用户名: 密码: 验证码:
左氧氟沙星涂敷导管预防铜绿假单胞菌导管相关感染的体内外研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分体外研究
     目的:制备不同载药量的LFX涂敷导管。评估LFX涂敷导管的特点,体外观察LFX涂敷导管抑制P.a粘附、定植的能力,探讨LFX涂敷导管在P.a导管相关感染中的作用
     方法:(1)按LFX与PDLLA的比值(w/w),溶剂法将二者混合溶解在丙酮中,PVC导管置入上述混合液,30分钟取出,室温下晾干,即制成不同载药量的LFX1:3、LFX1:6、LFX1:9涂敷导管;同样方法,制成不含LFX的PDLLA涂敷导管。(2)绘制LFX标准曲线,测定不同载药量的LFX涂敷导管的体外药物释放,计算不同时间的药物累积释放度及药物累积释放浓度。(3)测定LFX对PAO1的MIC和MBC。(4)分LFX1:3、LFX1:6、LFX1:9涂敷导管组、PVC导管组和PDLLA涂敷导管组,各组导管浸没在5ml 50%LB培养液中(含PAO1 109CFU/ml),37℃孵育6、12、24、48h,在各时间点,予导管表面和导管培养液进行细菌计数。同时测定LFX对不同载药量的LFX涂敷导管培养液细菌的MIC和MBC。
     结果:(1)药物释放测定,LFX1:3、LFX1:6、LFX1:9涂敷导管均显示LFX的快速释放。24h后三种涂敷导管药物释放很少甚至没有释放。三种不同载药量的LFX涂敷导管在各时间点的药物累积释放浓度均显著大于LFX对PAO1的MBC。(2) LFX对PAO1的MIC和MBC分别为0.5ug/ml、1.0ug/ml。(3)在6、12、24h孵育时间点,LFX1:3、LFX1:6、LFX1:9涂敷导管全部细菌培养阴性;对照组PVC导管全部细菌培养阳性,细菌中位数分别为5.88log10 CFU, 6.14log10CFU,6.34log10CFU (P=0.014, P=0.014, P=0.014)。孵育48h时,LFX1:3涂敷导管全部细菌培养阴性,LFX1:6和LFX1:9涂敷导管全部细菌培养阳性,细菌中位数分别为2.66log10 CFU和2.82log10CFU,而PVC导管全部细菌培养阳性,细菌中位数为6.11log10CFU(P=0.014, P=0.021,P=0.021)。另外,各孵育时间点,PVC导管和PDLLA涂敷导管表面的细菌计数相似(P>0.05)。(4)在6、12、24、48h孵育时间点,LFX1:3、LFX1:6、LFX1:9涂敷导管培养液的细菌数较PVC导管均明显减少(P<0.05)。各组LFX涂敷导管的48h培养液的细菌数与6h培养液的细菌数没有明显增多(P=0.166,P=0.182,P=0.190);与之相比,PVC导管培养液的细菌数日渐增多(P=0.02)。另外,各孵育时间点,PVC导管和PDLLA涂敷导管培养液的细菌数相似(P>0.05)。(5) LFX对不同载药量的LFX涂敷导管在孵育6、12、24、48h时培养液细菌的MIC均为0.5ug/ml、MBC均为1.0ug/ml。
     结论:LFX1:3、LFX1:6、LFX1:9涂敷导管均具有药物快速释放特点,涂敷导管随LFX含量增加,药物LFX释放增加。三种不同载药量的LFX涂敷导管均能有效抑制P.a粘附、定植,并能杀灭导管周围介质的P.a,抑制P.a生长,其中载药含量最多,释放药量也是最多的LFX1:3涂敷导管防止细菌粘附能力最强。提示LFX涂敷导管能有效预防P.a导管相关感染。另外,三种不同载药量的LFX涂敷导管2h时的药物释放浓度均大于LFX对PAO1的MBC,而且LFX对不同载药量的LFX涂敷导管在不同孵育时间点培养液细菌的MBC与LFX对孵育前细菌的MBC相同,暗示不同载药量的LFX涂敷导管耐药风险小.
     第二部分体内研究
     目的:模拟临床导管相关感染的典型特征,建立小鼠“组织笼”感染模型,观察LFX1:3涂敷导管抑制P.a粘附,防止BF形成的能力,评估LFX1:3涂敷导管在体内预防P.a导管相关感染中的作用。
     方法:小鼠皮下植入LFX1:3涂敷导管和PVC导管,沿着植入导管注射PAO1菌液50ul(107CFU)。感染第1、5天,宰杀小鼠,收集标本,对植入导管及导管周围组织进行细菌计数。SEM观察植入导管表面细菌的粘附及生物膜形成情况。
     结果:(1) P.a感染第1天,LFX1:3涂敷导管组8根植入导管有3根细菌培养阳性,而PVC对照组8根植入导管全部细菌培养阳性,细菌中位数为4.11log10CFU(P=0.001)。第5天,LFX1:3涂敷导管组8根植入导管全部细菌培养阴性;与之相比,PVC对照组植入导管表面粘附的细菌仍居高不下,细菌中位数为4.99log10CFU(P=0.000)。(2)P.a感染第1、5天,LFX1:3涂敷导管组和PVC对照组的植入导管周围组织细菌培养均阳性,细菌中位数分别3.96log10CFU,44log10CFU(P=0.001);4.33log10CFU, 5.42log10CFU (P= 0.001)。与PVC植入导管相比,LFX1:3涂敷植入导管能明显减少植入导管周围组织的细菌量。(3)SEM观察:P.a感染第1天,LFX1:3涂敷植入导管表面见散在单个细菌或者没有细菌,而PVC植入导管表面大量细菌分散存在,密集分布,还可见一些细菌聚集成的微菌落,但不聚集成堆。第5天,LFX1:3涂敷植入导管表面未见细菌粘附,PVC植入导管表面细菌粘附浓密,并聚集成堆,成簇,周围有凹凸不平的浓厚粘液状物质紧密包绕,“珊瑚状”BF形成,其中可见散在多型核白细胞。(4)肉眼观察:P.a感染第1天,LFX1:3涂敷植入导管和PVC植入导管内均有分泌物存在,植入导管周围组织轻度充血、水肿。第5天,LFX1:3涂敷植入导管内分泌物极少,导管周围组织没有炎症或脓肿形成;而PVC植入导管内有脓性分泌物,导管周围组织有脓肿形成。
     结论: LFX1:3涂敷导管在体内具有强有力的抑制P.a在植入导管表面的粘附及BF的形成,同时明显降低P.a在植入导管周围组织的存活并显示其有效的杀菌活性。因此,LFX涂敷导管是一种很有前景的防止P.a导管相关感染的新策略。
Objective: To prepare levofloxacin-impregnated catheters with different drug content , assess characterization of levofloxacin-impregnated catheters ,investigate inhibition of Pseudomonas aeruginosa colonization with levofloxacin-impregnated catheters in vitro and evaluate effect of levofloxacin-impregnated catheters in catheter-related infection.
