
    [5]李术才,李树忱,张庆松,薛翊国,丁万涛,钟世航,何发亮,林玉山.岩溶裂隙水与不良地质情况超前预报研究[J].岩石力学与工程学报,2007,26(2):217—225.
    [6]李术才,薛翊国,张庆松,李树忱,李利平,孙克国,葛颜慧,苏茂鑫,钟世航,李貅.高风险岩溶地区隧道施工地质灾害综合预报预警关键技术研究[J].岩石力学与工程学报,2008,27(7):1297-1307.
    [7]姜云,王兰生.深埋长大公路隧道高地应力岩爆和岩溶涌突水问题及对策[J].岩石力学与工程学报,2002,21(9):1319-1323
    [8]李利平.高风险岩溶隧道突水灾变演化机理及其应用研究[博士学位论文][D].济南:山东大学,2009.
    [9]缪协兴,浦海,白海波.隔水关键层原理及其在保水采煤中的应用研究[J].中国矿业大学学报,2008,37(1):1-4.
    [10]王家映.地球物理反演理论[M].北京:高等教育出版社,2002.
    [11]傅良魁.电法勘探教程[M].北京:地质出版社,1983.
    [12]施龙青,韩进.底板突水机制及预测预报[M].北京:中国矿业大学出版社,2004.
    [13]吴小平,徐果明,李时灿.利用不完全Cholesky共轭梯度法求解点源三维地电场[J].地球物理学报,1998,41(6):848-855.
    [14]郑正栋,关洪军,万乐,聂永平,曹传新,丁健.稳定点电流源场三维有限差分正演模拟[J].解放军理工大学学报,2000,1(3):45-50.
    [15]XU Shi-zhe. The effect of two-dimensional terrain with point current source on resistivity surveys [J].Geophysical research letter,1993,20(10):891-894.
    [16]J.H.Coggon. Electromagnetic and electrical modeling by the finite element method [J].Geophysics,1971,36(1):132-155.
    [17]William L. Rodi. A Technique for improving the accuracy of finite element solutions for magnetotelluric data [J].Geophysical Journal of the Royal Astronomica Society,1976, 44(2):483-506.
    [18]Rijo L..Modeling of electric and electromagnetic data [Ph.D.Thesis] [D]. Utah:University of Utah,1977.
    [19]李大潜.有限元素法在电法测井中的应用[M].北京:石油工业出版社,1980
    [20]周熙襄,钟本善.电法勘探数值模拟技术[M].成都:四川科学技术出版社,1986
    [21]罗延钟,张桂青.电子计算机在电法勘探中的应用[M].武汉:武汉地质学院出版社,1987.
    [22]徐世浙.地球物理中的有限单元法[M].北京:科学出版社,1994.
    [23]Gerald W. Hohmann. Three-dimensional induced polarization and electromagnetic modeling [Jj.Geophysics,1975,40(2):309-324.
    [24]D. F.Pridmore. Three-dimensional modeling of electric and electromagnetic data using the FEM. [Ph.D.Thesis] [D]. Utah:University of Utah,1978.
    [25]阮百尧,熊彬,徐世浙.三维地电断而电阻率测深有限元数值模拟[J].地球科学,2001,26(1):73-77
    [26]孙跃.直流电阻率法的三维有限元无限元数值分析[J].岩土工程学报,2005(07):733-737.
    [27]黄俊革,阮百尧.三维电阻率测深有限元正演模拟中的边界影响[J].石油地球物理勘探,2004(S1):71-74.
    [28]Li Yuguo, Klause Spitzer.Three-dimensional DC resistivity forward modeling using finite elements in comparison with finite-difference solutions [J]. Geophysical Journal International,2002,151:924-934.
    [29]Zhou Bing, S.A.Greenhalgh. Finite element three-dimensional direct current resistivity modelling:accuracy and efficiency considerations [J]. Geophysical Journal International, 2001.145:679-688.
