用户名: 密码: 验证码:
旋耕—碎茬仿生刀片
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤洞穴动物鼹鼠具有极高的掘土效率,其爪趾的几何结构为触土部件几何形状及力学性能的优化提供了学习对象。目前国内外旋耕或碎茬作业单机居多,若在同一机具上完成两种作业则需采用两个刀辊、两种刀片及两套耕作刀片固定部件,增加了机器成本。
     为实现旋耕-碎茬机具的通用,在耕作质量满足后续农艺要求的前提下,达到机具节能增效的目标,本研究工作以鼹鼠爪趾为仿生原型,综合运用农机具设计方法及仿生技术,进行旋耕-碎茬通用刀片和旋耕-碎茬仿生刀片的设计及试验研究。
     利用逆行工程和快速成型技术,加工出鼹鼠爪趾实体模型,考察其爪趾几何结构和排列方式对切挖性能的影响;通过对旋耕、碎茬作业中刀片运动参数和旋耕刀、碎茬刀主要结构参数的分析,在宽型旋耕刀和L型碎茬刀基础上设计出9种不同结构参数组合的旋耕-碎茬通用刀片;以功率消耗为评价指标,在室内土槽对设计出的旋耕-碎茬通用刀片分别进行旋耕和碎茬试验,确定通用刀片结构参数优化组合;以前进速度、刀辊转速及作业耕深为试验因素,并考虑刀辊转速与作业耕深之间的交互作用,安排土槽试验考察上述工作参数对功率消耗的影响;在土槽中分别进行旋耕-碎茬通用刀片与国标旋耕刀的旋耕对比试验及通用刀片与常见碎茬刀的碎茬对比试验,并进行田间试验以考察通用刀片的作业质量;而后应用鼹鼠爪趾几何结构于旋耕-碎茬通用刀片正切面结构设计,设计出9种旋耕-碎茬仿生刀片,通过土槽试验遴选出具有优化仿生结构的仿生刀片,进行旋耕-碎茬仿生刀片和旋耕-碎茬通用刀片的对比试验;对安装不同刀片(旋耕-碎茬仿生刀片、国标旋耕刀及常见碎茬刀)的耕整机进行功率消耗电测,对比安装不同刀片时机具的功率消耗和作业质量;利用JMM转盘式磨料磨损试验机模拟田间试验条件,进行旋耕-碎茬仿生刀片的耐磨性研究。
     上述研究工作为实现旋耕-碎茬作业的通用,以及驱动型耕作机具关键部件的优化设计提供了技术参考,具有实际应用价值。
Mole rat, as a typical soil-burrowing animal, is called as“living grab”because its high working efficiency during digging procedure. It can dig a long tunnel in length over 91m within one night. The claws of mole rat are better biomimetic prototypes for the soil cutting and excavating tools. The geometrical characteristics of the claws of mole rat can provide useful biologic information for the biomimetic cutting technology and design of soil cutting and excavating tools.
     Compared with the traditional moldboard plowing, rotary tillage has some advantages, such as, improvement of the working quality and efficiency, reduction of the working times required for machine in farmland, and therefore, lightening the compaction of soil, as a result, a good surroundings for seed growth can be developed. Single soil-rototilling or stubble-breaking machine is dominant in the world at present. The machine which can run these two kinds of work (soil-rototilling and stubble-breaking) need to be equipped with two rotors and two sets of blades, resulting in higher manufacturing and using cost.
     In order to promote machines in operating efficiency, in reducing of the cost of production and utilization, in combination of the soil-rototilling and stubble-breaking operation on one machine, soil-rototilling and stubble-breaking universal blades (universal blade for short) and biomimetic blades learning from the geometrical structure feature of the claws of mole rat (Scaptochirus moschatus) were designed taking a precondition for requiring for agricultural production. The power consumption and working quality of these two kinds of blades were examined through experiments.
     The solid model of the claws of the mole rat were manufactured using reverse engineering and rapid prototype technology. The effects of the geometrical structure and arrangement of the claw’s toes on soil-cuting and soil-excavating performance were investigated in an indoor soil bin. It was found that, the horizontal resistance of solid model of claw of mole rat was decreased by 12.80% as compared with the contrast model, because of the effects of geometrical structure of the cutting edge. The soil-cutting resistance of the models with arrangement in arc was reduced as compared as the models with arrangement in straight line.