     Methods: (1) Both LFX and PDLLA were dissolved in acetone by solvent solution in according to ratio(weight to weight)of LFX and PDLLA, PVC cathers were placed into the above mixture solution for 30 minutes and dried at room temperature , then three kinds of levofloxacin-impregnated catheters with different drug content, i.e. LFX1:3-impregnated catheter, LFX1:6-impregnated catheter, LFX1:9-impregnated catheter were made. In the same way, PDLLA-impregnated catheters without LFX were also made. (2) Drew standard curve of LFX . Measured drug release from levofloxacin-impregnated catheters with different drug content in vitro. Calculated cumulative release of LFX from the catheter in different times. (3)Detected the MIC and MBC of LFX in PAO1. (4)Divided into LFX1:3-impregnated catheter group, LFX1:6-impregnated catheter group, LFX1:9-impregnated catheter group, PVC catheter group and PDLLA-impregnated catheter group, each catheter was immersed in 5ml 50%LB which contain 108CFU/ml Pseudomonas aeruginosa , after incubating for 6,12,24,48h at 37℃, at each time point, adhered bacteria to the catheters and bacteria in the growth culture medium were determined, the MIC and MBC of LFX in bacteria in the growth culture medium from levofloxacin-impregnated catheters with different drug content were detected, as well.
     Results: (1) Drug releases from LFX1:3-impregnated catheter, LFX1:6- impregnated catheter, LFX1:9-impregnated catheter were shown to be fast release, there was very small amount of drug release or no drug relase after 24h in three kinds of levofloxacin-impregnated catheters with different drug content. At each time point, accumulation release concentrations from levofloxacin- impregnated catheters with different drug content were significantly higher than MBC of LFX against PAO1.(2) The MIC and MBC of LFX in PAO1 were 0.5ug/ml, 1.0ug/ml respectively. (3) At the end of 6,12,24h incubation, LFX1:3- impregnated catheters, LFX1:6-impregnated catheters, LFX1:9- impregnated catheters were completely culture negative ,whereas PVC catheters were completely culture positive , the median numbers of CFU were 5.88log10CFU, 6.14log10CFU, 6.34log10CFU(P=0.014,P=0.014,P=0.014, respectively). At the end of 48h, LFX1:3-impregnated catheters were completely culture negative, LFX1:6-impregnated catheters and LFX1:9-impregnated catheters were completely culture positive, the median numbers of CFU were 2.66log10CFU和2.8log10CFU , whereas PVC catheters were completely culture positive,the median number of CFU was 6.11log10CFU(P=0.014,P=0.021,P=0.021, respectively).In addition, at each time point, the number of bacterial adherence to PVC catheters or PDLLA-impregnated catheters was similar (P>0.05). (4) At the end of 6,12,24,48h incubation, bacteria in the growth culture medium from LFX1:3- impregnated catheters, LFX1:6-impregnated catheters,LFX1:9- impregnated catheters,compared to PVC catheters,were significantly reduced (P<0.05).There were no evident increase in bacteria in the growth culture medium from LFX1:3- impregnated catheters, LFX1:6-impregnated catheters, LFX1:9- impregnated catheters between 6h and 48h(P=0.166, P=0.182,P=0.190), whereas, there were evident increase in bacteria in the growth culture medium from PVC catheters between 6h and 48h(P=0.02). In addition, at each time point, the number of bacteria in the growth culture medium from PVC catheters or PDLLA-impregnated catheters was similar(P> 0.05). (5) At the end of 6,12,24,48h incubation, the MICs of LFX in bacteria in the growth culture medium from levofloxacin- impregnated catheters with different drug content were 0.5ug/ml, the MBCs were 1.0ug/ml.
     Conclusions: Antibiotic release from LFX1:3-impregnated catheters, LFX1:6-impregnated catheters, LFX1:9-impregnated catheters were exhibited to be fast release, the higher LFX content, the more antibiotic will be released. Three kinds of levofloxacin-impregnated catheters with different drug content can inhibit Pseudomonas aeruginosa adherence to the catheters and kill Pseudomonas aeruginosa in peri-catheter medium and restrain Pseudomonas aeruginosa to grow, the LFX1:3-impregnated catheters which contained the most drug content and had the most drug release were the most effective formulation to inhibit Pseudomonas aeruginosa adherence to the catheters, which indicated that levofloxacin-impregnated catheters were able to prevent Pseudomonas aeruginosa catheter-related infection . In addition, at 2h, drug release concentrations from three kinds of levofloxacin-impregnated catheters with different drug content remained higher than MBC of LFX against PAO1, the MBCs of LFX in bacteria in the growth culture medium from levofloxacin-impregnated catheters with different drug content were the same as that of LFX in bacteria before incubation, which suggested the low risk of resistance from levofloxacin-impregnated catheters with different drug content.
