用户名: 密码: 验证码:
Rho-kinase在心肌缺血/再灌注损伤和缺血预适应中对细胞凋亡的影响及其调控机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     心肌长时间缺血可以导致组织损伤以及细胞死亡,冠状动脉再通是缓解缺血损伤的关键,但较长时间缺血后的再灌注却可导致更为严重的损伤,即心脏缺血/再灌注损伤(Ischemia and reperfusion Injury, I/R), I/R的概念于1960年被Jennings等第一次提出。I/R是冠脉再通术(溶栓、PTCA或搭桥术)后的重要的并发症。如何做到既保证尽早恢复缺血组织的血流灌注,又减轻甚至消除再灌注损伤的发生便成为缺血性心脏病防治中的重要课题。有效防治再灌注损伤的重要前提是阐明其发病机制。心肌在遭受一次或多次反复的短暂缺血再灌注后,会表达出一种对随后而来的一次长时间的严重缺血损伤的抵抗能力的提高,这种现象称为缺血预适应(ischemic preconditioning, IPC), IPC于1986年首次被Murry等发现。经过预适应的心肌能够缩小心肌梗死的面积,改善心肌收缩力,保护冠状动脉内皮和心肌细胞的超微结构,保护微循环,降低再灌注导致的心律失常的发生率,更快地使心肌从再灌注诱导的心肌顿抑中恢复,是一种内源性自我保护方式。
     Rho-kinase是一类丝-苏氨酸蛋白家族,可作为小G蛋白RhoA的直接下游效应物,参与多种细胞生物功能,如:平滑肌收缩、肌动蛋白细胞骨架组装、细胞黏附、移动、基因表达等。Rho-kinase以两种同源性极高的异构体形式存在:ROCK-1(或ROKβ、p160ROCK)和ROCK-2(或ROKα)。ROCK-1位于18号染色体,含有1354个氨基酸,ROCK-2位于12号染色体,含有1388个氨基酸。二者有65%的同源性,而在激酶结构域则有92%的同源性。Y-27632和fasudil是ROCK的选择性抑制剂,作用于其ATP依赖激酶区,可同时抑制ROCK-1和ROCK-2。Rho-kinase可以介导下游一系列磷酸化/脱磷酸化反应,已有20多种下游蛋白被发现。如:MLC、MYPT-1 ERM、PTEN、IRS1 NHE1、LIM激酶等。最具特征意义的Rho-kinase底物是MLC (myosin light chain)和MYPT-1 (myosin binding subunit of MLC phosphorylation, MLC磷酸酶的肌球蛋白结合亚基)。Rho-kinase可以通过作用于MLC或MYPT1来增加胞浆内MLC的磷酸化,促进肌动蛋白微丝骨架的聚合。
     最近研究发现,Rho-kinase参与了变异性心绞痛、心衰、心肌缺血再灌注损伤等心血管疾病。初步研究表明Rho-kinase在心脏I/R损伤中活性增加,而在IPC中活性可能降低,但是其中发生机制却远未清楚。例如Rho-kinase调控哪些细胞因子,通过哪些信号途径发挥作用,以及在IPC中Rho-kinase活性是否会降低,Rho-kinase活性降低的机制如何,这些问题构成了本研究课题的内容。在本研究中,我们拟建立大鼠I/R和IPC模型,明确Rho-kinase活性在IPC和I/R中是否不同,Rho-kinase对心肌梗死面积、心肌细胞凋亡的影响以及对细胞凋亡有关信号通路的调节;明确IPC中ERK-MAPK是否能通过下调Rho-kinase活性起到抗心肌细胞凋亡作用。通过以上研究,进一步明确Rho-kinase在心脏I/R和IPC中所起的作用及其机制。这对于阐明I/R和IPC的发病机制,为心肌保护提供新的治疗途径具有重要的意义。
     本研究共分三部分进行:
     第一部分Rho-kinase在心脏缺血再灌注损伤和心肌缺血预适应中的表达及其对细胞凋亡的影响;
     第二部分心脏缺血再灌注损伤中Rho-kinase对AIF的影响及调节机制;
     第三部分心肌缺血预适应中ERK对Rho-kinase的调节。
     第一部分Rho-kinase在心脏缺血再灌注损伤和心肌缺血预适应中的表达及其对细胞凋亡的影响研究目的
     本部分研究拟建立大鼠I/R和IPC模型,应用药物fasudil抑制Rho-kinase活性,测定心肌梗死面积、心肌细胞的凋亡,明确Rho-kinase在心脏I/R和IPC中的作用。研究方法
     1.大鼠心脏I/R和IPC模型的建立和分组:采用开胸结扎和松开冠状动脉的方法建立大鼠心脏I/R和IPC型。分为以下四组:对照组(18只)、I/R组(18只)、I/R+fasudil组(18只)和IPC组(18只)
     2. Rho-kinase活性的检测:Rho-kinase的活性通过Western检测其特异性底物MYPT-1的磷酸化水平来表示。
     3.心肌梗死面积检测:采用伊文思蓝染色鉴别非缺血区与缺血危险区(AAR),硝基四氮唑蓝(NBT)染色鉴别梗死心肌与非梗死心肌。以称重法计算心肌缺血危险区(伊文思蓝未染区),梗死区(NBT未染区)的重量,心肌梗死范围的大小以梗死区重量占缺血危险区重量的百分比表示。
     公式为:心肌梗死范围=NBT未染区/伊文思蓝未染区×100%
     4.大鼠心肌细胞凋亡的检测:采用末端脱氧核苷酸转移酶介导的末端标记技术(TUNEL)试剂盒检测各组大鼠心肌细胞的凋亡。按照试剂盒说明书操作。标记前用DNA酶处理切片做阳性对照,用标记液代替TdT酶反应液做阴性对照。每张切片随机选取10个视野(×400倍),计数凋亡细胞个数和所有细胞个数,以凋亡细胞个数/所有细胞个数反映各组心肌细胞凋亡的情况。
     5. Caspase-3活性的检测:Caspase-3的活性通过Western检测其裂解产物cleaved-Caspase-3的表达水平来表示。研究结果
     1.p-MYPT-1(磷酸化的MYPT-1)在I/R中大量表达,而在IPC中活性降低。在I/R中应用Rho-kinase抑制剂fasudil后,p-MYPT-1表达降低:对照组中只有微弱的p-MYPT-1表达。说明Rho-kinase在I/R中活性增加,而IPC和fasudil均抑制了Rho-kinase的活性。
     2. Rho-kinase活性的抑制可减少大鼠心肌梗死面积:I/R组大鼠的心肌梗死面积占危险区心肌面积的60.3±4.08%, I/R+fasudil组大鼠的,心肌梗死面积/AAR减少至38.62±2.66%,说明在I/R大鼠中抑制Rho-kinase活性后能显著减少心肌梗死面积。在IPC中大鼠的心肌梗死面积降至29.16±1.08%,说明IPC可能通过降低Rho-kinase活性而明显缩小心肌梗死面积。
     3. Rho-kinase活性的抑制可减少大鼠心肌细胞凋亡率:在对照组大鼠心肌中无TUNEL染色阳性细胞。在I/R组大鼠心肌中,TUNEL染色阳性细胞占全部细胞的33.87±1.57%,说明I/R可引起心肌细胞凋亡增加。在I/R+fasudil组大鼠心肌中,TUNEL染色阳性细胞占全部细胞的17.05±4.22%,说明在I/R大鼠中抑制Rho-kinase活性能减少心肌细胞凋亡率。在IPC中,细胞凋亡率为17.29±0.84%,说明IPC可能通过降低Rho-kinase活性而明显降低心肌细胞凋亡率。
     4. Rho-kinase活性的抑制降低Caspase-3活性:在I/R中cleaved-Caspase-3大量表达,在IPC和I/R+fasudil组中其表达分别减少了约65.3%和58.5%,说明IPC和fasudil在抑制Rho-kinase活性同时抑制了Caspase-3的活性。
     结论
     1.在大鼠心肌I/R损伤中Rho-kinase活性明显增加,加重了心脏的损伤、增加了心肌细胞凋亡。
     2.在大鼠心肌I/R损伤中抑制Rho-kinase活性后能减少心肌梗死面积和心肌细胞的凋亡率,减轻心肌细胞的损伤程度。
     3.IPC中Rho-kinase活性降低,心肌梗死面积和心肌细胞凋亡减轻,具有心脏保护作用。
     第二部分心脏缺血再灌注损伤中Rho-kinase对AIF的影响及调节机制
     研究目的
     探讨在大鼠心脏I/R中Rho-kinase对AIF的影响及调节机制。(Rho-kinase/JNK/AIF信号通路在心脏I/R损伤中的作用)研究方法
     1.大鼠心脏I/R损伤模型的建立,分为以下5组:对照组(18只)I/R+NS组(18只)、I/R+fasudil组(18只)、I/R+SP600125(JNK抑制剂)组(18只)和I/R+DMSO组(18只)。
     2.心肌梗死面积检测,计算梗死心肌面积占危险区(AAR)心肌面积百分比。
     3.TUNEL法检测细胞凋亡。
     4.采用Western Blot检测各组大鼠心肌中Rho-kinase、JNK、AIF的活性变化。Rho-kinase活性通过检测MYPT-1的磷酸化水平来表示,通过检测JNK的磷酸化蛋白的水平来反映JNK的活性,通过分别检测AIF的线粒体和细胞核中的蛋白水平来反映AIF的活性。研究结果
     1.心脏I/R损伤中Rho-kinase、JNK、AIF活性增加:与对照组相比,I/R+NS组中p-MYPT-1和p-JNK蛋白表达明显增加。I/R+NS组中AIF在细胞核中的表达增多,在线粒体中的表达减少,AIF从线粒体到细胞核的转位增加。说明心脏I/R损伤可增加Rho-kinase、JNK、AIF活性。
     2.抑制Rho-kinase或JNK后减少大鼠心肌梗死面积:I/R+NS组和I/R+DMSO组大鼠的心肌梗死面积分别占整个左心室面积的59.89±3.83%和61.64±3.3%,两者相比无显著性差异。I/R+fasudil组大鼠的心肌梗死面积/AAR减少至38.62±2.66%,说明在I/R中抑制Rho-kinase活性能显著减少心肌梗死面积。I/R+SP600125组大鼠的心肌梗死面积/AAR减少至41.1±2.57%,说明在I/R中抑制JNK活性能显著减少心肌梗死面积。
     3.抑制Rho-kinase或JNK后减少大鼠心肌细胞凋亡:I/R+NS组和I/R+DMSO组大鼠的心肌细胞凋亡分别为32.78±5.01%和34.45±3.73%,两者相比无显著性差异。I/R+fasudil组大鼠的心肌细胞凋亡减少至17.05±4.22%,说明在I/R中抑制Rho-kinase活性能显著减少心肌细胞凋亡。I/R+SP600125组大鼠的心肌细胞凋亡减少至16.25±3.29%,说明在I/R中抑制JNK活性能显著减少心肌细胞凋亡。
     4.抑制Rho-kinase活性可降低JNK活性:在I/R组大鼠心肌中磷酸化JNK表达增多,应用fasudil后磷酸化JNK的表达下降,说明磷酸化JNK的表达与Rho-kinase有关,JNK是Rho-kinase的下游分子。