     The bending angle, bending radius, sliding cutting angle of frontal cutting edge and working width of single blade were taken as structure parameters through analysis of the motion parameters of blade during soil-rototilling and stubble-breaking and nine kinds of soil-rototilling and stubble-breaking universal blades were designed based on the L-type stubble-breaking blade and the wide soil-rototilling blade. Power consumption per unit working width was taken as the evaluation index. The optimal structure parameters of the universal blade were determined through the experiments of soil-rototilling and stubble-breaking in an indoor soil bin. It was demonstrated that the optimal combination of structure parameters were as a bend angle of 67°, a bending radius of 20 mm, a sliding cutting angle of frontal cutting edge of 12°and a working width of single blade of 60 mm. The tillage depth, rotary speed of the rotor and the working speed of the machine were taken as the experimental factors. The interaction of rotary speed and tillage depth on the power consumption was considered. Power consumption tests of a single universal blade were performed in the indoor soil bin to determine the influences of working parameters that mentioned above on power consumption in soil-rototilling and stubble-breaking operations. Soil bin tests indicated that the parameter that had significant influence on power consumption is the rotary speed followed by the tillage depth and the working speed had less influence. There was significantly interaction of rotary speed and tillage depth. Using regression design method, the regression equations describing the relations between power consumption and the above parameters were established. Then the working parameters were substituted in the regression equations, it was concluded that the siol-rototilling torque of single blade were 26.75 N·m~40.82 N·m and 45.97 N·m~56.01 N·m during stubble–breaking operations. The rototilling contrast test between the soil-rototilling and stubble-breaking universal blade and national standard rototilling blade and stubble-breaking contrast tests between the soil-rototilling and stubble-breaking universal blade and the common stubble-breaking blade were performed. The results showed that the power consumption per unit working width of the soil-rototilling and stubble-breaking universal blade was less than that of national standard rototilling blade, but more than that of the typical stubble-breaking blade. When they had the same width, the power consumption of soil-rototilling and stubble-breaking universal blade was less than the national standard rototilling blade and the typical stubble-breaking blade, which proved that it was reasonable and feasible to select the structure parameters of the soil-rototilling and stubble-breaking universal blade. Then, in order to examine the working quality, the soil-rototilling and stubble-breaking universal blades were mounted on a rototilling-stubble -breaking machine to perform soil-rototilling and stubble-breaking tests respectively. Field tests showed that the stability of the tillage depth was over 93%, soil-crushing rate, stubble coverage rate and stubble-breaking rate were 87.9%, 81.8%, 87.2% on average respectively, which meet the agrotechnical requirements, and realize the an integrated structure of soil-rototilling and stubble-breaking.
     The geometrical structure of the claws of mole rat was applied for designs of the frontal cutting surface of soil-rototilling and stubble-breaking universal blade. 9 kinds of biomimetic blades for soil-rototilling and stubble-breaking learning from the geometrical structure featrues of the claws of mole rat (biomimetic blade for short) were designed. The optimal biomimetic structure of biomimetic blade were determined through the experiments of soil-rototilling and stubble-breaking in the indoor soil bin and the optimal combination of biomimetic structure parameters were as follows: three arc concave teeth was arranged in a identical distance on the frontal cutting surface with a central angle of 60°. The three arc concave teeth on frontal cutting surface could change the contact area between soil and biomimetic blade during rotating proceedure. The contact area between the biomimetic blade and soil was decreased as compared with the soil-rototilling and stubble-breaking universal blade. The decrescent area mainly happens at outside edge of frontal cutting surface, and the penetration performance of biomimetic blade was enhanced by the geometrically structured cutting edge. The comparative experiments between the biomimetic blade and common universal blade were conducted. The tests showed that, as compared with universal blade, the torque of biomimetic blade was decreased by 3.91 % during soil-rototilling and 1.62 % during stubble-breaking. And the working quality of biomimetic blade met the requirements of the national standard.