     Objectives: To mimic clinical catheter-related infection, establish an murine model of“tissue cage”infection, investigate inhibition of Pseudomonas aeruginosa adherence and biofilm formation with LFX1:3-impregnated catheters in vivo, evaluate preventive effects of LFX1:3-impregnated catheters in Pseudomonas aeruginosa catheter-related infection.
     Methods:LFX1:3-impregnated catheters or PVC catheters were implanted subcutaneously in mice, 50ul(107CFU) of PAO1 was injected along subcutaneous implanted catheters as well. 1,5 days after challenging, mice were sacrificed, samples were collected, bacterial counts on implanted catheters and in peri- implanted catheters tissues were determined. Bacterial colonization and biofilm formation on implanted catheters were assessed by SEM.
     Results: (1) 1 day after challenging, for the LFX1:3-impregnated catheter group , 3 of 8 catheters were culture positive for Pseudomonas aeruginosa, whereas, for the PVC catheter group, 8 catheters were completely culture positive, the median number of CFU was 4.11log10CFU (P=0.001). 5 day after challenging, for the LFX1:3-impregnated catheter group, 8 catheters were completely culture negative,whereas, for the PVC catheter group, the numbers of CFU adherent to the catheters were still very high, the median number of CFU was 4.99log10CFU (P=0.000). (2)1,5days after challenging, for the LFX1:3-impregnated catheter group and the PVC catheter group, peri-implanted catheters tissues were completely culture positive, the median numbers of CFU were 3.96log10CFU , 5.44log10CFU (P=0.001);4.33log10CFU,5.42log10CFU (P=0.001). Compared to the PVC implanted catheters, the LFX1:3-impregnated implanted catheters significantly reduced numbers of CFU in peri-implanted catheters tissues. (3)SEM images: 1 day after challenging, significantly less bacteria, single bacteria or even no bacteria adhering to the LFX1:3-impregnated implanted catheters, whereas, a large amount of dispersal bacteria and small numbers of microcolonies adhering to the PVC implanted catheters. 5 day after challenging, no bacteria on the LFX1:3-impregnated implanted catheters, bacteria colonized to the PVC implanted catheters were in clusters surrounding shaggy, deep mucus-like substance, coral-shaped biofilms formation in which scattered PMN can be seen. (4) Macroscopic observation: 1 day after challenging, secretion can be seen both inside the LFX1:3-impregnated implanted catheters and the PVC implanted catheters, peri-implanted catheters tissues exhibited mild hyperemia, swollen, 5 days after challenging, very small secretion can be seen inside the LFX1:3-impregnated implanted catheters, peri-implanted catheters tissues showed no inflammation or abscess formation, whereas, purulent secretion can be seen inside the PVC implanted catheters, peri-implanted catheters tissues indicated abscess formation
     Conclsions:LFX1:3-impregnated implanted catheters strongly inhibited Pseudomonas aeruginosa adherence and biofilm formation to the catheters, reduced the number of CFU of Pseudomonas aeruginosa from peri-implant tissue, demonstrating the potent bactericidal activity in vivo. Therefore, levofloxacin-impregnated catheter was a promising new strategy for prevetion of Pseudomonas aeruginosa catheter-related infection.
引文
1 Elliott TS. Role of antimicrobial central venous catheters for the prevention of associated infections. J Antimicrob Chemother, 1999,43(4):441-446.
    2 Donlan RM. Biofilms and device-associated infections. Emerg infect Dis, 2001,7(2):277-281.
    3 Rello J, Ollendorf DA, Oster G, et al. Epidemiology and outcomes of ventilator-associated pneumonia in a large US database. Chest, 2002, 122(6):2115-2121.
    4 Cook DJ, Walter SD, Cook RJ, et al. Incidence of and risk factors for ventilator-associated pneumonia in critically ill patients. Ann Intern Med. 1998;129(6):433-440.
    5 Saint S. Clinical and economic consequences of nosocomial catheter-rela ted bacteriuria. Am J Infect Control, 2000, 28(1):68-75.
    6 Anderson JE, Chang AS, Anstadt MP. Polytetrafluoroethylene hemoaccess site infections. ASAIO J, 2000,46(6):S18-S21.
    7 Spinler SA, Nawarskas JJ, Foote EF, et al. Clinical presentation and analysis of risk factors for infectious complications of implantable cardioverter-defibrillator implantations at a university medical center. Clin Infect Dis, 1998,26(5):1111-1116.
    8 Darouiche RO. Device-associated infections: a macroproblem that starts with microadherence. Clin Infect Dis, 2001,33(9):1567-1572.
    9 Mermel LA. New technologies to prevent intravascular catheter-related bloodstream infections. Emerg Infect Dis, 2001,7(2):197-199.
    10 Kwakman PH, te Velde AA, Vandenbroucke-Grauls CM, et al. Treatment and prevention of Staphylococcus epidermidis experimental biomaterial-associated infection by bactericidal peptide 2. Antimicrob Agents Chemother, 2006,50(12):3977-3983.
    11 Darouiche RO. Treatment of infections associated with surgical implants. N Engl J Med, 2004,350(14):1422-1429.
    12 Kojic EM, Darouiche RO. Candida infections of medical devices. Clin Microbiol. 2004,17(2):255-267.
    13 Baddour LM, Bettmann MA, Bolger AF, et al. Nonvalvular cardiovascular device–related infections. Circulation, 2003,108(16):2015-2031.
    14 Koch C, Hoiby N. Diagnosis and treatment of cystic fibrosis. Respiration, 2000,67(37):239-247.
    15 Lyczak JB, Cannon CL, Pier GB. Lung infections associated with cystic fibrosis. Clin Microbiol. 2002,15(2):194-222.
    16 Rossi S, Azghani AO, Omri A. Antimicrobial efficacy of a new antibiotic-loaded poly(hydroxybutyric-co-hydroxyvaleric acid) controlled release system. J Antimicrob Chemother, 2004,54(6):1013-1018.
    17 Costerton JW, Stewat PS, Greenberg EP. Bacterial Biofilms: A common cause of persistent Infections. Science, 1999,284(5418):1318-1322.