     5.在I/R+DMSO组p-MYPT-1表达明显增加,应用JNK抑制剂SP600125后,p-MYPT-1表达无明显变化。说明p-MYPT-1的表达与JNK活性无关,进一步证实JNK是Rho-kinase的下游分子。
     6.抑制Rho-kinase活性可减少AIF从线粒体到心肌细胞核的转位:在I/R组大鼠心肌细胞核中AIF的表达增多,抑制Rho-kinase活性后其表达减少;另一方面,在I/R组大鼠心肌细胞线粒体中AIF的表达减少,而抑制Rho-kinase活性后其表达增多。说明抑制Rho-kinase活性可减少AIF从线粒体向细胞核的转移,证实AIF是Rho-kinase的下游分子。
     7.抑制JNK活性可减少AIF的从线粒体到心肌细胞核的转位:在I/R组大鼠心肌细胞核中AIF的表达增多,抑制JNK活性后其表达减少;另一方面,在I/R组大鼠心肌细胞线粒体中AIF的表达减少,而抑制JNK活性后其表达增多。说明抑制JNK可以减少AIF从线粒体向细胞核的转移,证实AIF是JNK的下游分子。
     结果证实,在大鼠I/R损伤模型中,Rho-kinase调节AIF从线粒体向细胞核的转移,在这个过程中,JNK起了重要的作用。Rho-kinase通过JNK来发挥调节AIF的作用。Rho-kinase/JNK/AIF信号通路是介导大鼠心脏I/R损伤的一条重要的通路。
     结论
     1.I/R损伤模型中,Rho-kinase调节AIF从线粒体向细胞核的转移,在这个过程中,JNK起了重要的作用。Rho-kinase通过JNK来发挥调节AIF的作用。
     2. Rho-kinase/JNK/AIF信号通路是介导心脏I/R损伤的一条重要的通路。
     第三部分心肌缺血预适应中ERK对Rho-kinase的调节
     研究目的
     探讨在心肌缺血预适应中ERK是否可通过下调Rho-kinase活性起到心肌保护作用。
     研究方法
     1.大鼠心脏I/R和IPC模型的建立,分为以下6组:I/R组(18只)IPC组(18只)、IPC+PD98059 (ERK抑制剂)组(18只)、IPC+fasudil组(18只)、IPC+PD98059+fasudil组(18只)和I/R+DMSO组(18只)。
     2.心肌梗死面积检测,计算梗塞心肌面积占危险区(AAR)心肌面积百分比。
     3. TUNEL检测细胞凋亡。
     4. Western Blot分别检测ERK. RhoA. Rho-kinase、ROCK1、ROCK2、Csapase-3活性变化。通过检测ERK1/2磷酸化蛋白的表达水平来检测其活性。RhoA被激活后转位至细胞膜,我们通过分别检测细胞膜和细胞浆的表达来反映RhoA活性。
     研究结果
     1.IPC降低心肌细胞凋亡、Caspase-3活性和心肌梗死面积:I/R组大鼠心肌细胞凋亡率为33.87±1.57%,IPC组大鼠的心肌细胞凋亡率降低至17.29±0.84%。与I/R组相比,IPC组Capsase-3 cleavage蛋白表达大约减少65%,Caspase-3活性明显降低。I/R组大鼠心肌梗死面积为60.53±4.08%,而在IPC组心肌梗死面积降至29.16±1.08%。IPC+DMSO组大鼠的心肌细胞凋亡率和心肌梗死面积分别为30.06±0.79%和18.46±0.92%,与IPC组相比二者无明显差异。结果表明IPC可明显降低大鼠心脏缺血再灌注损伤造成的心肌细胞凋亡和心肌梗死面积
     2.IPC对ERK1/2的作用:免疫组化检测到IPC组磷酸化的ERK1/2表达明显增加;Western Blot同样检测到IPC组ERK1/2的磷酸化大致增加了1.8倍。说明IPC可明显增加的ERK1/2的活性。
     3.IPC对RhoA、Rho-kinase、ROCK1、ROCK2的作用:RhoA蛋白的活性通过RhoA的膜转位来表示,I/R组与IPC组表达无明显差异。ROCK1蛋白表达在I/R组明显增加而在IPC组降低,ROCK1 mRNA表达水平在I/R组明显增加,而在IPC组降低。ROCK2表达在I/R组和IPC组均增加。Rho-kinase活性通过检测其特异性底物MYPT-1的磷酸化水平来表示,与I/R组相比,IPC组MYPT-1的磷酸化减低了49%。结果说明心肌IPC可明显降低大鼠I/R损伤造成的Rho-kinase活性和ROCK1表达增加,而对RhoA活性和ROCK2表达则无明显作用。
     4.IPC中抑制ERK1/2后增加心肌细胞凋亡、Caspase-3活性和心肌梗死面积:IPC+PD98059组大鼠心肌细胞凋亡率为29.83±0.7%,与IPC组相比明显增加;IPC+PD98059组的Capsase-3 cleavage蛋白表达大概增加2.1倍,Caspase-3活性明显增加(P<0.05 vs IPC组);IPC+PD98059组大鼠心肌梗死面积为44.88±0.7%,与IPC组相比明显增加。结果表明IPC中应用PD98059抑制.ERK1/2活性可明显增加I/R损伤造成的心肌细胞凋亡和心肌梗死面积。
     5.心肌IPC中ERK1/2抑制Rho-kinase活性:在IPC中,ERK1/2活性增加而Rho-kinase活性则明显降低。在IPC+PD98059组,MYPT-1的磷酸化水平和ROCK1蛋白表达水平均明显增加(P<0.05 vs IPC组),ROCK1 mRNA表达水平也明显增加。结果表明IPC中应用PD98059抑制ERK1/2可明显增加Rho-kinase活性和ROCK1表达。但是,IPC+fasudil组的ERK1/2磷酸化水平与IPC组相比,二者无明显差异;在IPC+PD98059组,ERK1/2磷酸化水平明显降低;而在IPC+PD98059+fasudil组ERK1/2磷酸化水平与IPC+PD98059组相比,二者无明显差异。结果说明应用Rho-kinase抑制剂后并不能改变ERK1/2的活性水平。
     6.心肌IPC中抑制Rho-kinase可对抗由ERK1/2抑制所致的心肌细胞凋亡增加:与IPC+PD98059组相比,IPC+PD98059+fasudil组心肌细胞凋亡减少了22%而Capsase-3活性水平降低了30%。心肌梗死面积减少了12%左右。我们的结果表明IPC中,抑制Rho-kinase活性可部分减少由ERK1/2活性抑制所致的心肌细胞凋亡,进一步说明IPC中,ERK1/2信号可以下调Rho-kinase活性,起到保护心肌的作用。
     结论
     1.心肌缺血预适应中,激活的ERK信号可以下调Rho-kinase,从而减少心肌梗死面积和心肌细胞的凋亡率,减轻心肌细胞的损伤程度,具有心脏保护作用。
     2.‘在此过程中RhoA并未参与,ERK主要通过下调ROCK1蛋白水平和基因水平来发挥作用。
     创新性及局限性
     1.创新点
     (1)提出并证实了Rho-kinase可通过Rho-kinase/JNK/AIF途径参与心肌缺血再灌注造成的心肌细胞凋亡。
     (2)提出并证实了心肌缺血预适应中ERK-MAPK信号通路可通过下调Rho-kinase活性降低细胞凋亡,并发现在此过程中RhoA并未参与,ERK主要通过下调ROCK1蛋白水平和基因水平来发挥作用。
     2.局限性
     (1)限于时间,本研究未能在细胞水平上研究细胞信号通路,这是本研究目前正在进行的内容。
     (2)由于时间及条件的限制,未能应用基因敲除和RNA干扰等技术在组织及细胞水平上研究。
Background
     With the improvement of people's standard of living, cardiovascular disease has now become a great threat to human life and health. The main cause of death of cardiovascular diseases is coronary artery disease. The best treatment of coronary heart disease is the resumption of blood perfusion of myocardium as soon as possible. However, both animal experiments and clinical studies have found that the damage of myocardial cell function and structural became worse with the restoration of blood supply. We call the pathophysiological state ischemia-reperfusion injury (I/R). Reperfusion involved in the clinical practice such as reperfusion myocardial infarction after coronary artery bypass grafting, heart transplants, heart resuscitation of cardiac arrest and cardiopulmonary bypass heart surgery. Ischemic preconditioning (IPC) has been exploited as a powerful endogenous form of cardioprotection. IPC was first discovered by Murry and associates, who demonstrated that a brief period of repetitive cardiac I/R exerts a protective effect against subsequent lethal periods of ischemia. IPC was found to similarly reduce cytosolic and mitochondrial Ca2+ overloading, to augment postischemic functional recovery, and to decrease infarct size. And IPC is known to protect cardiomyocyte apoptosis during reperfusion.