     The power consumption of biomimetic blade, national standard rototilling blade and common stubble-breaking blade were tested using electric measurement method. The power consumption of unit area of soil-cutting was taken as test index since the ranges of soil-cutting were different. The results of field tests showed that the working quality of soil-rototilling of biomimetic blade were better than that of the national standard rototilling blade during the experiments of soil-rototilling. Also the power consumption of unit area of soil-cutting of biomimetic blade were less than that of the common stubble-breaking blade, even though the working quality of stubble-breaking of biomimetic blade was worse than that of the typical stubble-breaking blade. The working quality of biomimetic blade during stubble-breaking still met the requirement of national standard of China.
     The abrasive wear of biomimetic blade was tested on JMM testing machine which can effectively imitate field testing conditions. Abrasive wear test results showed that the abrasive wear loss of mass of the national standard rototilling blade was less than biomimetic blade, but the abrasive wear mass rate were closed. And, while the size wear loss of spinous cutting edge of biomimetic blade was largest, the average size reduction due to abrasive wear of biomimetic blade was less than the national standard rototilling blade, because of the cancave parts of the biomimetical teeth were protected by the tooth tips of cutting edge.
     The research work described about the biomimetic blades for soil-rototilling and stubble-breaking in this dissertation provides a reference for unity of soil-rototilling and stubble-breaking operations and improvement and optimization and design of key soil-cultivating parts of agricultural machines. The results have a practical application value.
引文
[1] Jin Tong, Jiyu Sun, Chen Donghui, Zhang Shujun. Geometrical features and wettability of dung beetles and potential biomimetic engineering applications in tillage implements[J]. Soil and Tillage Research, 2005, 80(1&2): 1~12.
    [2]任露泉,徐晓波,陈秉聪,崔相旭,王煜明,张伯兰,葛辽海,金桂萍.典型土壤动物爪趾形态的初步分析[J].农业机械学报, 1990, (2): 44~49.
    [3]陈秉聪,任露泉,徐晓波,崔相旭,王煜明,张伯兰,葛辽海,金桂萍.典型土壤动物体表形态减粘脱土的初步研究[J].农业工程学报, 1990, 6(2): 1~6.
    [4]任露泉,陈德兴,胡建国.土壤动物减粘脱土规律的初步分析[J].农业工程学报, 1990, 6(1): 15~20.
    [5]李安琪,任露泉,陈秉聪,崔相旭.蚯蚓体表液的组成及其减粘脱土机理分析[J].农业工程学报, 1990, 6(3): 8~14.
    [6]崔相旭,张宁,王煜,任露泉,徐晓波,陈秉聪,李安琪.穿山甲鳞片成分与结构及其减粘脱土分析[J].农业工程学报, 1990, 6(3): 15~22.
    [7]佟金,马云海,陈东辉,阎久林,孙霁宇,周江.仿生开沟器[P].中国: 200610163265.9, 2007.06.06.
    [8]杜卫刚.开沟器仿生设计及其试验分析[D].长春:吉林大学, 2004.
    [9]佟金,郭志军,任露泉.仿生减阻深松铲柄[P].中国: 200410010902.X, 2004.06.04.
    [10]陈东辉.典型生物摩擦学结构及仿生[D].长春:吉林大学, 2007.
    [11]丛茜,王连成,任露泉,陈秉聪,周淑辉,李安琪.波纹非光滑仿生推土板的减粘降阻的试验研究[J].建筑机械, 1996,(3): 28~30.
    [12]任露泉,丛茜,吴连奎,方瑛.仿生非光滑推土板减粘降阻的试验研究[J].农业机械学报, 1997, 28(2): 1~5.
    [13]任露泉,佟金,李建桥,陈秉聪.松软地面机械仿生理论与技术[J].农业机械学报, 2000, 31(1): 5~9.
    [14]韩志武,崔占荣,任露泉,李剑桥,佟金.非光滑仿生曲面形推土铲推土阻力试验研究[J].农业机械学报, 2002, 33(2): 125~126.
    [15] Li Jianqiao, Ren Luquan, Cui Zhanrong, Tong Jin, Chen Bingcong. Experiments on plow mold boards with bionics unsmoothed surface[C]. In Proceedings 13th International Conference of the ISTVS, Munich, 1999: 241~248.
    [16]李建桥,任露泉,刘朝宗,陈秉聪.减粘降阻仿生犁壁的研究[J].农业机械学报, 1996, 27(2): 1~4.
    [17]邓石桥.仿生犁壁的减粘机理及其仿生设计[D].长春:吉林大学, 2004.