    18 Costerton JW. Introduction to biofilm. Int J Antimicrob Agents, 1999,11(3-4):217-221.
    19 Trampuz A, Osmon DR, Hanssen AD, et al. Molecular and antibiofilm approaches to prosthetic joint infection. Clin Orthop Relat Res, 2003(414) :69-88.
    20 Gristina AG, Costerton JW. Bacterial adherence to biomaterials and tissue. The significance of its role in clinical sepsis. J Bone Joint Surg Am, 1985,67(2):264-273.
    21 Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis,2002,8(9):881-890.
    22 Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet, 2001,358(9276):135-138.
    23 Trampuz A, Murphy CK, Rothstein DM, et al. Efficacy of a novel rifamycin derivative, ABI-0043, against Staphylococcus aureus in an experimental model of foreign-body infection. Antimicrob Agents Chemother, 2007,51(7):2540-2545.
    24 Zimmerli W, Widmer AF, Blatter M, et al. Role of rifampin for treatment of orthopedic implant-related staphylococcal infections: a randomized controlled trial. JAMA, 1998,279(19):1537-1541.
    25 Anderl JN, Zahller J, Roe F, et al. Role of nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother, 2003, 47(4): 1251-1256.
    26 Widmer AF, Frei R, Rajacic Z, et al. Correlation between in vivo and in vitro efficacy of antimicrobial agents against foreign body infections. J Infect Dis, 1990,162(1):96-102.
    27 Raad I, Hanna H. Intravascular catheters impregnated with antimicrobial agents: a milestone in the prevention of bloodstream infections. Support Care Cancer, 1999,7(6):386-390.
    28 Agalar C, Kilic D,Ceken S, et al. Acid-impregnated catheters inhibition of Staphylococcus epidermidis colonization with fusidic. Journal of Bioactive and Compatible Polymers, 2007,22(2):160-173.
    29 Appelbaum PC, Hunter PA. The fluoroquinolone antibacterials:past, present and future preapectives. Int J Antimicrob Agents, 2000,16(1):5-15.
    30 Schaeffer AJ. The expending role of fluoquinolones. Am J Med,2002,113(Suppl 1A):S45-S54.
    31杨藻寰.药理学和药物治疗学.北京:人民卫生出版社,2000. 165-166.
    32李玉宝.生物医学材料.北京:化学工业出版社,2003. 48-51.
    33国家药典委员会.中华人民共和国药典.北京:化学工业出版社,2005. 150.
    34徐叔云.药理实验方法学.北京:人民卫生出版社,1982. 1647-1661.
    35 Türesin F, Gürsel I, Hasirci V. Biodegradable polyhydroxyalkanoate implants for osteomyelitis therapy: in vitro antibiotic release. J Biomater Sci Polym Ed, 2001,12(2):195-207.
    36 Raad I, Darouiche R, Hachem R, et al. The broad-spectrum activity and efficacy of catheters coated with minocycline and rifampin. Journal of Infectious Diseases, 1996,173(2):418-424.
    37 Darouiche RO, Raad II, Bodey GP, et al. Antibiotic susceptibility of staphylococcal isolates from patients with vascular catheter-related bacteremia: potential role of the combination of minocycline and rifampin. International Journal of Antimicrobial Agents, 1995,6(1):31-36.
    38 Raad I, Darouiche R, Dupuis J, et al. Central venous catheters coated with minocycline and rifampin for the prevention of catheter-related colonization and bloodstream infections. A randomized, double-blind trial. Ann Intern Med, 1997,127(4):267-274.
    39 Darouiche R, Wright C, Hamill R, et al. Eradication of colonization by methicillin- resistant Staphylococcus aureus by using oral minocycline- rifampin and topical mupirocin. Antimicrob Agents Chemother, 1991,35(8):1612-1615.
    40 Yourassowsky E, van der Linden MP, Lismont MJ, et al. Combination of minocycline and rifampin against methicillin- and gentamcin-resistantStaphylococcus aureus. J Clin Pathol, 1981,34(5):559-563.
    41 Maki DG, Stolz SM, Wheeler S, et al. Prevention of central venous catheter-related bloodstream infection by use of an antiseptic-impregnated catheter. A randomized controlled trial. Ann Intern Med, 1997,127(4): 257-266.
    42 Kamal GD, Divishek D, Kumar GC, et al. Reduced intravascular catheter-related infection by routine use of antibiotic-bonded catheters in a surgical intensive care unit. Diagn Microbiol Infect Dis, 1998,30(3): 145-152.
    43 RomanòG, Berti M, Goldstein BP, et al. Efficacy of a central venous catheter (Hydrocath?) loaded with teicoplanin in preventing subcutaneous staphylococcal infection in the mouse. Zentralbl Bakteriol, 1993,279(3): 426-433.
    44 Sherertz RJ, Forman DM, Solomon DD. Efficacy of dicloxacillin-coated polyurethane catherers in preventing subcutaneous Staphylococcus aureus infection in mice. Antimicrob Agents Chemother, 1989,33(8):1174-1178.
    45 Agalar C, Kilic D, Ceken S, et al. Inhibition of Staphylococcu sepidermidis colonization with fusidic acid-impregnated catheters. Journal of Bioactive and Compatible Polymers, 2007,22(2):160-173.
    46 Fulcher TP, Dart JK, McLaughlin-Borlace L, et al. Demonstration of biofilm in infectious crystalline keratopathy using ruthenium red and electron microscopy. Ophthalmology, 2001,108(6):1088-1092.
    47 Rupp ME, Ulphani JS, Fey PD, et al. Characterization of the importance of polysaccharide intercellular adhesin/hemagglutinin of Staphylococcus epidermidis in the pathogenesis of biomaterial-based infection in a mouse foreign body infection model. Infect. Immun, 1999,67(5):2627-2632.
    48 Kodjikian L, Burillon C, Chanloy C, et al. In vivo study of bacterial adhesion to five types of intraocular lenses. Invest Ophthalmol Vis Sci, 2002,43(12):3717-3721.