     The ubiquitously expressed Rho-kinase, a serinethreonine kinase, has been identified as one of the effectors of the small GTP-binding protein Rho. Rho-kinase plays crucial roles in various cellular functions, and mediates cellular events such as changes in cell morphology, cell motility, focal adhesions, and cytokinesis. The Rho-kinase family contains two members:ROCK1 (also called ROKβor p160ROCK) and ROCK2 (also known as ROKa), which share 65% overall identity and 92% identity in the kinase domain. Two relatively selective Rho-kinase inhibitors, Y27632 and fasudil, bind to the kinase domain and inhibit ROCK1 and ROCK2 with similar potency. Rho-kinase phosphorylates a variety of protein substrates at serine or threonine residues. More than 20 Rho-kinase substrates have been identified. The first characterized targets of ROCK are myosin light chain (MLC) and the myosin binding subunit of MLC phosphatase (MYPT1). Rho-kinase can increase MLC phosphorylation through direct effect on MLC or indirectly by inactivating MLC phosphatase. The increased MLC phosphorylation results in stimulation of actomyosin contractility.
     Accumulating evidences have demonstrated that Rho-kinase plays an important role in many major cardiovascular diseases such as hypertension, heart failure, myocardial infarction and atherosclerosis. Recent animal studies suggest that inhibition of Rho-kinase protects the heart against I/R injury. Previous studies have also demonstrated IPC caused a substantial decrease of Rho-kinase activation during sustained ischemia and reduced infarct size. However, little is known about the mechanism of Rho-kinase increased in I/R and reversed in IPC. Therefore, the aim of this study was to elucidate the mechanism of decreased Rho-kinase activity in IPC. We established IPC and I/R model in vivo and vitro. The activation of Rho-kinase, cardiomyocyte apoptosis, area of myocardial infarction and related signaling pathway were detected.
     This study includes three parts:
     PartⅠThe effect of Rho-kinase on I/R and IPC
     PartⅡThe effect of Rho-kinase on AIF signaling pathway in I/R
     PartⅢThe effect of ERK1/2 on Rho-kinase in IPC
     Part I The effect of Rho-kinase on cell apoptosis in I/R and IPC
     Objective
     To investigate the effect of Rho-kinase on I/R and IPC
     Methods
     1. Animal preparation:The left anterior descending branch (LAD) of the left coronary artery was occluded and loosened to establish rat heart IPC and I/R model. The following experimental groups were studied. (1) control group (n=18); (2) I/R group (n=18); (3) I/R+fasudil(inhibitor of Rho-kinase) group (n=18); (4) IPC group (n=18).
     2. Rho-kinase activity was assessed by examining phosphorylation of MYPT-1, a well established Rho-kinase specific substrate. Western blot analysis was performed to evaluate Rho-kinase activity.
     3. Determination of myocardial infarct size:Evans blue and Nitro blue tetrazolium was used to evaluate the infracted and noninfarcted areas. Infarct size was expressed as the percentage of the area at risk(AAR).
     4. To evaluate apoptotic activity, the TUNEL technique was used. TUNEL-positive cells were determined by randomly counting 10 fields of the section and were expressed as a percentage of normal nuclei.
     5. Activation of Caspase-3 is a hallmark of apoptotic cell death and Caspase-3 cleavage is indicative of its activation. Caspase-3 cleavage was determined by Western blot analysis.
     Results
     1. Phospho-MYPT-1 increased during the I/R protocol. This increase in MYPT-1 phosphorylation was reversed in IPC protocol and I/R+fasudil protocol, demonstraying that Rho-kinase activity decreased in IPC.
     2. Rho-kinase inhibition decreased the infarct size of the heart. The infarct size of the heart was 59.89±3.89% in I/R group. Administration of fasudil, the infarct size was 38.62±2.66%, demonstraying that inhibition of Rho-kinase activity reduces myocardial infarct size in rat heart I/R injury. In IPC, the myocardial infarct size was 29.16±1.08% (P<0.05 vs I/R group). These data suggest that myocardial infarct size was attenuated in IPC.
     3. Inhibition of Rho-kinase reduced cardiomyocyte apoptosis. No TUNEL positive cells were found in the control group. The number of TUNEL positive cells were significantly increased in I/R group (32.78±5.1%). After fasudil was used, the TUNEL positive cells reduced to 17.05±4.2% (P<0.05 vs I/R group). The TUNEL positive cells were significantly reduced to 17.29±0.84% in IPC group (P<0.05 vs I/R group).
     Conclusion
     1. Rho-kinase activity increased in I/R. The overexpression of Rho-kinase in rat heart I/R protocol can aggravate the heart damage.
     2. Rho-kinase inhibition in I/R has the cardiacprotective effect via reduced the apoptosis of cardiomyocytes and infarct size.
     3. Rho-kinase activity increased in I/R and reversed in IPC. IPC has the cardiacprotective effect via reduced the apoptosis of cardiomyocytes and infarct size.
     PartⅡThe effect of Rho-kinase on AIF signaling pathway in I/R
     Objective
     To investigate the effect of Rho-kinase on AIF signaling pathway in I/R
     Methods
     1. Animal preparation:The left anterior descending branch (LAD) of the left coronary artery was occluded and loosened to establish rat heart IPC and I/R model. The following experimental groups were studied. (1) control group (n=18); (2) I/R+NS group (n=18); (3) I/R+fasudil (inhibitor of Rho-kinase) group (n=18); (4) IPC+SP600125 (inhibitor of JNK) group (n=18); (5) I/R+DMSO group (n=18).
     2. Determination of myocardial infarct size:Evans blue and Nitro blue tetrazolium was used to evaluate the infracted and noninfarcted areas. Infarct size was expressed as the percentage of the area at risk(AAR).
     3. To evaluate apoptotic activity, the TUNEL technique was used. TUNEL-positive cells were determined by randomly counting 10 fields of the section and were expressed as a percentage of normal nuclei.
     4. Western blot analysis was performed to evaluate Rho-kinase, JNK, and AIF activity.
     Results
     1. Rho kinase, JNK and AIF were activated in the rat I/R model. Western blot analysis was performed to evaluate whether Rho-kinase, JNK and AIF can be activated in the myocardial I/R rat model. Rho-kinase activity was assessed by examining phosphorylation of MYPT-1, a well established Rho-kinase specific substrate. JNK activity was assessed by examining phosphorylation of JNK. Both phospho-MYPT1 and phospho-JNK increased in I/R. AIF activity was assessed by nuclear translocation of AIF. The activation of AIF increased in nuclear fractions while it decreased in mitochondria fractions. The results indicate that AIF translocated to the nucleus in the I/R rat model.
     2. Inhibition of Rho-kinase or JNK activity reduced myocardial infarct size. Administration of fasudil or SP600125 caused significant reduction of AAR and infarct size. The infarct sizes of the heart were 38.62±2.66% in I/R+fasudil group and 41.1±2.57% in I/R+SP600125 group respectively. These data suggest that inhibition of Rho-kinase or JNK activity reduces myocardial infarct size in rat heart I/R injury.
     3. Inhibition of Rho-kinase or JNK activity reduced cell apoptosis of the heart. The number of TUNEL positive cells was significantly increased in I/R+NS group (32.78±5.1%). The TUNEL positive cells were significantly reduced to 17.05±4.2% in I/R+fasudil group. The number of TUNEL positive cells was significantly increased in I/R+DMSO group (34.45±3.73%). The TUNEL positive cells were significantly reduced to 16.25±3.29% in I/R+SP600125 group. These data suggest that inhibition of Rho-kinase or JNK activity activity reduces cell apoptosis.
     4. Inhibition of Rho-kinase activity reduced the activation of JNK. Phospho-JNK increased after reperfusion in I/R group. The activation of phospho-JNK was significantly attenuated in I/R+fasudil group.