    [30]Zhang J., Mackie R.L. Madden T.R. Three-dimensional resistivity forward modeling and inversion using conjugate gradients [J]. Geophysics,1995,60:1313-1325.
    [31]吴小平,汪彤彤.利用共轭梯度算法的电阻率三维有限元正演[J].地球物理学报,2003,46(3):428-432.
    [32]Wu Xiaoping,Xiao Yifei,Qi Cheng,Wang Tongtong. Computations of secondary potential for 3D DC resistivity modeling using an incomplete Cholesky conjugate-gradient method [J].Geophysical Prospecting,2003,51(6):567-577.
    [33]宛新林,席道瑛,高尔根.三维电阻率正演计算中的Lanczos迭代算法[J].岩土力学,2003.24(supp):108-111.
    [34]黄俊革,阮百尧,鲍光淑.齐次边界条件下三维地电断面电阻率有限元数值模拟法[J].桂林工学院学报,2002,22(1):11-14.
    [35]黄俊革,王家林,阮百尧.三维高密度电阻率E-SCAN法有限元模拟异常特征研究[J].地球物理学报,2006,49(4):1206-1214
    [36]岳建华,刘树才.矿井直流电法勘探[M].徐州:中国矿业大学出版社,2000.
    [37]武杰,刘树才,刘志新,甘会春.应用三极断面测深技术探测井下含水构造[J].中国煤田地质,2003,15(3):46-48.
    [38]刘志新.矿井直流电法三维有限元数值算法研究[硕士学位论文][D].徐州:中国矿业大学,2002.
    [39]黄俊革,王家林,阮百尧.坑道直流电阻率法超前探测研究[J].地球物理学报,2006,49(5):1529-1538.
    [40]黄俊革,鲍光淑,阮百尧.坑道直流电阻率测深异常研究[J].地球物理学报,2005,48(1):222-228.
    [41]黄俊革,阮百尧,鲍光淑.水下直流电阻率法数值模拟[J].物探化探计算技术,2004.26(2):136-140.
    [42]Holcombe H T, Jiracek G R. Three-dimensional terrain correction in resistivity surveys [J].Geophysics,1984,49 (4):436-452.
    [43]Oppliger G L. Three-dimensional terrain corrections for misealamasse and magnetometric resistivity surveys [J].Geophysics,1984,49:1718-1729.
    [44]徐世浙,倪逸.复杂地电条件下点源三维电阻率模拟的新方法[J].物探化探计算技术,1991,11(1):13-20.
    [45]熊彬,阮百尧,罗延钟.复杂地形条件下直流电阻率异常三维数值模拟研究[J].地质与勘探,2003,39(4):60-64.
    [46]吴小平.非平坦地形条件下电阻率三维反演[J].地球物理学报,2005,48(4):932-936
    [47]吕玉增,阮百尧.复杂地形条件下四面体剖分电阻率三维有限元数值模拟[J].地球物理学进展,2006,21(4):1302-1308.
    [48]强建科.起伏地形三维电阻率正演模拟与反演成像研究[博士学位论文][D].武汉:中国地质大学,2006.
    [49]阮百尧,熊彬.电导率连续变化的三维电阻率测深有限元模拟[J].地球物理学报,2002,45(1):131-138.
    [50]岳建华,李志聃.巷道空间对矿井电测曲线影响的模型实验研究[J].煤田地质与勘探,1993,21(2):56-59.
    [51]张天伦,张白林,聂荔.A对称复合四极剖而法实验与研究[J].石油地球物理勘探,2000,35(6):730-740.
    [52]于师建,程久龙,刘宗才,孙振鹏.模拟覆岩破坏稳定电场特征的相似材料配比研究[J].山东矿业学院学报,1998,17(1):28-32.
    [53]程久龙,于师建.覆岩变形破坏电阻率响应特征的模拟实验研究[J].地球物理学报,2000,43(5):699-706.
    [54]于师建,程久龙,王玉和.覆岩破坏视电阻率变化特征研究[J].煤炭学报,1999,24(5):457-460.