    [18]施新泉.原来如此—千姿万态的动物[M].上海:上海科学技术文献出版社, 2005.
    [19]刘凌云,郑光美.普通动物学[M].北京:高等教育出版社, 1997.
    [20]刘俊.脊椎动物的穴居及其历史[J].百科知识, 2000, (8): 32~33.
    [21]高焕文,李问盈.保护性耕作技术与机具[M].北京:化学工业出版社, 2004.
    [22]中国农业机械化科学研究院.农业机械设计手册(上)[M].北京:机械工业出版社, 1988.
    [23]李宝筏,杨文革,王勇,邱立春,吴仕宏,王瑞丽,林静.东北地区保护性耕作研究进展与建议[J].农机化研究, 2004, (1): 9~13.
    [24] Temesgen M., Hoogmoed W.B., Rockstrom J., Savenije H.H.G.. Conservation tillage implements and systems for smallholder farmers in semi-arid Ethiopia[J]. Soil and Tillage Research, 2009, 104(1): 185~191.
    [25]赵海波,韩金福,田士军. SGTN-140型双轴灭茬旋耕机的设计与研究[J].中国农机化, 2003, (2): 30~31.
    [26]岳芹,李艳,李淑廷,王洪涛.机械旋耕灭茬技术的发展[J].农业装备与车辆工程, 2007, (5): 10~12.
    [27]盛和林,王培潮,陆厚基,祝龙彪.哺乳动物学概论[M].上海:华东师范大学出版社, 1985.
    [28]动物趣闻.网易科技频道[EB/OL]: http://tech.163.com/04/112- -2/18/15QGU91U0009rt.html.
    [29] Brett R. A.. The ecology of naked mole-rat colonies: burrowing, food, and limiting factors. The biology of the naked mole-rat[M]. Princeton University Press, 1991.
    [30] Brett R. A.. The ecology and behaviour of the naked mole rat Heterocephalus glaber (Rüppell)(Rodentia: Bathyergidae)[D]. London: University of London, 1986.
    [31] Spinks A. C.. Sociality in the common mole-rat, Cryptomys hottentotus hottentotus: the effects of aridity[D]. Cape Town: University of Cape Town, 1998.
    [32] Zuri, I., Terkel J.. Summer tunneling activity of mole rats(Spalax ehrenbergi) in a sloping field with moisture gradient[J]. Mammalia(Paris), 1997, 61(1): 47~54.
    [33] ?umbera R., Burda H., Chitaukali W N, KubováJ.. Silvery mole-rats (Heliophobius argenteocinereus, Bathyergidae) change their burrow architecture seasonally[J]. Naturwissenschaften, 2003, 90(8): 370~373.
    [34] Jarvis J.U.M., Sale J. B.. Burrowing and burrow patterns of East African mole-ratsTachyoryctes, Heliophobius and Heterocephalus[J]. Journal of Zoology, 1971, London 163: 451~479.
    [35] Lovegrove B. G., Painting S.. Variations in the foraging behaviour and burrow structures of the Damara mole rat Cryptomys damarensis in the Kalahari Gemsbok National Park[J]. Koedoe, 1987, 30: 149~163.
    [36] Jarvis J.U.M, Bennett N. C., Spinks A. C.. Food availability and foraging by wild colonies of Damaraland mole-rats (Cryptomys damarensis): implications for sociality[J]. Oecologia, 1998, 113(2): 290~298.
    [37] Heth G.. Burrow patterns of the mole rat Spalax ehrenbergi in two soil types(terra-rossa and rendzina) in Mount Carmel, Israel[J]. Journal of Zoology, 1989, 217(1): 39~56.
    [38] Heth G., Todrank J., Begall S., Koch R., Zilbiger Y., Nevo E., Braude S., Burda H.. Odours underground: subterranean rodents may not forage"blindly"[J]. Behavioral Ecology and Sociobiology, 2002, 52(1): 53~58.
    [39] Barnett M., Bennett NC., Telford SR., Jarvis JUM.. Foraging in the subterranean social Damaraland mole-rat, Cryptomys damarensis: an investigation into size-dependent geophyte utilization and foraging patterns[J]. Canadian Journal of Zoology, 2003, 81(4): 743~752.