     5. Inhibition of Rho-kinase or JNK activity reduces the AIF translocation: AIF increased after reperfusion in nuclear fractions. The activation of AIF was significantly attenuated by inhibition of Rho-kinase or JNK activity. On the contrary, AIF decreased in mitochondria fractions after reperfusion. Inhibition of Rho-kinase or JNK activity could increase the activation of AIF in mitochondria fractions. These data suggest that inhibition of Rho-kinase or JNK activity was able to reduce the mitochondrial-nuclear translocation of AIF.
     Conclusion
     1. JNK may be downstream of Rho-kinase activation and JNK may be required for Rho-kinase mediates AIF translocation in a rat model of myocardial ischemia and reperfusion.
     2. Rho-kinase/JNK/AIF pathway may be a new pathway of cardiac myocyte injury.
     PartⅢThe effect of ERK1/2 on Rho-kinase in IPC
     Objective
     To investigate the mechanism of decreased Rho-kinase activity in IPC
     Methods
     1. Animal preparation:(1) I/R group (n=18); (2) PC group (n=18); (3) IPC+PD98059 group (n=18); (4) IPC+fasudil (n=18); (5) IPC+PD98059+fasudil group (n=18); (6) IPC+DMSO (n=18).
     2. Determination of myocardial infarct size:Evans blue and Nitro blue tetrazolium was used to evaluate the infracted and noninfarcted areas. Infarct size was expressed as the percentage of the area at risk(AAR).
     3. To evaluate apoptotic activity, the TUNEL technique was used. TUNEL-positive cells were determined by randomly counting 10 fields of the section and were expressed as a percentage of normal nuclei.
     4. Western blot analysis was performed to evaluate ERK, Rho-kinase, Caspase-3 activity and ROCK1, ROCK2 expression.
     5. Immunohistochemistry Staining was performed to evaluate phospho-ERK1/2.
     6. Real-time quantitative reverse transcription polymerase chain reaction (RT-PCR) was performed to evaluate ROCK1 mRNA.
     Results
     1. Effect of IPC on cardiomyocyte apoptosis, Caspase-3 cleavage and infarct size. TUNEL positive cells were expressed as a percentage of normal nuclei. The number of TUNEL positive cells was 33.87±1.57% in I/R group. The TUNEL positive cells were significantly reduced to 17.29±0.84% in IPC group. Activation of Caspase-3 is a hallmark of apoptotic cell death and Caspase-3 cleavage is indicative of its activation. IPC resulted in a 65% reduction in the amount of Capsase-3 cleavage (P<0.05 vs I/R group). Capsase-3 activity attenuated in IPC group. The infarct size of the heart was 60.53±4.08% in I/R group. In IPC, the myocardial infarct size was 29.16±1.08%. These values showed no significant differences between IPC and IPC+DMSO groups.
     2. Effect of IPC on activity of ERK1/2. Phospho-ERK1/2 expression increased clearly in the heart in IPC. IPC resulted in an immediate increase in ERK1/2 phosphorylation. The increase in the phosphorylation of ERK1/2 was about 1.8-fold (P<0.05 vs I/R group).
     3. Effect of IPC on activity of RhoA, ROCK1, ROCK2 and Rho-kinase. RhoA protein was determined by immunoblotting of cytosolic and membrane fractions. In all groups, RhoA protein was detected in both cytosolic and membrane fractions. An enhanced RhoA translocation to the membrane was detected in the I/R rat model. But no difference was observed between the I/R and IPC groups. ROCK1 and ROCK2 were also determined by western blot analysis. ROCK1 increased in the I/R group and attenuated in IPC group. ROCK2 increased in the I/R group, but there were no significant differences between the I/R and IPC groups. RT-PCR was also used to evaluate ROCK1 activity. A significant increase in mRNA expression of ROCK1 was detected in the I/R group, and the expression was decreased by IPC. Rho-kinase activity was assessed by examining phosphorylation of MYPT-1, a well established Rho-kinase specific substrate. IPC resulted in a 49% reduction in MYPT-1 phosphorylation and a 54% reduction in ROCK1 (P<0.05 vs I/R group).
     4. Inhibition of ERK1/2 increased cardiomyocyte apoptosis, Caspase-3 activity and infarct size during IPC. The TUNEL positive cells were significantly increased with administration of PD98059 (29.83±0.7%) in IPC+PD98059 group (P<0.05 vs IPC group). The increase in the amount of cleaved Caspase-3 in IPC+PD98059 group was about 2.1-fold (P<0.05 vs IPC group). The infarct size of the heart was 44.88±0.7% in IPC+PD98059 group (P<0.05 vs IPC group).
     5. ERK1/2 opposed Rho-kinase during IPC. ERK1/2 was strongly activated and Rho-kinase activity decreased in IPC. Inhibition of ERK1/2 in IPC could lead to upregulation of MYPT-1 phosphorylation and the amount of ROCK1. Inhibition of ERK1/2 in IPC also could lead to upregulation of ROCK1 mRNA. In the IPC+fasudil group, phospho-ERK1/2 expression was similar to the IPC group. In the IPC+PD98059 group, phospho-ERK1/2 expression significantly decreased. And phospho-ERK1/2 expression was not recovered in the IPC+PD98059+fasudil group.
     6. Inhibition of Rho-kinase rescued the effect of inhibition of ERK1/2 on apoptosis. Fasudil treatment reversed cell apoptosis caused by treatment with PD98059 in IPC. The number of TUNEL positive cells was 23.3±0.67% in IPC+PD98059+fasudil group. The amount of cleaved Caspase-3 was also significantly reduced in IPC+PD98059+fasudil group. Fasudil resulted in a 22% reduction in cardiomyocyte apoptosis and a 30% reduction in cleaved Caspase-3 in IPC+PD98059+fasudil group (p<0.05 vs IPC+PD98059 group). Additionally, the infarct size of the heart was 39.44±0.92% in IPC+PD98059+fasudil group. The combination of PD98059 and fasudil also resulted in a 12% reduction in myocardial infarct size (p<0.05 vs IPC+PD98059 group).
     Conclusion
     1. ERK-MAPK signaling is required in IPC to oppose the Rho-kinase signaling on cardiomyocyte apoptosis.
     2. Overpression of RhoA in I/R might not be changed by preconditioning.
     3. ROCK1 may be the major Rho-kinase which is opposed by ERK-MAPK signaling in IPC.
引文
[1]Jennings RB, Sommers HM, Smyth GA, Flack HA, Linn H. Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch Pathol 1960;70:68-78.
    [2]Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia:a delay of lethal cell injury in ischemic myocardium. Circulation 1986;74:1124-1136.
    [3]Nakagawa O, Fujisawa K, Ishizaki T, Saito Y, Nakao K, Narumiya S. ROCK-Ⅰ and ROCK-Ⅱ, two isoforms of Rho-associated coiled-coil forming protein serine/threonine kinase in mice. FEBS Lett 1996;392:189-193.
    [4]Loirand G, Guerin P, Pacaud P. Rho kinases in cardiovascular physiology and pathophysiology. Circ Res 2006;98:322-334.
    [5]Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T, et al. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem 1996;271:20246-20249.
    [6]Mills JC, Stone NL, Erhardt J, Pittman RN. Apoptotic membrane blebbing is regulated by myosin light chain phosphorylation. J Cell Biol 1998; 140:627-636.
    [7]Petrache I, Crow MT,Neuss M, Garcia JG. Central involvement of Rho family GTPases in TNF-alpha-mediated bovine pulmonary endothelial cell apoptosis. Biochem Biophys Res Commun 2003;306:244-249.
    [8]Wang YX, Martin-McNulty B, da Cunha V, Vincelette J, Lu X, Feng Q, et al. Fasudil, a Rho-kinase inhibitor, attenuates angiotensin II-induced abdominal aortic aneurysm in apolipoprotein E-deficient mice by inhibiting apoptosis and proteolysis. Circulation 2005; 111:2219-2226.
    [9]Bao W, Hu E, Tao L, Boyce R, Mirabile R, Thudium DT, et al. Inhibition of Rho-kinase protects the heart against ischemia/reperfusion injury. Cardiovasc Res 2004;61:548-558.
    [10]Rattan R, Giri S, Singh AK, Singh I. Rho/ROCK pathway as a target of umor therapy. J Neurosci Res 2006;83:243-255.
    [11]Ikeda H, Nagashima K, Yanase M, Tomiya T, Arai M, Inoue Y, et al. Involvement of Rho/Rho kinase pathway in regulation of apoptosis in rat hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 2003;285:G880-886.
    [12]Furuyama T, Komori K, Shimokawa H, Matsumoto Y, Uwatoku T, Hirano K, et al. Long-term inhibition of Rho kinase suppresses intimal thickening in autologous vein grafts in rabbits. J Vasc Surg 2006;43:1249-1256.
    [13]Abe K, Shimokawa H, Morikawa K, Uwatoku T, Oi K, Matsumoto Y, et al. Long-term treatment with a Rho-kinase inhibitor improves monocrotaline-induced fatal pulmonary hypertension in rats. Circ Res 2004;94:385-393.
    [14]Moore M, Marroquin BA, Gugliotta W, Tse R, White SR. Rho kinase inhibition initiates apoptosis in human airway epithelial cells. Am J Respir Cell Mol Biol 2004;30:379-387.