    [55]于师建,程久龙.覆岩裂隙带电阻率响应特征.岩土工程学报[J].2000,22(3):336-339.
    [56]程久龙,李文,王玉和.工作面内隐伏含水体电法探测的实验研究[J].煤炭学报,2008,33(1):59-62.
    [57]Petrick W R Jr, Sill W R, Ward S H. Three-dimensional resistivity inversion using alpha centers [J].Geophysics,1981,46(8):1148-1163.
    [58]Shima H. Two-dimensional automatic resistivity inversion technique using alpha centers [J]. Geophysics,1990,55(6):682-694.
    [59]Shima H.2D and 3D resitivity image reconstruction using cross-hole data [J].Geophysics, 1992,57:1270-1281.
    [60]Li Yaoguo, Oldenberg Douglas W. Approximate inverse mappings in DC resistivity problems [J]. Geophysical Journal International,1992,109(2):343-362.
    [61]Li Yaoguo, Oldenberg Douglas W. Inversion of 3-D DC resistivity data using an approximate inverse mapping [J]. Geophysical Journal International,1994,116(3):527-537.
    [62]Zohdy A. A. R. A new method for the automatic interpretation of Schlumberger and Wenner Sounding curves [J]. Geophysics,1989,54 (2):245-253.
    [63]王兴泰,李晓芹.电阻率图像重建的佐迪(Zohdy)反演及其应用效果[J].物探与化探,1996,20(3):228-233.
    [64]毛先进,冯锐,鲍光淑 边界积分方程用于电阻率Zohdy反演的初步研究[J].地球物理学报,2000,43(4):574-579.
    [65]Park S. K., V an G. P. Inversion of p le-pole data for 3D resistivity structure beneath arrays of electrodes [J]..Geophysics,1991,56 (7):951-960.
    [66]Sasaki Y.3-D resistivity inversion using the finite-element method [J]. Geophysics,1994, 59(11):1839-1848.
    [67]阮百尧.视电阻率对模型电阻率的偏导数矩阵计算方法[J].地质与勘探,2001,37(6):39-41.
    [68]黄俊革.三维电阻率/极化率有限元正演模拟与反演成像[博士学位论文][D].长沙:中南大学,2003.
    [69]底青云,王妙月.积分法三维电阻率成像[J].地球物理学报,2001,44(6):843-852
    [70]吴小平.利用共轭梯度方法的电阻率三维正、反演研究[博士学位论文][D].合肥:中国科学技术大学,1998.
    [71]吴小平,徐果明.电阻率三维反演中偏导数矩阵的求取与分析[J].石油地球物理勘探,1999,34(4):363-372.
    [72]吴小平,汪彤彤.电阻率三维复杂结构的快速反演[J].煤田地质与勘探,2001,29(2):48-52.
    [73]胡朝俊.三维直流电法共轭梯度反演算法研究[硕士学位论文][D].北京:中国地质大学(北京),2006.
    [74]宛新林,席道瑛,高尔根,沈兆武.用改进的光滑约束最小二乘正交分解法实现电阻率三维反演[J].地球物理学报,2005,48(1):439-444.
    [75]Adam Pidlisecky, Eldad Haber, and Rosemary Knight.RESINVM3D:A 3D resistivity inversion package [J]. Geophysics,2007,72(2):H1-H10.
    [76]Gad El-Qady and Keisuke Ushijima.Inversion of DC resistivity data using neural networks [J]. Geophysical Prospecting,2001,49,417-430.
    [77]Jimmy Stephen, C.Manoj and S.B.Singh.A direct inversion scheme for deep resistivity sounding data using artificial neural networks [J]. Journal of Earth System Science,2004, 113(1):49-66.
    [78]U.K. Singh, R.K. Tiwari, S.B. Singh. One-dimensional inversion of geo-electrical resistivity sounding data using artificial neural networks—a case study [J]. Computers& Geosciences,2005,31(1):99-108.
    [79]徐海浪,吴小平.电阻率二维神经网络反演[J].地球物理学报,2006,49(2):584-589.