    [40] Kimchi T., Terkel J.. Seeing and not seeing [J]. Current Opinion in Neurobiology, 2002, 12(6): 728~734.
    [41] Kimchi T., Terkel J.. Spatial learning and memory in the blind mole-rat in comparison with the laboratory rat and Levant vole[J]. Animal Behaviour, 2001, 61(1): 171~180.
    [42] Kimchi T., Terkel J.. Comparison of the role of somatosensory stimuli in maze learning in a blind subterranean rodent and a sighted surface-dwelling rodent[J]. Behavioural Brain Research, 2004, 153(2): 389~395.
    [43] Kimchi T., Terkel J.. Magnetic compass orientation in the blind mole rat Spalax ehrenbergi[J]. Journal of Experimental Biology, 2001, 204(4): 751~758.
    [44] Heffner R. S., Heffner H E. Hearing and sound localization in blind mole rats(Spalax ehrenbergi)[J]. Hearing Research, 1992, 62(2): 206~216.
    [45] Heffner R. S., Heffner H E. Degenerate hearing and sound localization in naked mole rats (Heterocephalus glaber), with an overview of central auditory structures[J]. The Journal of Comparative Neurology, 1993, 331(3): 418~433.
    [46] Bruns, V., Muller M., Hofer W., Heth G.. Nevo E.. Inner ear structure and electrophysiological audiograms of the subterranean mole rat Spalax ehrenbergi[J].Hear Hear Research, 1988. 33(1): 1~9.
    [47] Zuri I., Gazit I., Terkel J.. Effect of Scent-Marking in Delaying Territorial Invasion in the Blind Mole-Rat Spalax Ehrenbergi[J]. Behaviour, 1997, 134(11&12): 867~880.
    [48] Nevo E., Bodmer M., Heth G.. Olfactory discrimination as an isolating mechanism in speciating mole rats[J]. Cellular and Molecular Life Sciences (CMLS), 1976, 32(12): 1511~1512.
    [49] Klauer G., Burda H., Nevo E.. Adaptive Differentiations of the Skin of the Head in a Subterranean Rodent, Spalax ehrenbergi[J]. Journal of Morphology, 1997, 233(1): 53~66.
    [50] Kimchi T., Terkel J.. Importance of touch for the blind mole rat (Spalax ehrenbergi) in learning a complex maze[J]. Israel Journal of Zoology, 2000, 46(2): 156~177.
    [51] Scott R G, Richardson R C. Realities of biologically inspired design with a subterranean digging robot example[C]. Proceedings of the 6th IASTED International Conference on Robotics and Applications,Cambridge, MA, USA, 2005: 226~231.
    [52]陈均,潘采庚,高粱润.下切式节能刀刃口线设计研究[J].江苏工业学院学报, 1992, 13(4): 20~24.
    [53]王国林,王新忠,桑正中.斜置式旋耕研究初探[J].农业机械学报, 1998, 29(增刊): 17~21.
    [54]孔令德,桑正中,王国林.斜置旋耕试验研究[J].农业机械学报, 2000, 31(2): 30~34.
    [55]桑正中,王长兵.潜土逆转耕耘研究展望[J].农业工程学报, 1994, 10(3): 88~92.
    [56]刘永清,桑正中.潜土逆转旋耕刀参数对耕作功耗的影响[J].江苏理工大学学报(自然科学版), 2001, 22(4): 15~18.
    [57]刘孝民,桑正中.潜土逆转旋耕抛土研究[J].农业机械学报, 1996, 27(4): 40~44.
    [58] Hendrick J.G., Gill W.R.. Rotary-tiller design parameters, Part I: Direction of rotation[J]. Transation of the ASAE, 1971, 14(4): 669~674.
    [59] Hendrick J.G., Gill W.R.. Rotary-tiller design parameters, Part II: Depth of tillage[J]. Transation of the ASAE, 1971, 14(4): 675~678.
    [60] Hendrick J.G., Gill W.R.. Rotary-tiller design parameters, Part III: Ratio of peripheral and forward velocities[J]. Transation of the ASAE, 1971, 14(4): 679~683.
    [61] Hendrick J.G., Gill W.R.. Rotary-tiller design parameters, Part IV: Blade clearance angle[J]. Transation of the ASAE, 1974, 17(1): 4~7.