    [15]Wolfrum S, Dendorfer A, Rikitake Y, Stalker TJ, Gong Y, Scalia R, et al. Inhibition of Rho-kinase leads to rapid activation of phosphatidylinositol 3-kinase/protein kinase Akt and cardiovascular protection. Arterioscler Thromb Vasc Biol 2004;24:1842-1847.
    [16]Yada T, Shimokawa H, Hiramfatsu O, Kajita T, Shigeto F, Tanaka E, et al. Beneficial effect of hydroxyfasudil, a specific Rho-kinase inhibitor, on ischemia/reperfusion injury in canine coronary microcirculation in vivo. J Am Coll Cardiol 2005;45:599-607.
    [17]Yada T, Shimokawa H, Kajiya F. Cardioprotective effect of hydroxyfasudil as a specific Rho-kinase inhibitor, on ischemia-reperfusion injury in canine coronary microvessels in vivo. Clin Hemorheol Microcirc 2006;34:177-183.
    [18]Hamid SA, Bower HS, Baxter GF. Rho kinase activation plays a major role as a mediator of irreversible injury in reperfused myocardium. Am J Physiol Heart Circ Physiol 2007;292:H2598-2606.
    [19]Demiryurek S, Kara AF, Celik A, Tarakcioglu M, Bagci C, Demiryurek AT. Effects of Y-27632, a selective Rho-kinase inhibitor, on myocardial preconditioning in anesthetized rats. Biochem Pharmacol 2005;69:49-58.
    [20]Sanada S, Asanuma H, Tsukamoto O, Minarnino T, Node K, Takashima S, et al. Protein kinase A as another mediator of ischemic preconditioning independent of protein kinase C. Circulation 2004;110:51-57.
    [21]VanBenthuysen KM, McMurtry IF, Horwitz LD. Reperfusion after acute coronary occlusion in dogs impairs endothelium-dependent relaxation to acetylcholine and augments contractile reactivity in vitro. J Clin Invest 1987;79:265-274.
    [22]Ambrosio G, Weisfeldt ML, Jacobus WE, Flaherty JT. Evidence for a reversible oxygen radical-mediated component of reperfusion injury:reduction by recombinant human superoxide dismutase administered at the time of reflow. Circulation 1987;75:282-291.
    [23]Pearson PJ, Schaff HV, Vanhoutte PM. Long-term impairment of endothelium-dependent relaxations to aggregating platelets after reperfusion injury in canine coronary arteries. Circulation 1990;81:1921-1927.
    [24]Ferrari R. Metabolic disturbances during myocardial ischemia and reperfusion. Am J Cardiol 1995;76:17B-24B.
    [25]Jeroudi MO, Hartley CJ, Bolli R. Myocardial reperfusion injury:role of oxygen radicals and potential therapy with antioxidants. Am J Cardiol 1994;73:2B-7B.
    [26]Ambrosio G, Tritto I. Clinical manifestations of myocardial stunning. Coron Artery Dis 2001;12:357-361.
    [27]Kloner RA, Jennings RB. Consequences of brief ischemia:stunning, preconditioning, and their clinical implications:part 1. Circulation 2001;104:2981-2989.
    [28]Kloner RA, Jennings RB. Consequences of brief ischemia:stunning, preconditioning, and their clinical implications:part 2. Circulation 2001; 104:3158-3167.
    [29]Cascio WE, Yang H, Johnson TA, Muller-Borer BJ, Lemasters JJ. Electrical properties and conduction in reperfused papillary muscle. Circ Res 2001;89:807-814.
    [30]Topol EJ, Yadav JS. Recognition of the importance of embolization in atherosclerotic vascular disease. Circulation 2000;101:570-580.
    [31]Moens AL, Claeys MJ, Timmermans JP, Vrints CJ. Myocardial ischemia/reperfusion-injury, a clinical view on a complex pathophysiological process. Int J Cardiol 2005; 100:179-190.
    [32]Saeed SA, Waqar MA, Zubairi AJ, Bhurgri H, Khan A, Gowani SA, et al. Myocardial ischaemia and reperfusion injury:reactive oxygen species and the role of neutrophil. J Coll Physicians Surg Pak 2005;15:507-514.
    [33]Kloner RA, Muller J, Davis V. Effects of previous angina pectoris in patients with first acute myocardial infarction not receiving thrombolytics. MILIS Study Group. Multicenter Investigation of the Limitation of Infarct Size. Am J Cardiol 1995;75:615-617.
    [34]Kloner RA, Shook T, Przyklenk K, Davis VG, Junio L, Matthews RV, et al. Previous angina alters in-hospital outcome in TIMI 4. A clinical correlate to preconditioning? Circulation 1995;91:37-45.
    [35]Andreotti F, Pasceri V, Hackett DR, Davies GJ, Haider AW, Maseri A. Preinfarction angina as a predictor of more rapid coronary thrombolysis in patients with acute myocardial infarction. N Engl J Med 1996;334:7-12.
    [36]Kloner RA, Yellon D. Does ischemic preconditioning occur in patients? J Am Coll Cardiol 1994;24:1133-1142.
    [37]Pell TJ, Baxter GF, Yellon DM, Drew GM. Renal ischemia preconditions myocardium:role of adenosine receptors and ATP-sensitive potassium channels. Am J Physiol 1998;275:H1542-1547.
    [38]Schoemaker RG, van Heijningen CL. Bradykinin mediates cardiac preconditioning at a distance. Am J Physiol Heart Circ Physiol 2000;278:H1571-1576.
    [39]Patel HH, Moore J, Hsu AK, Gross GJ. Cardioprotection at a distance: mesenteric artery occlusion protects the myocardium via an opioid sensitive mechanism. J Mol Cell Cardiol 2002;34:1317-1323.
    [40]Singh D, Chopra K. Evidence of the role of angiotensin AT(1) receptors in remote renal preconditioning of myocardium. Methods Find Exp Clin Pharmacol 2004;26:117-122.
    [41]Hajrasouliha AR, Tavakoli S, Ghasemi M, Jabehdar-Maralani P, Sadeghipour H, Ebrahimi F, et al. Endogenous cannabinoids contribute to remote ischemic preconditioning via cannabinoid CB2 receptors in the rat heart. Eur J Pharmacol 2008;579:246-252.
    [42]Hunot S, Flavell RA. Apoptosis. Death of a monopoly? Science 2001;292:865-866.
    [43]Danial NN, Korsmeyer SJ. Cell death:critical control points. Cell 2004; 116:205-219.
    [44]Hirata H, Takahashi A, Kobayashi S, Yonehara S, Sawai H, Okazaki T, et al. Caspases are activated in a branched protease cascade and control distinct downstream processes in Fas-induced apoptosis. J Exp Med 1998; 187:587-600.
    [45]Zou H, Li Y, Liu X, Wang X. An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 1999;274:11549-11556.
    [46]Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 1994;94:1621-1628.
    [47]Fliss H, Gattinger D. Apoptosis in ischemic and reperfused rat myocardium. Circ Res 1996;79:949-956.
    [48]Zhao ZQ, Nakamura M, Wang NP, Wilcox JN, Shearer S, Ronson RS, et al. Reperfusion induces myocardial apoptotic cell death. Cardiovasc Res 2000;45:651-660.
    [49]Rochitte CE, Lima JA, Bluemke DA, Reeder SB, McVeigh ER, Furuta T, et al. Magnitude and time course of microvascular obstruction and tissue injury after acute myocardial infarction. Circulation 1998;98:1006-1014.
    [50]Gottlieb RA, Gruol DL, Zhu JY, Engler RL. Preconditioning rabbit cardiomyocytes:role of pH, vacuolar proton ATPase, and apoptosis. J Clin Invest 1996;97:2391-2398.
    [51]Maulik N, Engelman RM, Rousou JA, Flack JE,3rd, Deaton D, Das DK. Ischemic preconditioning reduces apoptosis by upregulating anti-death gene Bcl-2. Circulation 1999;100:Ⅱ369-375.
    [52]Nakamura M, Wang NP, Zhao ZQ, Wilcox JN, Thourani V, Guyton RA, et al. Preconditioning decreases Bax expression, PMN accumulation and apoptosis in reperfused rat heart. Cardiovasc Res 2000;45:661-670.
    [53]Zhao ZQ, Vinten-Johansen J. Myocardial apoptosis and ischemic preconditioning. Cardiovasc Res 2002;55:438-455.
    [54]Iliodromitis EK, Gaitanaki C, Lazou A, Aggeli IK, Gizas V, Bofilis E, et al. Differential activation of mitogen-activated protein kinases in ischemic and nitroglycerin-induced preconditioning. Basic Res Cardiol 2006;101:327-335.
    [55]Kurzelewski M, Czarnowska E, Maczewski M, Beresewicz A. Effect of ischemic preconditioning on endothelial dysfunction and granulocyte adhesion in
    isolated guinea-pig hearts subjected to ischemia/reperfusion. J Physiol Pharmacol 1999;50:617-628.
    [56]Maulik N, Sasaki H, Addya S, Das DK. Regulation of cardiomyocyte apoptosis by redox-sensitive transcription factors. FEBS Lett 2000;485:7-12.
    [57]Argaud L, Prigent AF, Chalabreysse L, Loufouat J, Lagarde M, Ovize M. Ceramide in the antiapoptotic effect of ischemic preconditioning. Am J Physiol Heart Circ Physiol 2004;286:H246-251.