    [80]Dittmer, J. K., J. E. Szymanski. The stochastic inversion of magnetic and resistivity data using the simulated annealing algorithm [J]. Geophysical Prospecting,1995,43,397-416.
    [81]Raghu K. Chunduru, Mrinal K. Sen, Paul L. Stoffa.2-D resistivity inversion using spline parameterization and simulated annealing[J]. Geophysics,1996,61, (1):151-161.
    [82]卢元林,王兴泰,王若,孙仁国,王劲松.电阻率成像反演中的模拟退火方法[J].地球物理学报,1999.42(S1):225-233.
    [83]王丰,王兴泰,于万瑞.改进的模拟退火方法及其在电阻率图像重建中的应用[J].长春科技大学学报,1999.29(2):175-178.
    [84]王兴泰,李晓芹,孙仁国,电测深曲线的遗传算法反演[J].地球物理学报,1996.39(2):279-285.
    [85]李帝铨,王光杰,底青云,王妙月,王若.基于遗传算法的CSAMT最小构造反演[J].地球物理学报,2008,51(4):1234-1245.
    [86]闫永利,陈本池,赵永贵,陈赞,马晓冰,孔祥儒.电阻率层析成像非线性反演[J].地球物理学报,2009,52(3):758-764.
    [87]Shaw R.Particle swarm optimization:A new tool to invert geophysical data [J]. Geophysics,2007,72 (2):F75-F83.
    [88]傅良魁.电法勘探教程[M].北京:地质出版社,1983.
    [89]Harold O. Seigel.Mathematical formulation and type curves for induced polarization [J].Geophysics,1959,24(3):547-565.
    [90]Pelton,W. H., Rijo,L., Swift, C. M. Inversion of two-dimensional resistivity and induced polarization data [J].Geophysics,1978,43(4):788-803.
    [91]Oldenburg D. W., Li Y G. Inversion of induced polarization data [J].Geophysics,1994, 59(9):1327-1341.
    [92]Li Y G, Oldenburg D. W.3-D inversion of induced polarization data [J].Geophysics,2000, 65(6):1931-1945.
    [93]阮百尧,村上裕,徐世浙.激发极化数据的最小二乘二维反演方法[J].地球科学—中国地质大学学报,1999,24(6):619-624.
    [94]吴小平.利用共轭梯度方法的激发极化三维快速反演[J].煤田与地质勘探,2004,32(5):62-64.
    [95]刘志刚,刘秀峰.TSP在隧道隧洞超前预报中的应用与发展[J].岩石力学与工程学报,2003,22(8):1399-1402.
    [96]曾昭璜.隧道地震反射波法超前预报[J].地球物理学报,1994,37(2):268-271.
    [97]李忠 刘秀峰 黄成麟.提高TSP-202超前预报系统探测距离的技术措施的研究[J].岩石力学与工程学报,2003,22(8):1399-1402.
    [98]薛翊国,李术才,张庆松,李树忱,刘斌.TSP203超前预报系统探测岩溶隧道的应用研究[J].地下空间与工程学报,2007,3(7):1187-1191.
    [99]孙克国,李术才,张庆松,薛翊国,李树忱,许振浩.TSP在岩溶区山岭隧道预报中的应用研究[J].山东大学学报(工学版),2008,38(1):74-79.
    [100]Richard O, Edward B. Helfried B., Peter S. The application of TRT-true reflection tomography at the Unterwald Tunnel [J]. Geophysics,2002,20(2):51-56.
    [101]刘云祯.TGP隧道地震预报系统与技术[J].物探与化探,2009,33(2):170-177.
    [102]钟世航,孙宏志,王荣.陆地声纳法在隧道施工时预报断层、溶洞的效果[J].隧道建设,2007,supp:21-25.
    [103]薛国强,李貅.瞬变电磁隧道超前预报成像技术[J].地球物理学报,2008,51(3):894-900.