    49 Gaonkar TA, Modak SM. Comparison of microbial adherence to antiseptic and antibiotic central venous catheters using a novel agar subcutaneous infection model. J Antimicrob Chemother, 2003,52(3):389-396.
    50 Van Wijngaerden E, Peetermans WE, Vandersmissen J, et al. Foreign body infection: a new rat model for prophylaxis and treatment. J Antimicrob Chemother, 1999,44(5):669-674.
    51 Vandecasteele SJ, Peetermans WE, Carbonez A, et al. Metabolic activity of Staphylococcus epidermidis is high during initial and low during late experimental foreign-body infection. J Bacteriol, 2004,186(8):2236-2239.
    52 Gristina AG. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science, 1987,237(4822):1588-1595.
    53 Schierholz JM, Beuth J. Implant infections: a haven for opportunistic bacteria. J Hosp Infect, 2001,49(2):87-93.
    54 Pesci EC, Iglewski BH. The chain of command in Pseudomonas quorum sensing. Trends Microbiol, 1997,5(4):132-134.
    55 Whiteley M, Lee KM, Greenberg EP. Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A, 1999,96(24):13904-13909.
    56 Lewis K. Riddle of biofilm resistance. Antimicrob Agents Chemother, 2001,45(4):999-1007.
    57 Mah TF, O'Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol, 2001,9(1):34-39.
    58 Mahenthiralingam E,Campbell ME,Speert DP. Nonmotility and phagocyticresistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis. Infect Immun, 1994, 62(2):596-605.
    59 Giulieri SG, Graber P, Ochsner PE, et al. Management of infection associated with total hip arthroplasty according to a treatment algorithm. Infection, 2004,32(4):222-228.
    60 Laffer RR, Graber P, Ochsner PE, et al. Outcome of prosthetic knee- associated infection: evaluation of 40 consecutive episodes at a single centre. Clin Microbiol Infect, 2006,12(5):433-439.
    61 Trebse R, Pisot V, Trampuz A. Treatment of infected retained implants. J Bone Joint Surg Br, 2005,87(2):249-256.
    62 Widmer AF, Gaechter A, Ochsner PE, et al. Antimicrobial treatment of orthopedic implant-related infections with rifampin combinations. Clin Infect Dis, 1992,14(6):1251-1253.
    63 Buret A, Ward KH, Olson ME, et al. An in vivo model to study the pathobiology of infectious biofilms on biomaterial surfaces. J Biomed Mater Res, 1991,25(7):865-874.
    64陈一强闫萍宋志军等.大鼠铜绿假单胞菌慢性肺部感染生物被膜的致病作用研究.中华微生物学和免疫学杂志, 2005,25(9):718-722.
    65 Christensen LD, Moser C, Jensen PO, et al. Impact of Pseudomonas aeruginosa quorum sensing on biofilm persistence in an in vivo intraperitoneal foreign-body infection model. Microbiology, 2007,153(Pt 7):2312-2320.
    66 Song Z, Moser C, Wu H, et al. Cytokine modulating effect of ginseng treatment in a mouse model of Pseudomonas aeruginosa lung infection. J Cyst Fibros, 2003,2(3):112-119.
    1 Kojic EM, Darouiche RO. Candida Infections of Medical Devices. Clin Microbiol. 2004,17(2):255-267.
    2 Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science, 1999,284(5418):1318-1322.
    3 Darouiche RO. Treatment of infections associated with surgical implants. N Engl J Med, 2004,350(14):1422-1429.
    4 Maki DG,Tambyah PA. Engineering out the risk of infection with urinary catheters. Emerg. Infect Dis, 2001,7(2):342-347.
    5 Raad I. Intravascular-catheter-related infections. Lancet, 1998,351(9106): 893-898.
    6 Baddour LM, Bettmann MA, Bolger AF, et al. Nonvalvular cardiovascular device–related infections. Circulation, 2003,108(16):2015-2031.
    7 Koch C, Hoiby N. Diagnosis and treatment of cystic fibrosis. Respiration, 2000,67(37):239-247.
    8 Lyczak JB, Cannon CL, Pier GB. Lung infections associated with cystic fibrosis. Clin Microbiol. 2002,15(2):194-222.
    9 Van Delden C, Iglewski BH. Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis, 1998,4(4):551-560.
    10 Hienz SA, Schennings T, Heimdahl A, et al. Collagen binding of Staphylococcus aureus is a virulence factor in experimental endocarditis. J Infect Dis, 1996,174(1):83-88.
    11 Moreillon P, Entenza JM, Francioli P, et al. Role of Staphylococcus aureus coagulase and clumping factor in pathogenesis of experimental endocarditis.Infect Immun, 1995,63(12):4738-4743.
    12 Que YA, Francois P, Haefliger JA, et al. Reassessing the role of Staphylococcus aureus clumping factor and fibronectin-binding protein by expression in Lactococcus lactis. Infect Immun, 2001,69(10):6296-6302.
    13 Kuypers JM, Proctor RA. Reduced adherence to traumatized rat heart valves by a low-fibronectin-binding mutant of Staphylococcus aureus. Infect Immun, 1989,57(8):2306-2312.
    14 Vaudaux P, Pittet D, Haeberli A, et al. Fibronectin is more active than fibrin or fibrinogen in promoting Staphylococcus aureus adherence to inserted intravascular catheters. J Infect Dis, 1993,167(3):633-641.
    15 Inman RD, Gallegos KV, Brause BD, et al. Clinical and microbial features of prosthetic joint infection. Am J Med, 1984,77(1):47-53.
    16 O'Toole GA, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol, 1998,30(2): 295-304.
    17 Dewanti R, Wong ACL. Influence of culture conditions on biofilm formation by Escherichia coli 0157:H7. Int J Food Microbiol, 1995, 26(2):147-164.
    18 Fulcher TP, Dart JK, McLaughlin-Borlace L, et al. Demonstration of biofilm in infectious crystalline keratopathy using ruthenium red and electron microscopy. Ophthalmology, 2001,108(6):1088-1092.