    [62] Hendrick J.G., Gill W.R. Rotary tiller design parameters, Part V: Kinematics [J]. Transation of the ASAE, 1978, 21(4): 658~660.
    [63] Kanafojsk, Karwowski G.. Agricultural machines theory and construction[M]. Warsaw, 1976.
    [64] Armijo C.B., Gillum M.N., Van Doorn D.W.. Varying the number of blades on the roller-gin rotary knife[J]. Applied Engineering in Agriculture, 2004, 20(4): 399~405.
    [65] Lee K.S., Park S.H., Park W.Y., Lee C.S.. Strip Tillage Characteristics of rotary tiller blades for use in a dryland direct rice seeder[J]. Soil and Tillage Research, 2003, 71(1): 25~32.
    [66] Larney F. J., Bullock M. S.. Influence of soil wetness at time of tillage and tillage implement on soil properties affecting wind erosion[J]. Soil and Tillage Research, 1994, 29 (1): 83~95.
    [67] Yang Mingyuan, Patrick Van Damme. Impact of crop residues on soil fertility in conservation tillage[C]. Beijing: CIGR International Conference, 2004.
    [68]吴子岳.玉米秸秆与根茬切碎模型及其机具的研究[D].北京:中国农业大学, 2000.
    [69]中国农机学会农机化学会科技交流中心.农作物秸秆利用技术与设备[M].北京:中国农业出版社, 1996: 67~70.
    [70]毛罕平,陈翠英.秸秆还田机研制现状[J].农业机械学报, 1996, 27(2): 152~154
    [71]陈小兵,陈巧敏.我国机械化秸秆还田技术现状及发展趋势[J].农业机械, 2000, (4): 14~15.
    [72]曹建军.秸秆还田机械化技术及应用前景[J].中国农机化, 1997, (3): 104~111.
    [73]丛维军. 1G-4型灭茬机的试验研究[J].农牧与食品机械, 1993, (3): 16~17.
    [74]韩国靖. 2BY-2硬茬播种机的研究[D].长春:吉林大学, 2004.
    [75]文立阁,李建桥,崔占荣.我国灭茬机具及其刀具的发展现状[J].农机化研究, 2006(5): 10~13.
    [76]胡少兴,马旭,马成林.根茬粉碎还田机除茬刀滚功耗模型的建立[J].农业机械学报, 2000, 31(3): 35~38.
    [77]吴子岳,高焕文,陈君达.秸秆切碎灭茬机的模型研究与参数优化[J].农业机械学报, 2001, 32(5): 44~46.
    [78]张世芳,赵树朋,马跃进,李久熙,李纪刚,张秀花.秸秆还田机鞭式刀具的研究[J].农业机械学报, 2004, 35(2): 59~61.
    [79]倪长安,苗全生,刘玉,师清翔,高春艳,庞靖.玉米根茬破碎还田装置设计与试验[J].农业机械报, 2008, 39(7): 68~71.
    [80]贾洪雷,陈忠亮.新型旋耕碎茬通用机的试验与设计[J].农业机械学报, 1998, 29(增刊): 26~30.
    [81]郭红,李静,王玮.关于旋耕机、碎茬机一体化的可行性研究[J].吉林工学院学报, 1999, 20(3): 47~50.
    [82]贾洪雷,陈忠亮,郭红,李仁杰,李行.旋耕碎茬工作机理研究和通用刀辊的设计[J].农业机械学报, 2000, 31(4): 29~32.
    [83]李源俸,陈毅培.变速灭茬旋耕机的设计研究[J].南方农机研究推广, 2003, (3): 31.
    [84]贾洪雷.东北蓄水保墒耕作技术及其配套的联合少耕机具研究[D].长春:吉林大学, 2004.
    [85] Jia Honglei , Ma chenglin, Li Guangyu, Huang Dongyan, Liu Zhaochen. Combined rototilling-stubble-breaking-planting machine[J]. Soil and Tillage Research, 2007, 96(1&2): 73~82.
    [86] Jia Honglei,Ma chenglin, Tong Jin. Study on universal blade rotor for rototilling and stubble-breaking machine[J]. Soil and Tillage Research, 2007, 94(1): 201~208.