    [104]刘斌,李术才,李树忱,张庆松,薛翊国,钟世航.复信号分析技术在地质雷达预报岩溶裂隙水中的应用[J].岩士力学,2009,30(7):2191-2196.
    [105]安志国,底青云,王光杰.深埋长隧道洞线岩性CSAMT法分析研究[J].岩石力学与工程学报,2008,27(suppl):3286-3291.
    [106]王鹰,陈强,魏有仪,王华.红外线探测技术在圆梁山隧道突水预报中的应用[J].岩石力学与工程学报,2003,22(5):855-857.
    [107]何发亮,郭如军,李苍松,丁建芳.岩体温度法隧道施工掌子面前方涌水预报[M].成都:西南交通大学出版社,2009.
    [108]曲海峰,刘志刚,朱合华.隧道信息化施工中综合地质预报技术[J].岩石力学与工程学报,2006,25(6):1246-1251.
    [109]王锦山,王力,曹志刚,刘志刚,王亮,朱辉.厦门海底隧道综合超前地质预报实践[J].岩石力学与工程学报,2007,26(11):2309-2317.
    [110]刘树才,刘志新,姜志海.瞬变电磁法在煤矿采区水文勘探中的应用[J].中国矿业大学学报,2005,34(4):414-417.
    [111]底青云,伍法权,王光杰,陶波,龚飞,安志国,石昆法,李英贤,王若,王妙月.地球物理综合勘探技术在南水北调西线工程深埋长隧洞勘察中的应用[J].岩石力学与工程学报,2005,24(20):3631-3638.
    [112]刘树才.煤矿底板突水机理及破坏裂隙带演化动态探测技术[博士学位论文][D].徐州,中国矿业大学,2008.
    [113]岳建华,刘树才.矿井直流电法勘探[M].徐州:中国矿业大学出版社,2000.
    [114]岳建华,李志聃.矿井直流电法勘探中的巷道影响[J].煤炭学报,1999,24(1):7-10.
    [115]李学军.煤矿井下定点源梯度法超前探测试验研究[J].煤田地质与勘探,1992,20(4):59-62.
    [116]李下宝.矿井电法超前探测技术[J].煤炭科学技术,2002,30(2):1-3.
    [117]刘青雯.井下电法超前探测方法及其应用[J].煤田地质与勘探,2001,29(5):60-62.
    [118]程久龙,王玉和,于师建,李笃远.巷道掘进中电阻率法超前探测原理与应用[J].煤田地质与勘探,2000,28(4):60-62.
    [119]黄俊革,王家林,阮百尧.坑道直流电阻率法超前探测研究[J].地球物理学报,2006,49(5):1529-1538.
    [120]黄俊革,阮百尧,工家林.坑道直流电阻率法超前探测的快速反演[J].地球物理学报,2007,50(2):619-624.
    [121]刘斌,李术才,李树忱,钟世航.隧道含水构造直流电阻率法超前探测研究[J].岩土力学,2009,30(10):3093-3101.
    [122]张平松,刘盛东,曹煜.坑道掘进立体电法超前预报技术研究[J].中国煤炭地质,2009,21(2):50-53.
    [123]阮百尧,邓小康,刘海飞,周丽,张力.坑道直流电阻率超前聚焦探测新方法研究[J].地球物理学报,2009,52(1):289-296.
    [124]杨卫国,王立华,王力民.BEAM法地质预报系统在中国TBM施工中应用[J].辽宁工程技术大学学报,2006,25(supp):161-162.
    [125]朱劲,李天斌,李永林,周大川,兰富安,姜洪涛,钱琳.Beam超前地质预报技术在铜锣山隧道中的应用[J].工程地质学报,2007,15(2):258-262.
    [126]林传年,李利平,韩行瑞.复杂岩溶地区隧道涌水预测方法研究[J].岩石力学与工程学报,2008,27(7):1469-1476.
    [127]王媛,秦峰,李冬田.南水北调西线工程区地下径流模数、岩体透水性及隧洞涌水量预测[J].岩石力学与工程学报,2005,24(20):3674-3678.