    19 Gristina AG. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science, 1987,237(4822):1588-1595.
    20 Behlau I, Gilmore MS. Microbial biofilms in ophthalmology and infectious disease. Arch Ophthalmol, 2008,126(11):1572-1581.
    21 Sauer K, Camper AK. Characterization of phenotypic changes inPseudomonas putida in response to surface-associated growth. J Bacteriol, 2001,183(22):6579-6589.
    22 Heydorn A, Ersboll B, Kato J, et al. Statistical analysis of Pseudomonas aeruginosa biofilm development: impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Appl Environ Microbiol, 2002,68(4):2008-2017.
    23 Sun H, Zusman D, Shi W. Type IV pilus of Myxococcus xanthus is a motility apparatus controlled by the frz chemotaxis homologs. Curr Biol, 2000,10(18):1143-1146.
    24 Ramsey DM, Wozniak DJ. Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis. Mol Microbiol, 2005,56(2):309-322.
    25 Nivens DE, Ohman DE, Williams J, et al. Role of alginate and its O- acetylation in formation of Pseudomonas aeruginosa microcolonies and biofilms. J Bacteriol, 2001,183(3):1047-1057.
    26 Stapper AP, Narasimhan G, Ohman DE, et al. Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation. J Med Microbiol, 2004,53(pt7):679-690.
    27 Ryder C, Byrd M, Wozniak DJ. Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr Opin Microbiol, 2007,10(6): 644-648.
    28 Wozniak DJ, Wyckoff TJO, Starkey M, et al. Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PA01 Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci U S A, 2003, 100(13):7907-7912.
    29 Friedman L, Kolter R. Two genetic loci produce distinct carbohydrate-richstructural components of the Pseudomonas aeruginosa biofilm matrix. J Bacteriol, 2004,186(14):4457-4465.
    30 Ma L, Jackson KD, Landry RM, et al. Analysis of Pseudomonas aeruginosa conditional Psl variants reveals roles for the Psl polysaccharide in adhesion and maintaining biofilm structure postattachment. J Bacteriol, 2006,188(23):8213-8221.
    31 Friedman L, Kolter R. Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol Microbiol, 2004,51(3):675-690.
    32 Hickman JW, Tifrea DF, Harwood CS. A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci U S A, 2005,102(40):14422-14427.
    33 Goodman AL, Kulasekara B, Rietsch A, et al. A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev Cell, 2004,7(5):745-754.
    34 Yahr TL, Greenberg EP. The genetic basis for the commitment to chronic versus acute infection in Pseudomonas aeruginosa. Mol Cell, 2004,16(4):497-498.
    35 Ventre I, Goodman AL, Vallet-Gely I, et al. Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc Natl Acad Sci U S A, 2006,103(1):171-176.
    36 Rumbaugh KP , Giswold JA , Hamood AN. The role of quorum sensing in the in vivo virulence of Pseudomonas aeruginosa. Microbes Infect, 2000,2(14):1721-1731.
    37 Whiteley M, Bangera MG, Bumgarner RE, et al. Gene expression in Pseudomonas aeruginosa biofilms. Nature, 2001,413(6858):860-864.
    38 Xu KD, Franklin MJ, Park CH, et al. Gene expression and protein levels ofthe stationary phase sigma factor, RpoS, in continuously-fed Pseudomonas aeruginosa biofilms. FEMS Microbiol Lett, 2001,199(1):67-71.
    39 Sauer K, Camper AK, Ehrlich GD, et al. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol, 2002,184(4):1140-1154.
    40 Lee SF, Li YH, Bowden GH. Detachment of Streptococcus mutans biofilm cells by an endogenous enzymatic activity. Infect Immun, 1996,64(3): 1035-1038.
    41 Schierholz JM, Beuth J. Implant infections: a haven for opportunistic bacteria. J Hosp Infect, 2001,49(2):87-93.
    42 Pesci EC, Iglewski BH. The chain of command in Pseudomonas quorum sensing. Trends Microbiol, 1997,5(4):132-134.
    43 Whiteley M, Lee KM, Greenberg EP. Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc Natl Acad Sci USA, 1999,96(24):13904-13909.
    44 Lewis K. Riddle of biofilm resistance. Antimicrob Agents Chemother, 2001,45(4):999-1007.
    45 Mah TF, O'Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol, 2001,9(1):34-39.
    46 Mahenthiralingam E,Campbell ME,Speert DP. Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis. Infect Immun, 1994, 62(2):596-605.
    47 Rasmussen B. Filamentous microfossils in a 3,235 million year-old volcanogenic massive sulphide deposit. Nature, 2000,405(6787):676-679.
    48 Nickel JC,Downey JA,Costerton JW. Ultrastructural study of microbiologic colonization of urinary catheters. Urology, 1989,34(5): 284-291.
    49 Zegans ME, Shanks RMQ, O'Toole GA. Bacterial biofilms and ocular infections. Ocul Surf, 2005,3(2):73-80.
    50 Willcox MD, Harmis N, Cowell, et al. Bacterial interactions with contact lenses: effects of lens material, lens wear and microbial physiology. Biomaterials, 2001,22(24):3235-3247.
    51 Yi X, Wang Y, Yu FS. Corneal epithelial tight junctions and their response to lipopolysaccharide challenge. Invest Ophthalmol Vis Sci, 2000,41(13): 4093-4100.
    52 Hawser SP, Douglas LJ. Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect Immun, 1994,62(3):915-921.
    53 Baillie GS, Douglas LJ. Role of dimorphism in the development of Candida albicans biofilms. J Med Microbiol, 1999,48(7):671-679.
    54 Douglas LJ. Candida biofilms and their role in infection. Trends Microbiol, 2003,11(1):30-36.
    55 Donlan RM. Biofilms and device-associated infections. Emerg infect Dis, 2001,7(2):277-281.
    56 Rouse MS, Afessa B, Talsma SS. et al. In vitro assessment of microbial colonization and biofilm formation on silver coated endotraceal tubes post extubation. Chest, 2007,132(4):576c-577.