    [58]Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 1996;273:245-248.
    [59]Somlyo AP, Somlyo AV. Signal transduction and regulation in smooth muscle. Nature 1994;372:231-236.
    [60]Maekawa M, Ishizaki T, Boku S, Watanabe N, Fujita A, Iwamatsu A, et al. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 1999;285:895-898.
    [61]Rikitake Y, Liao JK. Rho-kinase mediates hyperglycemia-induced plasminogen activator inhibitor-1 expression in vascular endothelial cells. Circulation 2005; 111:3261-3268.
    [62]Sawada N, Itoh H, Ueyama K, Yamashita J, Doi K, Chun TH, et al. Inhibition of rho-associated kinase results in suppression of neointimal formation of balloon-injured arteries. Circulation 2000;101:2030-2033.
    [63]Shimokawa H, Takeshita A. Rho-kinase is an important therapeutic target in cardiovascular medicine. Arterioscler Thromb Vasc Biol 2005;25:1767-1775.
    [64]Riento K, Ridley AJ. Rocks:multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol 2003;4:446-456.
    [65]Croft DR, Coleman ML, Li S, Robertson D, Sullivan T, Stewart CL, et al. Actin-myosin-based contraction is responsible for apoptotic nuclear disintegration. J Cell Biol 2005;168:245-255.
    [66]Coleman ML, Sahai EA, Yeo M, Bosch M, Dewar A, Olson MF. Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol 2001;3:339-345.
    [67]Orlando KA, Pittman RN. Rho kinase regulates phagocytosis, surface expression of GlcNAc, and Golgi fragmentation of apoptotic PC12 cells. Exp Cell Res 2006;312:3298-3311.
    [68]Orlando KA, Stone NL, Pittman RN. Rho kinase regulates fragmentation and phagocytosis of apoptotic cells. Exp Cell Res 2006;312:5-15.
    [69]Shiratsuchi A, Mori T, Nakanishi Y. Independence of plasma membrane blebbing from other biochemical and biological characteristics of apoptotic cells. J Biochem 2002;132:381-386.
    [70]Erwig LP, McPhilips KA, Wynes MW, Ivetic A, Ridley AJ, Henson PM. Differential regulation of phagosome maturation in macrophages and dendritic cells mediated by Rho GTPases and ezrin-radixin-moesin (ERM) proteins. Proc Natl Acad Sci U S A 2006;103:12825-12830.
    [71]McElhinney B, Poynter ME, Shrivastava P, Hazen SL, Janssen-Heininger YM. Eosinophil peroxidase catalyzes JNK-mediated membrane blebbing in a Rho kinase-dependent manner. J Leukoc Biol 2003;74:897-907.
    [72]Lai JM, Hsieh CL, Chang ZF. Caspase activation during phorbol ester-induced apoptosis requires ROCK-dependent myosin-mediated contraction. J Cell Sci 2003;116:3491-3501.
    [73]Harenberg A, Girkontaite I, Giehl K, Fischer KD. The Lsc RhoGEF mediates signaling from thromboxane A2 to actin polymerization and apoptosis in thymocytes. Eur J Immunol 2005;35:1977-1986.
    [74]Minambres R, Guasch RM, Perez-Arago A, Guerri C. The RhoA/ROCK-I/MLC pathway is involved in the ethanol-induced apoptosis by anoikis in astrocytes. J Cell Sci 2006;119:271-282.
    [75]Chang J, Xie M, Shah VR, Schneider MD, Entman ML, Wei L, et al. Activation of Rho-associated coiled-coil protein kinase 1 (ROCK-1) by caspase-3 cleavage plays an essential role in cardiac myocyte apoptosis. Proc Natl Acad Sci U S A 2006; 103:14495-14500.
    [76]Shiotani S, Shimada M, Suehiro T, Soejima Y, Yosizumi T, Shimokawa H, et al. Involvement of Rho-kinase in cold ischemia-reperfusion injury after liver transplantation in rats. Transplantation 2004;78:375-382.
    [77]Yamamoto Y, Ikegaki I, Sasaki Y, Uchida T. The protein kinase inhibitor fasudil protects against ischemic myocardial injury induced by endothelin-1 in the rabbit. J Cardiovasc Pharmacol 2000;35:203-211.
    [78]Song J, Li J, Lulla A, Evers BM, Chung DH. Protein kinase D protects against oxidative stress-induced intestinal epithelial cell injury via Rho/ROK/PKC-delta pathway activation. Am J Physiol Cell Physiol 2006;290:C1469-1476.
    [79]Zhong WB, Wang CY, Chang TC, Lee WS. Lovastatin induces apoptosis of anaplastic thyroid cancer cells via inhibition of protein geranylgeranylation and de novo protein synthesis. Endocrinology 2003;144:3852-3859.
    [80]Li X, Liu L, Tupper JC, Bannerman DD, Winn RK, Sebti SM, et al. Inhibition of protein geranylgeranylation and RhoA/RhoA kinase pathway induces apoptosis in human endothelial cells. J Biol Chem 2002;277:15309-15316.
    [81]Fukushima M, Nakamuta M, Kohjima M, Kotoh K, Enjoji M, Kobayashi N, et al. Fasudil hydrochloride hydrate, a Rho-kinase (ROCK) inhibitor, suppresses collagen production and enhances collagenase activity in hepatic stellate cells. Liver Int 2005;25:829-838.
    [82]Shibata R, Kai H, Seki Y, Kato S, Morimatsu M, Kaibuchi K, et al. Role of Rho-associated kinase in neointima formation after vascular injury. Circulation 2001; 103:284-289.
    [83]Shibata R, Kai H, Seki Y, Kusaba K, Takemiya K, Koga M, et al. Rho-kinase inhibition reduces neointima formation after vascular injury by enhancing Bax expression and apoptosis. J Cardiovasc Pharmacol 2003;42 Suppl 1:S43-47.
    [84]Matsumoto Y, Uwatoku T, Oi K, Abe K, Hattori T, Morishige K, et al. Long-term inhibition of Rho-kinase suppresses neointimal formation after stent implantation in porcine coronary arteries:involvement of multiple mechanisms. Arterioscler Thromb Vasc Biol 2004;24:181-186.
    [1]Loirand G, Guerin P, Pacaud P. Rho kinases in cardiovascular physiology and pathophysiology. Circ Res 2006;98:322-334.
    [2]Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T, et al. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem 1996;271:20246-20249.
    [3]Mills JC, Stone NL, Erhardt J, Pittman RN. Apoptotic membrane blebbing is regulated by myosin light chain phosphorylation. J Cell Biol 1998;140:627-636.
    [4]Bao W, Hu E, Tao L, Boyce R, Mirabile R, Thudium DT, et al. Inhibition of Rho-kinase protects the heart against ischemia/reperfusion injury. Cardiovasc Res 2004;61:548-558.
    [5]Wolfrum S, Dendorfer A, Rikitake Y, Stalker TJ, Gong Y, Scalia R, et al. Inhibition of Rho-kinase leads to rapid activation of phosphatidylinositol 3-kinase/protein kinase Akt and cardiovascular protection. Arterioscler Thromb Vasc Biol 2004;24:1842-1847.
    [6]Yada T, Shimokawa H, Hiramatsu O, Kajita T, Shigeto F, Tanaka E, et al. Beneficial effect of hydroxyfasudil, a specific Rho-kinase inhibitor, on ischemia/reperfusion injury in canine coronary microcirculation in vivo. J Am Coll Cardiol 2005;45:599-607.
    [7]Yada T, Shimokawa H, Kajiya F. Cardioprotective effect of hydroxyfasudil as a specific Rho-kinase inhibitor, on ischemia-reperfusion injury in canine coronary microvessels in vivo. Clin Hemorheol Microcirc 2006;34:177-183.
    [8]Hamid SA, Bower HS, Baxter GF. Rho kinase activation plays a major role as a mediator of irreversible injury in reperfused myocardium. Am J Physiol Heart Circ Physiol 2007;292:H2598-2606.
    [9]Demiryurek S, Kara AF, Celik A, Tarakcioglu M, Bagci C, Demiryurek AT. Effects of Y-27632, a selective Rho-kinase inhibitor, on myocardial preconditioning in anesthetized rats. Biochem Pharmacol 2005;69:49-58.
    [10]Petrache I, Crow MT, Neuss M, Garcia JG. Central involvement of Rho family GTPases in TNF-alpha-mediated bovine pulmonary endothelial cell apoptosis. Biochem Biophys Res Commun 2003;306:244-249.
    [11]Daugas E, Nochy D, Ravagnan L, Loeffler M, Susin SA, Zamzami N, et al. Apoptosis-inducing factor (AIF):a ubiquitous mitochondrial oxidoreductase involved in apoptosis. FEBS Lett 2000;476:118-123.
    [12]Lipton SA, Bossy-Wetzel E. Dueling activities of AIF in cell death versus survival:DNA binding and redox activity. Cell 2002;111:147-150.
    [13]Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999;397:441-446.
    [14]Xiao CY, Chen M, Zsengeller Z, Li H, Kiss L, Kollai M, et al. Poly(ADP-Ribose) polymerase promotes cardiac remodeling, contractile failure, and translocation of apoptosis-inducing factor in a murine experimental model of aortic banding and heart failure. J Pharmacol Exp Ther 2005;312:891-898.