    [87]贾洪雷,陈忠亮,马成林,刘昭辰,杨青,李广宇.北方旱作蓄水保墒耕作模式配套装备应用分析[J].农业机械学报, 2008, 39(5): 197~200.
    [88]贾洪雷,陈忠亮,马成林,刘昭辰,杨青,李广宇.北方旱作农业区耕作体系关键技术[J].农业机械学报, 2008, 39(11): 59~63.
    [89]贾洪雷,汲文峰,韩伟峰,谭宏杰,刘昭辰,马成林.旋耕-碎茬通用刀片结构参数的优化试验[J].农业机械学报, 2009, 40(7): 45~50.
    [90]贾洪雷,黄东岩,马成林,王增辉,谭宏杰,李春胜,李广宇,刘昭辰.仿生旋耕碎茬通用刀片[P].中国: 200610163206.1, 2009.12.16.
    [91]朱祖祥.土壤学(上下册)[M].北京:中国农业出版社, 1983.
    [92]朱祖祥.中国农业百科全书(土壤卷).北京:中国农业出版社, 1996.
    [93]鲁如坤.土壤农业化学分析方法.北京:中国农业出版社, 1999.
    [94]黄昌勇.土壤学[M].北京:中国农业出版社, 2000.
    [95]熊顺贵.基础土壤学[M].北京:中国农业大学出版社, 2001.
    [96]南京水利科学研究院土工研究所.土工试验技术手册[M].北京:人民交通出版社, 2003.
    [97]常用快速成型基本方法简介.网易博客[EB/OL]: http://3shape.blog.163.com/- blog/static/11350444320092300029623/.
    [98]王广春,赵国群.快速成型与快速模具制造技术及其应用[M].北京:机械工艺出版社, 2004.
    [99] FDM快速成型技术.网易博客[EB/OL]: http://3shape.blog.163.com- /blog/static/11350444320092300252681/.
    [100] Instruction manual of type 9327A. Kistler instrumente AG winterthur[M]. CH 8408 winterthur, Switzerland, 2003.
    [101]黄贤武,郑筱霞.传感器原理及应用[M].成都:电子科技大学出版社, 2004: 127~132.
    [102]杨清梅,孙建民.传感器与测试技术[M].哈尔滨:哈尔滨工程大学出版社, 2004: 89~93.
    [103]张锐.基于离散元细观分析的土壤动态行为研究[D].长春:吉林大学, 2005.
    [104]任露泉.试验优化设计与分析[M].长春:吉林科学技术出版社, 2001.
    [105]李守仁,林金天.驱动型土壤耕作机械的理论与计算[M].北京:机械工业出版社, 1997.
    [106]江苏工学院.农业机械学(上)[M].北京:中国农业机械出版社, 1988.
    [107]北京农业工程大学.农业机械学(上册)[M].北京:中国农业出版社, 1994.
    [108] W.R.吉尔, G..E.范德伯奇.耕作和牵引土壤动力学[M].北京:中国农业机械出版社, 1983.
    [109]陈翠英.旋耕机速度参数的选择[J].农业机械学报, 1985, (2): 30~37.
    [110]吉林省农业机械研究院.系列耕整联合作业机技术文件[G].长春: 2004: 7~40.
    [111]广灵县旋耕打茬机设计组.旋耕打茬机运动参数的选择[J].粮油加工与食品机械, 1977, (09): 13~22.
    [112]王怀奥,王勇.灭茬机旋转部件运动参数的优化设计[J].农机化研究, 2005, (5): 106~107.
    [113]丁为民,王耀华,彭嵩植.旋耕弯刀正切刃展开线的计算与模拟[J].农业工程学报, 2003, 19(4): 103~106.
    [114]丁为民,彭嵩植.旋耕弯刀正切刃设计方法的研究[J].农业机械学报, 1995, 26(4): 56~61.
    [115]陈均,李国文,刘忠德.下切式节能旋耕刀正切刃面设计研究[J].江苏工学院学报, 1993, 14(6): 13~17.
    [116]彭嵩植,吴德光.旋耕机工作部件设计方法的研究(二)[J].江苏工学院学报, 1983, (1): 41~56
    [117]中华人民共和国国家标准.旋耕弯刀和刀座, GB/T 5669-1995.