    57 Rello J, Ollendorf DA, Oster G, et al. Epidemiology and outcomes of ventilator-associated pneumonia in a large US database. Chest, 2002,122(6):2115-2121.
    58 Cook DJ, Walter SD, Cook RJ, et al. Incidence of and risk factors for ventilator-associated pneumonia in critically ill patients. Ann Intern Med, 1998,129(6):433-440.
    59 Yu JL, Chen BM, Liu GX, et al. Electron microscopic analysis of bacterialbiofilm on tracheal tubes removed from in tubated neonates and the relationship between bacterial biofilm and lower respiratory infections. Pediatrics, 2008,121(2):S141-S142.
    60 Elliott TS. Role of antimicrobial central venous catheters for the prevention of associated infections. J Antimicrob Chemother, 1999,43(4):441-446.
    61 Spinler SA, Nawarskas JJ, Foote EF, et al. Clinical presentation and analysis of risk factors for infectious complications of implantable cardioverter-defibrillator implantations at a university medical center. Clin Infect Dis, 1998,26(5):1111-1116.
    62 Mermel LA. New technologies to prevent intravascular catheter-related bloodstream infections. Emerg Infect Dis, 2001,7(2):197-199.
    63 Ramamohan N, Zeineh N, Grigoris P, et al. Candida glabrata infection after total hip arthroplasty. J Infect, 2001,42(1):74-76.
    64 Rex JH, Bennett JE, Sugar AM, et al. A randomized trial comparing fluconazole with amphotericin B for the treatment of candidemia in patients without neutropenia. N Engl J Med, 1994,331(20):1325-1330.
    65 Qu Y, Istivan TS, Daley AJ, et al. Comparison of various antimicrobial agents as catheter lock solutions: preference for ethanol in eradication of coagulase-negative staphylococcal biofilms. J Med Microbiol, 2009,58(Pt 4):442-450.
    66 Elliott TS, Moss HA, Tebbs SE, et al. Novel approach to investigate a source of microbial contamination of central venous catheters. Eur J Clin Microbiol Infect Dis, 1997,16(3):210-213.
    67 Raad II, Sabbagh MF, Rand KH, et al. Quantitative tip culture methods and the diagnosis of central venous catheter-related infections. Diagn Microbiol Infect Dis, 1992,15(1):13-20.
    68 Goldie SJ, Kiernan-Tridle L, Torres C, et al. Fungal peritonitis in a large chronic peritoneal dialysis population: a report of 55 episodes. Am J Kidney Dis, 1996,28(1):86-91.
    69 Lew SQ, Kaveh K. Dialysis access related infections. Asaio J, 2000, 46(6): S6-S12.
    70 Anderson JE, Chang AS, Anstadt MP. Polytetrafluoroethylene hemoaccess site infections. ASAIO J, 2000,46(6):S18-S21.
    71 Nguyen MH, Peacock JE Jr, Morris AJ, et al. The changing face of candidemia: emergence of non-Candida albicans species and antifungal resistance. Am J Med, 1996,100(6):617-623.
    72 Cappelli G, Ballestri M, Perrone S, et al. Biofilms invade nephrology: effects in hemodialysis. Blood Purif, 2000,18(3):224-230.
    73 Shanks RM, Sargent JL, Martinez RM, et al. Catheter lock solutions influence staphylococcal biofilm formation on abiotic surfaces. Nephrol Dial Transplant, 2006,21(8):2247-2255.
    74 Szeto CC, Chow KM. Gram-negative peritonitis-the achilles heel of peritoneal dialysis? Perit Dial Int, 2007,27(S2):S267-S271.
    75 Foxman B. Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Dis Mon, 2003,49(2):53-70.
    76 Warren JW. Catheter-associated urinary tract infections. Int J Antimicrob Agents, 2001,17(4):299-303.
    77 Saint S. Clinical and economic consequences of nosocomial catheter- related bacteriuria. Am J Infect Control, 2000,28(1):68-75.
    78 Stamm WE. Catheter-associated urinary tract infections: epidemiology, pathogenesis, and prevention. Am J Med, 1991,91(3B):65-71.
    79 Trautner BW, Darouiche RO. Role of biofilm in catheter-associated urinarytract infection. Am J Infect Control, 2004,32(3):177-183.
    80 Elliott TS, Tebbs SE. Prevention of central venous catheters related infections. J Hosp Infect, 1998,40(3):193-201.
    81 Raad I, Darouiche R, Hachem R, et al. The broad-spectrum activity and efficacy of catheters coated with minocycline and rifampin. J Infect Dis, 1996,173(2):418-424.
    82 Raad I, Darouiche R, Hachem R, at al. Antibiotics and prevention of microbial colonization of catheters. Antimicrobial Agents and Chemotherapy, 1995,39(11):2397-2400.
    83 Darouiche RO, Raad II, Bodey GP, et al. Antibiotic susceptibility of staphylococcal isolates from patients with vascular catheter-related bacteremia: potential role of the combination of minocycline and rifampin. International Journal of Antimicrobial Agents, 1995,6(1):31-36.
    84 Raad I, Darouiche R, Dupuis J, et al. Central venous catheters coated with minocycline and rifampin for the prevention of catheter-related colonization and bloodstream infections. A randomized, double-blind trial. Ann Intern Med, 1997,127(4):267-274.
    85 Darouiche R, Wright C, Hamill R, et al. Eradication of colonization by methicillin-resistant Staphylococcus aureus by using oral minocycline- rifampin and topical mupirocin. Antimicrob Agents Chemother, 1991,35(8): 1612-1615.
    86 Yourassowsky E, van der Linden MP, Lismont MJ, et al. Combination of minocycline and rifampin against methicillin-and gentamcin-resistant Staphylococcus aureus. J Clin Pathol, 1981,34(5):559-563.
    87 Maki DG, Stolz SM, Wheeler S, et al. Prevention of central venous catheter-related bloodstream infection by use of an antiseptic-impregnatedcatheter. A randomized controlled trial. Ann Intern Med, 1997,127(4): 257-266.