    [128]王媛,王飞,倪小东.基于非稳定渗流随机有限元的隧洞涌水量预测[J].岩石力学与工程学报,2009,28(10):1986-1994.
    [129]陈酩知,刘树才,杨国勇.矿井涌水量预测方法的发展[J].工程地球物理学报,2009,6(1):68-72.
    [130]王建秀,朱合华,叶为民.隧道涌水量的预测及其工程应用[J].岩石力学与工程学报,2004,23(7):1150-1153.
    [131]孙淑琴.地面核磁共振探测地下水数值模拟与影响因素分析[博士学位论文][D].长春,吉林大学,2005.
    [132]孙淑琴,赵义平,林君,李海生.用地面核磁共振方法评估含水层涌水量的实例[J].地球物理学进展,2008,23(4):1317-1321.
    [133]Perter B.Weichman, Eugene M.Lavely,and Michael H.Ritzwoller. Theory of surface nuclear magnetic resonance with applications to geophysical imaging problem [J]. Physical Review E,2000,62(1):1290-1312.
    [134]Perter B.Weichman, Eugene M.Lavely,and Michael H.Ritzwoller.Surface nuclear magnetic resonance Imaging of large system[J]. Physical Review Letters,1999,82(20):4102-4105.
    [135]Perter B.Weichman, Dong Rong Lun, Michael, H.Ritzwoller, Eugene M.Lavely. Study of surface nuclear magnetic resonance inverse problems [J]. Journal of Applied Geophysics, 2002,50(1):129-147.
    [136]K.Titov, V.Komarov, V.Tarasov, A.Levitski. Theoretical and experimental study of time domain-induced polarization in water-saturated sands [J]. Journal of Applied Geophysics 2002,50:417-433.
    [137]K. Titov, A. Kemna, A. Tarasov, and H. Vereecken. Induced polarization of unsaturated sands determined through time domain measurements [J]. VADOSE ZONE Journal,2004, 3:1160-1168.
    [138]Andreas Hordt, Roland Blaschek, Andreas Kemna, Norbert Zisser. Hydraulic conductivity estimation from induced polarization data at the field scale— the Krauthausen case history [J]. Journal of Applied Geophysics 2007,62:33-46.
    [139]童茂松,李莉,王伟男,范清华,姜亦忠,张加举,丁柱,崔杰.岩石激发极化弛豫时间谱与孔隙结构、渗透率的关系[J].地球物理学报,2005,48(3):710-716
    [140]李金铭.激电找水的新参数——偏离度[J].勘察科学技术,1993,6:52-56.
    [141]李金铭.激发极化法找水基础理论研究[M].北京:地质出版社,1994.
    [142]谢明魁.二次时差法探测地下水[J].物化探计算技术,1987,9(4):331-337.
    [143]谢明魁,刘永炳.地下水探测仪二次时差法[J].铁道工程学报,1993,2:58-60.
    [144]钱家忠,朱学愚,吴剑锋,潘国营.矿井涌水量的灰色马尔可夫预报模型[J].煤炭学报,2000:25(1):71-75.
    [145]武强,庞炜,戴迎春,俞佳.煤层底板突水脆弱性评价的GIS与ANN耦合技术[J].煤炭学报,2006:31(3):314-319.
    [146]姜谙男,梁冰.基于最小二乘法支持向量机的煤层底板突水量预测[J].煤炭学报,2005,30(5):613-617.
    [147]胡耀青,赵阳升,杨栋,段康廉.承压水上采煤突水的区域监控理论与方法[J],煤炭学报,2000,25(3):252-255.
    [148]高延法,章延平,张慧敏,王世法.底板突水危险性评价专家系统及应用研究[J].岩石力学与工程学报,2009,28(2):253-258.
    [149]杨天鸿,唐春安,谭志宏,朱万成,冯启言.岩体破坏突水模型研究现状及突水预测预报研究发展趋势[J].岩石力学与工程学报,2007,26(2):268-277.