    [15]Kim GT, Chun YS, Park JW, Kim MS. Role of apoptosis-inducing factor in myocardial cell death by ischemia-reperfusion. Biochem Biophys Res Commun 2003;309:619-624.
    [16]Miramar MD, Costantini P, Ravagnan L, Saraiva LM, Haouzi D, Brothers G, et al. NADH oxidase activity of mitochondrial apoptosis-inducing factor. J Biol Chem 2001;276:16391-16398.
    [17]Cande C, Cecconi F, Dessen P, Kroemer G Apoptosis-inducing factor (AIF): key to the conserved caspase-independent pathways of cell death? J Cell Sci 2002; 115:4727-4734.
    [18]Loeffler M, Daugas E, Susin SA, Zamzami N, Metivier D, Nieminen AL, et al. Dominant cell death induction by extramitochondrially targeted apoptosis-inducing factor. Faseb J 2001; 15:758-767.
    [19]Ye H, Cande C, Stephanou NC, Jiang S, Gurbuxani S, Larochette N, et al. DNA binding is required for the apoptogenic action of apoptosis inducing factor. Nat Struct Biol 2002;9:680-684.
    [20]Ferri KF, Jacotot E, Leduc P, Geuskens M, Ingber DE, Kroemer G. Apoptosis of syncytia induced by the HIV-1-envelope glycoprotein complex: influence of cell shape and size. Exp Cell Res 2000;261:119-126.
    [21]Susin SA, Daugas E, Ravagnan L, Samejima K, Zamzami N, Loeffler M, et al. Two distinct pathways leading to nuclear apoptosis. J Exp Med 2000;192:571-580.
    [22]Yoshida H, Kong YY, Yoshida R, Elia AJ, Hakem A, Hakem R, et al. Apafl is required for mitochondrial pathways of apoptosis and brain development. Cell 1998;94:739-750.
    [23]Susin SA, Zamzami N, Castedo M, Daugas E, Wang HG, Geley S, et al. The central executioner of apoptosis:multiple connections between protease activation and mitochondria in Fas/APO-1/CD95-and ceramide-induced apoptosis. J Exp Med 1997;186:25-37.
    [24]Lassus P, Opitz-Araya X, Lazebnik Y. Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 2002;297:1352-1354.
    [25]Robertson JD, Enoksson M, Suomela M, Zhivotovsky B, Orrenius S. Caspase-2 acts upstream of mitochondria to promote cytochrome c release during etoposide-induced apoptosis. J Biol Chem 2002;277:29803-29809.
    [26]Zamzami N, El Hamel C, Maisse C, Brenner C, Munoz-Pinedo C, Belzacq AS, et al. Bid acts on the permeability transition pore complex to induce apoptosis. Oncogene 2000;19:6342-6350.
    [27]Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, et al. Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 2002;297:259-263.
    [28]Joza N, Susin SA, Daugas E, Stanford WL, Cho SK, Li CY, et al. Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 2001;410:549-554.
    [29]Ravagnan L, Gurbuxani S, Susin SA, Maisse C, Daugas E, Zamzami N, et al. Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol 2001;3:839-843.
    [30]Song ZF, Ji XP, Li XX, Wang SJ, Wang SH, Zhang Y. Inhibition of the activity of poly (ADP-ribose) polymerase reduces heart ischaemia/reperfusion injury via suppressing JNK-mediated AIF translocation. J Cell Mol Med 2008;12:1220-1228.
    [31]Takada E, Hata K, Mizuguchi J. c-Jun NH2-terminal kinase (JNK)-dependent nuclear translocation of apoptosis-inducing factor (AIF) following engagement of membrane immunoglobulin on WEHI-231 B lymphoma cells. J Cell Biochem 2008; 104:1927-1936.
    [32]Marinissen MJ, Chiariello M, Tanos T, Bernard O, Narumiya S, Gutkind JS. The small GTP-binding protein RhoA regulates c-jun by a ROCK-JNK signaling axis. Mol Cell 2004;14:29-41.
    [33]Jaffe AB, Hall A, Schmidt A. Association of CNK1 with Rho guanine nucleotide exchange factors controls signaling specificity downstream of Rho. Curr Biol 2005;15:405-412.
    [34]Ventura JJ, Cogswell P, Flavell RA, Baldwin AS, Jr., Davis RJ. JNK potentiates TNF-stimulated necrosis by increasing the production of cytotoxic reactive oxygen species. Genes Dev 2004; 18:2905-2915.
    [35]Ferrandi C, Ballerio R, Gaillard P, Giachetti C, Carboni S, Vitte PA, et al. Inhibition of c-Jun N-terminal kinase decreases cardiomyocyte apoptosis and infarct size after myocardial ischemia and reperfusion in anaesthetized rats. Br J Pharmacol 2004;142:953-960.
    [36]Omura T, Yoshiyama M, Shimada T, Shimizu N, Kim S, Iwao H, et al. Activation of mitogen-activated protein kinases in in vivo ischemia/reperfused myocardium in rats. J Mol Cell Cardiol 1999;31:1269-1279.
    [37]Kaiser RA, Liang Q, Bueno O, Huang Y, Lackey T, Klevitsky R, et al. Genetic inhibition or activation of JNK1/2 protects the myocardium from ischemia-reperfusion-induced cell death in vivo. J Biol Chem 2005;280:32602-32608.
    [38]Bueno OF, Molkentin JD. Involvement of extracellular signal-regulated kinases 1/2 in cardiac hypertrophy and cell death. Circ Res 2002;91:776-781.
    [39]Derijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T, et al. JNK1:a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 1994;76:1025-1037.
    [40]Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA, Ahmad MF, et al. The stress-activated protein kinase subfamily of c-Jun kinases. Nature 1994;369:156-160.
    [41]Pulverer BJ, Kyriakis JM, Avruch J, Nikolakaki E, Woodgett JR. Phosphorylation of c-jun mediated by MAP kinases. Nature 1991;353:670-674.
    [42]Yang DD, Kuan CY, Whitmarsh AJ, Rincon M, Zheng TS, Davis RJ, et al. Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 1997;389:865-870.
    [43]Kallunki T, Su B, Tsigelny I, Sluss HK, Derijard B, Moore G, et al. JNK2 contains a specificity-determining region responsible for efficient c-Jun binding and phosphorylation. Genes Dev 1994;8:2996-3007.
    [44]Gupta S, Barrett T, Whitmarsh AJ, Cavanagh J, Sluss HK, Derijard B, et al. Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J 1996;15:2760-2770.
    [45]Ichijo H. From receptors to stress-activated MAP kinases. Oncogene 1999;18:6087-6093.
    [46]Kuida K, Boucher DM. Functions of MAP kinases:insights from gene-targeting studies. J Biochem 2004;135:653-656.
    [47]Bogoyevitch MA. Therapeutic promise of JNK ATP-noncompetitive inhibitors. Trends Mol Med 2005;11:232-239.
    [48]Waetzig V, Herdegen T. Context-specific inhibition of JNKs:overcoming the dilemma of protection and damage. Trends Pharmacol Sci 2005;26:455-461.
    [49]Resnick L, Fennell M. Targeting JNK3 for the treatment of neurodegenerative disorders. Drug Discov Today 2004;9:932-939.
    [50]Shao Z, Bhattacharya K, Hsich E, Park L, Walters B, Germann U, et al. c-Jun N-terminal kinases mediate reactivation of Akt and cardiomyocyte survival after hypoxic injury in vitro and in vivo. Circ Res 2006;98:111-118.
    [51]Andreka P, Zang J, Dougherty C, Slepak TI, Webster KA, Bishopric NH. Cytoprotection by Jun kinase during nitric oxide-induced cardiac myocyte apoptosis. Circ Res 2001;88:305-312.
    [52]Dougherty CJ, Kubasiak LA, Prentice H, Andreka P, Bishopric NH, Webster KA. Activation of c-Jun N-terminal kinase promotes survival of cardiac myocytes after oxidative stress. Biochem J 2002;362:561-571.
    [53]Sadoshima J, Montagne O, Wang Q, Yang G, Warden J, Liu J, et al. The MEKK1-JNK pathway plays a protective role in pressure overload but does not mediate cardiac hypertrophy. J Clin Invest 2002; 110:271-279.
    [1]Bao W, Hu E, Tao L, Boyce R, Mirabile R, Thudium DT, et al. Inhibition of Rho-kinase protects the heart against ischemia/reperfusion injury. Cardiovasc Res 2004;61:548-558.
    [2]Wolfrum S, Dendorfer A, Rikitake Y, Stalker TJ, Gong Y, Scalia R, et al. Inhibition of Rho-kinase leads to rapid activation of phosphatidylinositol 3-kinase/protein kinase Akt and cardiovascular protection. Arterioscler Thromb Vase Biol 2004;24:1842-1847.
    [3]Yada T, Shimokawa H, Hiramatsu O, Kajita T, Shigeto F, Tanaka E, et al. Beneficial effect of hydroxyfasudil, a specific Rho-kinase inhibitor, on ischemia/reperfusion injury in canine coronary microcirculation in vivo. J Am Coll Cardiol 2005;45:599-607.
    [4]Sanada S, Asanuma H, Tsukamoto O, Minamino T, Node K, Takashima S, et al. Protein kinase A as another mediator of ischemic preconditioning independent of protein kinase C. Circulation 2004;110:51-57.