    [118] Gupta J. P., Pandey K. P.. Performance of rotary tiller tynes under wet land condition[J]. Agricultural mechanization in Asia, 1996, 27(1):16~20.
    [119]王玉岚.站场线路平面计算[M].北京:中国铁道出版社, 1985: 3~13.
    [120]陈均,戴军华,潘采庚,高粱润.下切式节能旋耕刀研究[J].农业机械学报, 24(1): 37~42.
    [121]陈孟科,申屠留芳,邵鹏.正转灭茬机刀片的曲线设计[J].旋耕农机化研究, 2008, (2): 107~109.
    [122]郑恩义.旋耕刀的强度分析[J].粮油加工与食品机械, 1980, (9): 56~58.
    [123]廖奇珍.旋耕刀产品质量现状与使用寿命试验[J].农机质量与监督, 1996, (Z1): 19~20.
    [124]韩伟峰.仿生智能整地机通用刀辊设计与试验研究[D],长春:吉林大学, 2008.
    [125]奚廷孔,张艳新.土壤样品的采集和处理技术[J].广西农业学报, 2007, 22(3): 36~37.
    [126]何迅,巩细民.土壤样品的采集与制备技术[J].湖北农业科学, 2003, (3): 47~48.
    [127]张学礼,胡振琪,初士立.土壤含水量测定方法研究进展[J].土壤通报, 2005, 36(1): 118~123.
    [128]吴涛,张荣标,冯友兵.土壤水分含量测定方法研究[J].农机化研究, 2007, (12): 213~217.
    [129]薛伟,周宏明,李峰平.旋耕机运动参数的优化设计方法[J].中国制造业信息化, 2004, 33(4): 93~98.
    [130]汲文峰,贾洪雷,佟金,谭宏杰,刘昭辰,马成林.通用刀片功率消耗影响因素分析与田间试验[J].农业机械学报, 2010, 41(2): 35~41.
    [131]孙廷琮.农业机械测试技术[M].北京:中国农业机械出版社, 1985.
    [132]黄长艺,严普强.机械工程测试技术基础[M].北京:机械工业出版社, 1995
    [133]张洪亭,高得福.测试技术[M].沈阳:东北大学出版社, 1996.
    [134]侯国章.测试与传感技术[M].哈尔滨:哈尔滨工业大学出版社, 1998.
    [135]施文康,余晓芬.检测技术[M].北京:机械工业出版社, 2000.
    [136]力、力矩及压力测量[EB/OL]: http://me.seu.edu.cn/jmp/jpkc2006/kczd/zjb -h11.htm
    [137]测量扭矩时应变片的布置和组桥方式[EB/OL]: http://me.seu.edu.cn/jmp/jpkc- 2006/kczd/kc/chap_11/11_2_1_1.htm
    [138]湘仪动力测试仪器有限公司.集流环使用说明书[M].
    [139]徐顺达.旋耕机功率消耗测定技术[J].农机与食品机械, 1996, (2): 9~10.
    [140]肖经文.用拖拉机综合测试仪测试旋耕机功耗[J].拖拉机与农用运输机, 1998, (6): 43~45.
    [141]黄建洪.农机耐磨零件的硬度设计[J].金属热处理, 2001, 26(7): 7~11.
    [142]王洪发.金属耐磨材料的现状与展望[J].铸造, 2000, 49(增刊): 577~581
    [143]张兴龙,周平安,杨振桓.犁铧的失效分析[J].摩擦磨损, 1985, (3): 14~18.
    [144]田振祥,孙维连,李凌云.渗硼犁铧和等温淬火犁铧的磨损失效分析[J].摩擦磨损, 1985, (4): 13~18.
    [145]亢银霞,王频,曹鲁波.犁铧刃口磨损规律的试验研究[J].新疆农业大学学报, 2000, 23(1): 62~64.
    [146]周平安,孙家枢,张兴龙.农业零件受土壤磨粒磨损表面磨痕的微观分析[J].固体润滑, 1981, 1(1): 15~21.
    [147]李凌云.内应力对等温淬火65Mn(65SiMnR)钢犁铧耐磨性的影响[J].固体润滑, 1987, 7(2): 102~108.
    [148]土壤磨料特性影响课题组.土壤磨料特性对农机材料磨损性能的影响[J].农业机械学报, 1986, 17(3): 53~62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700