    88 Logghe C, Van Ossel C, D'Hoore W, et al. Evaluation of chlorhexidine and silver-sulfadiazine impregnated central venous catheters for the prevention of bloodstream infection in leukaemic patients: a randomized controlled trial. J Hosp Infect, 1997,37(2):145-156.
    89 Heard SO, Wagle M, Vijayakumar E, et al. Influence of triple-lumen central venous catheters coated with chlorhexidine and silver sulfadiazine on the incidence of catheter-related bacteremia. Arch Intern Med, 1998,158(1):81-87.
    90 Ohtoshi T, Yamauchi N, Tadokoro K, et al. IgE antibody-mediated shock reaction caused by topical application of chlorhexidine. Clin Allergy, 1986,16(2):155-161.
    91 Cheung J, O's Leary JJ. Allergic reaction to chlorhexidine in an anesthetized patient. Anaesthetic Intensive Care, 1985,13(2):429-430.
    92 Goldschmidt H, Hahn U, Salwender HJ,et al.Prevention of catheter-related infections by silver coated central venous catheters in oncological patients. Zentralbl Bakteriol, 1995,283(2):215-223.
    93 Jansen B, Jansen S, Peters G, et al. In-vitro efficacy of a central venous catheter (Hydrocath's) loaded with teicoplanin to prevent bacterial colonization. J Hosp Infect, 1992,22(2):93-107.
    94 RomanòG, Berti M, Goldstein BP, et al. Efficacy of a central venous catheter (Hydrocath?) loaded with teicoplanin in preventing subcutaneous staphylococcal infection in the mouse. Zentralbl Bakteriol, 1993, 279(3):426-433.
    95 Bach A, Darby D, Bottiger B, et al. Retention of the antibiotic teicoplaninon a hydromer-coated central venous catheter to prevent bacterial colonization in postoperative surgical patients. Intensive Care Med, 1996,22(10):1066-1069.
    96 Kamal GD, Pfaller MA, Rempe LE, et al. Reduced intravascular catheter infection by antibiotic bonding. A prospective, randomized control trial. JAMA, 1991,265(18):2364-2368.
    97 Kamal GD, Divishek D, Kumar GC, et al. Reduced intravascular catheter-related infection by routine use of antibiotic-bonded catheters in a surgical intensive care unit. Diagn Microbiol Infect Dis, 1998,30(3): 145-152.
    98 Sherertz RJ, Forman DM, Solomon DD. Efficacy of dicloxacillin-coated polyurethane catherers in preventing subcutaneous Staphylococcus aureus infection in mice. Antimicrob Agents Chemother, 1989,33(8):1174-1178.
    99 Kingston D, Birnie ED, Martin J, et al. Experimental pathology of intravenous polyurethane cannulae containing disinfectant. J Hosp Infect, 1992,20(4):257-270.
    100 Jansen B, Kristinsson KG, Jansen S, et al. In-vitro efficacy of a central venous catheter complexed with iodine to prevent bacterial colonization. J Antimicrob Chemother, 1992,30(2):135-139.
    101 Linares J, Sitges-Serra A, Garau J, et al. Pathogenesis of catheter sepsis: a prospective study with quantitative and semi-quantitative cultures of catheter hub and segments. J Clin Microbiol, 1985,21(3):357-360.
    102 Tebbs SE, Trend V, Elliott TS. The potential reduction of microbial contamination of central venous catheters. J Infect, 1995,30(2):107-130.
    103 Russell AD, Hammond SA, Morgan JR. Bacterial resistance to antiseptics and disinfectants. J Hosp Infect, 1986,7(3):213-225.
    104 Raad I, Hachem R, Zermeno A, ey al. Silver iontophoretic catheter: a prototype of a long-term antiinfective vascular access device. J Infect Dis, 1996,173(2):495-498.
    105 Kollef MH, Afessa B, Anzueto A, et al. Silver-coated endotracheal tubes and incidence of ventilator-associated pneumonia the NASCENT randomized trial. JAMA, 2008,300(7):805-813.
    106 Liu WK, Tebbs SE, Byrne PO, et al. The effects of electric current on bacteria colonising intravenous catheters. J Infect, 1993,27(3):261-269.
    107 Costerton JW, Ellis B, Lam K, et al. Mechanism of electrical enhancement of efficacy of antibiotics in killing biofilm bacteria. Antimicrob Agents Chemother, 1994,38(12):2803-2809.
    108 Hazan Z, Zumeris J, Jacob H, et.al. Effective prevention of microbial biofilm formation on medical devices by low-energy surface acoustic waves. Antimicrob Agents Chemother, 2006,50(12):4144-4152.
    109 Carmen JC, Roeder BL, Nelson JL, et al. Treatment of biofilm infections on implants with low-frequency ultrasound and antibiotics. Am J Infect Control, 2005,33(2):78-82.
    110 Rediske AM, Roeder BL, Nelson JL, et al. Pulsed ultrasound enhances the killing of Escherichia coli biofilms by aminoglycoside antibiotics in vivo. Antimicrob Agents Chemother, 2000,44(3):771-772.
    111 Trooskin SZ, Donetz AP, Harvey RA, et al. Prevention of catheter sepsis by antibiotic bonding. Surgery, 1985,97(5):547-551.
    112 Castro C, Evora C, Baro M, et al. Two-month ciprofloxacin implants for multibacterial bone infections. Eur J Pharm Biopharm, 2005,60(3): 401- 406.
    113 Rossi S, Azghani AO, Omri A. Antimicrobial efficacy of a new antibiotic-loaded poly(hydroxybutyric-co-hydroxyvaleric acid) controlled release system. J Antimicrob Chemother, 2004,54(6):1013-1018.
    114 Agalar C, Kilic D, Ceken S,et al. Inhibition of Staphylococcus Epidermidis colonization with fusidic acid-impregnated catheters. Journal of Bioactive and Compatible Polymers, 2007,22(2):160-173.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700