    [150]童敏明,秦海鹏.矿井突水监测科氏力质量流量计的设计[J].仪器仪表学报,2009,30(8):1613-1617.
    [151]王静,刘斌,隋青美,李术才,李树忱,李利平.新型FBG渗压传感器在隧道涌水模型中的应用[J].光电子·激光,2009,20(10):1286-1289.
    [152]夏元友,芮瑞,梁磊,冯仲仁.光纤渗压传感器与公路软基监控试验研究[J].岩土工程学报,2005,27(2):162-166.
    [153]姜福兴,叶根喜,王存文,张党育,关永强.高精度微震监测技术在煤矿突水监测中的应用[J].岩石力学与工程学报,2008,27(9):1932-1938.
    [154]姜福兴,宋广东,孔令海,王存文.微地震波在煤矿岩层中的传播特征研究[J].岩石力学与工程学报,2009,28(suppl):2674-2679.
    [155]工新华,祁贵仲,赵玉林.断层失稳前的扩展及电阻率前兆[J].中国科学(B辑),1984,11:1026-1038.
    [156]杜学彬,叶青,马古虎,李宁,陈军营,谭大诚.强地震附近电阻率对称四极观测的探测深度[J].地球物理学报,2008,1(6):1943-1949.
    [157]葛宝堂,李德春.岩体电阻率观测技术预报顶板失稳的前景[J].中国矿业大学学报,1993,22(2):48-52.
    [158]许宏发,钱七虎,王发军,李术才,袁亮.电阻率法在深部巷道分区破裂探测中的应用[J].岩 石力学与工程学报,2009,28(1):111-119
    [159]WHITE P A. Electrode arrays for measuring groundwater flow direction and velocity [J]. Geophysics,1994,59(2):192-201.
    [160]ARISTODEMOU E, THOMAS-BETTS A. DC resistivity and induced polarization investigations at a waste disposal site and its environments [J]. Journal of Applied Geophysics,2000,44:275-302.
    [161]郭秀军,贾永刚,黄潇雨,牛建军.利用高密度电阻率法确定滑坡而研究[J].岩石力学与工程学报,2004,23(10):1662-1669.
    [162]郝锦绮,冯锐,周建国,钱书清,高金田.岩石破裂过程中电阻率变化机理的探讨[J].地球物理学报,2002,45(3):426-434.
    [163]屠毓敏,刘国华,王振宁,李富强.龙凤山水库上石坝电阻率层析成像无损检测技术[J].岩土力学,2008,29(6):1597-1601
    [164]刘汉乐,周启友,吴华侨.轻非水相液体污染过称的高密度电阻率成像法室内监测[J].地球物理学报,2008,51(4):1246-1254.
    [165]伍开江,周启友.岩柱中水体入渗过程的高密度电阻率成像法研究[J].水文地质上程地质,2005,2:76-81
    [166]Alberto Godio, Claudio Strobbia, Gianluca De Bacco. Geophysical characterisation of a rockslide in an alpine region [J]. Engineering Geology 2006,83:273-286.
    [167]Dominique Gibert, Florence Nicollin, Bruno Kergosien, Paul Bossart,Christophe Nussbaum, Agnes Grislin-Mouezy, Frederic Conil, Nasser Hoteit.Electrical tomography monitoring of the excavation damaged zone of the Gallery 04 in the Mont Terri rock laboratory:Field experiments,modelling, and relationship with structural geology[J]. Applied Clay Science,2006,33:21-34.
    [168]A. Denis, A. Marache, T. Obellianne, D. Breysse. Electrical resistivity borehole measurements:application to an urban tunnel site [J]. Journal of Applied Geophysics,2002, 50:319-331.
    [169]张平松,刘盛东,吴荣新,曹煜.采煤而覆岩变形与破坏立体电法动态测试[J].岩石力学与工程学报,2009,28(9):1870-1875.
    [170]刘树才,刘鑫明,姜志海,邢涛,陈酩知.煤层底板导水裂隙演化规律的电法探测研究[J].岩石力学与工程学报,2009,28(2):348-356.
    [171]王鹰,陈强,魏有仪,王华.红外探测技术在圆梁山隧道突水预报中的应用[J].岩石力学与工程学报,2003,22(5):855-857.
    [172]葛颜慧,李术才,张庆松.高风险岩溶隧道突水预警防灾体系研究[J].山东大学学报(工学版),2009,39(3):122-128.
    [173]雷光耀.预处理技术与PCG算法[J].数学进展,1992,21(2):129-139.
    [174]范啸涛,季光明.预优矩阵及其构造技术[J].成都理工大学学报(自然科学版),2003,30(4):432-435.
    [175]廖敏夫,段雄英,邹积岩,从吉远.基于JPCG算法的真空灭弧室三维电场有限元计算[J].中国电机工程学报,2004,24(4):108-111.
    [176]郑超,张建海.预处理共轭梯度法在岩土工程有限元中的应用[J].岩石力学与工程学报,2007,26 Supp.l:2821-2826.
    [177]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [178]王立秋,魏焕彩,周学圣.工程数值分析[M].济南:山东大学出版社,2002.
    [179]何继善.双频激电法[M].北京:高等教育出版社,2005.
    [180]姚姚.地球物理反演基本理论与应用方法[M].武汉:中国地质大学出版社,2002.
    [181]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999.
    [182]刘福深,刘耀儒,杨强,王少立.基于改进遗传算法的拱坝位移反分析[J].岩石力学与工程学报,2005,24(23):4341-4345.
    [183]刘明贵,彭俊伟,岳向红,杨永波.基于改进遗传算法的基桩缺陷自动识别[J].岩土力学,2007,28(10):2188-2192
    [184]张社荣,何辉.改进的遗传算法在堆石体参数反演中的应用[J].岩上力学,2005,26(2):182-186.
    [185]谭桂华,聂建新,杜祥,杨慧珠.小生境遗传算法在井间走时地震层析成像中的应用[J].工程力学,2004,21(4):97-100.
    [186]班书吴,杨慧珠.小生境遗传算法在地震CT中的应用研究[J].地球物理学进展,2004,19(1):143-147.
    [187]SRINIVAS M, PATNAIK L M. Adaptive probability of crossover and mutation in genetic algorithms [J]. IEEE Transactions on Systems, Man and Cybernetics,1994,24(4):656-667.
    [188]王小平,曹立明.遗传算法——理论、应用与软件实现[M].西安:西南交通大学出版社,2002.
    [189]姚磊华,李竞生.综合改进的遗传算法反演三维地下水流模型参数[J].岩石力学与工程学报,2004,23(4):625-630.
    [190]沈继方,李焰云,徐瑞春等.清江流域岩溶研究[M].北京:地质出版社,1996.
    [191]张之淦.岩溶发生学[M].桂林:广西师范大学出版社,2006.
    [192]刘国华,王振宇,黄建平.土的电阻率特性及其工程应用研究[J].岩土工程学报,2004,26(1):83-87.
    [193]中国人民共和国建设部.城市工程地球物理探测规范[J].中国建筑工业出版社,2007.
    [194]R. de Franco, G. Biella, L. Tosi, P. Teatini, A. Lozej, B. Chiozzotto e, M. Giada e, F. Rizzetto b,C. Claude, A. Mayer, V. Bassan, G. Gasparetto-Stori.Monitoring the saltwater intrusion by time lapse electrical resistivity tomography:The Chioggia test site (Venice Lagoon, Italy) [J].Journal of Applied Geophysics,2009,69:117-130.
    [195]Ali A. Nowroozi, Stephen B. Horrocks, Peter Henderson.Saltwater intrusion into the freshwater aquifer in the eastern shore of Virginia:a reconnaissance electrical resistivity survey [J].Journal of Applied Geophysics,1999,42:1-22.
    [196]李树忱,冯现大,李术才,李利平,李国莹.新型固流耦合相似材料的研制及其应用[J].岩石力学与工程学报,2010,29(2):281-288

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700