    [5]Matsui T, Amano M, Yamamoto T, Chihara K, Nakafuku M, Ito M, et al. Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO J 1996; 15:2208-2216.
    [6]Sahai E, Olson MF, Marshall CJ. Cross-talk between Ras and Rho signalling pathways in transformation favours proliferation and increased motility. EMBO J 2001;20:755-766.
    [7]Piazzolla D, Meissl K, Kucerova L, Rubiolo C, Baccarini M. Raf-1 sets the threshold of Fas sensitivity by modulating Rok-alpha signaling. J Cell Biol 2005;171:1013-1022.
    [8]Manapov F, Muller P, Rychly J. Translocation of p21(Cip1/WAF1) from the nucleus to the cytoplasm correlates with pancreatic myofibroblast to fibroblast cell conversion. Gut 2005;54:814-822.
    [9]Vial E, Sahai E, Marshall CJ. ERK-MAPK signaling coordinately regulates activity of Racl and RhoA for tumor cell motility. Cancer Cell 2003;4:67-79.
    [10]Mavria G, Vercoulen Y, Yeo M, Paterson H, Karasarides M, Marais R, et al. ERK-MAPK signaling opposes Rho-kinase to promote endothelial cell survival and sprouting during angiogenesis. Cancer Cell 2006;9:33-44.
    [11]Boulton TG, Yancopoulos GD, Gregory JS, Slaughter C, Moomaw C, Hsu J, et al. An insulin-stimulated protein kinase similar to yeast kinases involved in cell cycle control. Science 1990;249:64-67.
    [12]Torii S, Nakayama K, Yamamoto T, Nishida E. Regulatory mechanisms and function of ERK MAP kinases. J Biochem 2004;136:557-561.
    [13]Hausenloy DJ, Tsang A, Mocanu MM, Yellon DM. Ischemic preconditioning protects by activating prosurvival kinases at reperfusion. Am J Physiol Heart Circ Physiol 2005;288:H971-976.
    [14]Mocanu MM, Bell RM, Yellon DM. PI3 kinase and not p42/p44 appears to be implicated in the protection conferred by ischemic preconditioning. J Mol Cell Cardiol 2002;34:661-668.
    [15]Kloner RA, Yellon D. Does ischemic preconditioning occur in patients? J Am Coll Cardiol 1994;24:1133-1142.
    [16]Speechly-Dick ME, Grover GJ, Yellon DM. Does ischemic preconditioning in the human involve protein kinase C and the ATP-dependent K+ channel? Studies of contractile function after simulated ischemia in an atrial in vitro model. Circ Res 1995;77:1030-1035.
    [17]Widmann C, Gibson S, Jarpe MB, Johnson GL. Mitogen-activated protein kinase:conservation of a three-kinase module from yeast to human. Physiol Rev 1999;79:143-180.
    [18]Bueno OF, Molkentin JD. Involvement of extracellular signal-regulated kinases 1/2 in cardiac hypertrophy and cell death. Circ Res 2002;91:776-781.
    [19]Sugden PH, Clerk A. Oxidative stress and growth-regulating intracellular signaling pathways in cardiac myocytes. Antioxid Redox Signal 2006;8:2111-2124.
    [20]Lips DJ, Bueno OF, Wilkins BJ, Purcell NH, Kaiser RA, Lorenz JN, et al. MEK1-ERK2 signaling pathway protects myocardium from ischemic injury in vivo. Circulation 2004;109:1938-1941.
    [21]Harris IS, Zhang S, Treskov I, Kovacs A, Weinheimer C, Muslin AJ. Raf-1 kinase is required for cardiac hypertrophy and cardiomyocyte survival in response to pressure overload. Circulation 2004; 110:718-723.
    [22]Yamaguchi O, Watanabe T, Nishida K, Kashiwase K, Higuchi Y, Takeda T, et al. Cardiac-specific disruption of the c-raf-1 gene induces cardiac dysfunction and apoptosis. J Clin Invest 2004; 114:937-943.
    [23]Yue TL, Wang C, Gu JL, Ma XL, Kumar S, Lee JC, et al. Inhibition of extracellular signal-regulated kinase enhances Ischemia/Reoxygenation-induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart. Circ Res 2000;86:692-699.
    [24]Feng J, Ito M, Kureishi Y, Ichikawa K, Amano M, Isaka N, et al. Rho-associated kinase of chicken gizzard smooth muscle. J Biol Chem 1999;274:3744-3752.
    [25]Fu X, Gong MC, Jia T, Somlyo AV, Somlyo AP. The effects of the Rho-kinase inhibitor Y-27632 on arachidonic acid-, GTPgammaS-, and phorbol ester-induced Ca2+-sensitization of smooth muscle. FEBS Lett 1998;440:183-187.
    [26]Shirao S, Kashiwagi S, Sato M, Miwa S, Nakao F, Kurokawa T, et al. Sphingosylphosphorylcholine is a novel messenger for Rho-kinase-mediated Ca2+sensitization in the bovine cerebral artery:unimportant role for protein kinase C. Circ Res 2002;91:112-119.
    [27]Sebbagh M, Renvoize C, Hamelin J, Riche N, Bertoglio J, Breard J. Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat Cell Biol 2001;3:346-352.
    [28]Coleman ML, Sahai EA, Yeo M, Bosch M, Dewar A, Olson MF. Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol 2001;3:339-345.
    [29]Sapet C, Simoncini S, Loriod B, Puthier D, Sampol J, Nguyen C, et al. Thrombin-induced endothelial microparticle generation:identification of a novel pathway involving ROCK-Ⅱ activation by caspase-2. Blood 2006;108:1868-1876.
    [30]Du J, Hannon GJ. Suppression of p160ROCK bypasses cell cycle arrest after Aurora-A/STK15 depletion. Proc Natl Acad Sci U S A 2004; 101:8975-8980.
    [31]Ongusaha PP, Kim HG, Boswell SA, Ridley AJ, Der CJ, Dotto GP, et al. RhoE is a pro-survival p53 target gene that inhibits ROCK I-mediated apoptosis in response to genotoxic stress. Curr Biol 2006; 16:2466-2472.
    [32]Nakagawa O, Fujisawa K, Ishizaki T, Saito Y, Nakao K, Narumiya S. ROCK-Ⅰ and ROCK-Ⅱ, two isoforms of Rho-associated coiled-coil forming protein serine/threonine kinase in mice. FEBS Lett 1996;392:189-193.
    [1]Amano M, Chihara K, Kimura K, et al. Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science 1997; 275:1308-1311.
    [2]Yasui Y, Amano M, Nagata K, et al. Roles of Rho-associated kinase in cytokinesis; mutations in Rho-associated kinase phosphorylation sites impair cytokinetic segregation of glial filaments. J Cell Biol 1998; 143:1249-1258.
    [3]Bao W, Hu E, Tao L, et al. Inhibition of Rho-kinase protects the heart against I/R injury. Cardiovasc Res 2004; 61(3):548-558.
    [4]Daugas E, Nochy D, Ravaqnan L, et al. Apoptosis-inducing factor (AIF):a ubiquitous mitochondrial oxidoreductase involved in apoptosis. FEBS LETT 2000;476(3):118-123.
    [5]Lipton SA, Bossy-Wetzel E. Dueling activities of AIF in cell death versus survival:DNA binding and redox activity. Cell 2002; 111(2):147-150.
    [6]Susin SA, Lorenzo HK, Zamzami N. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999; 397(6718)441-446.
    [7]Xiao CY, Chen M, Zsengeller Z, et al. Poly(ADP-Ribose) polymerase promotes cardiac remodeling, contractile failure, and translocation of apoptosis-inducing factor in a murine experimental model of aortic banding and heart failure. J Pharmacol Exp Ther 2005; 312(3):891-898.
    [8]Kim GT, Chun YS, Park JW, et al. Role of apoptosis-inducing factor in myocardial cell death by ischemia-reperfusion. Biochem Biophys Res Commun 2003; 309(3):619-624. [9] Demiryurek S, Kara AF, Celik A, et al. Effects of fasudil, a Rho-kinase inhibitor, on myocardial preconditioning in anesthetized rats. Eur J Pharmacol 2005; 527:129-140.
    [10]Ji ES, Yue H, Wu YM, et al. Effects of phytoestrogen genistein on myocardial I/R injury and apoptosis in rabbits. Acta Pharmacol Sin 2004; 25(3):306-312.
    [11]Mohanty I, Arya DS, Gupta SK. Effect of Curcuma longa and Ocimum sanctum on myocardial apoptosis in experimentally induced myocardial ischemic-reperfusion injury. BMC Complement Altern Med 2006; 6:3.
    [12]Erwig L P, McPhilips KA, Wynes MW, et al. Differential regulation of phagosome maturation in macrophages and dendritic cells mediated by Rho GTPases and ezrin-radixin-moesin (ERM) proteins. Proc Natl Acad Sci USA 2006; 103:12825-12830.
    [13]Tosello-Trampont AC, Nakada-Tsukui K, Ravichandran KS. Engulfment of apoptotic cells is negatively regulated by Rho-mediated signaling. J Biol Chem 2003; 278:49911-49919.
    [14]Zhao ZQ, Vinten-Johansen J. Myocardial apoptosis and ischemia preconditioning. Cardiovasc Res 2002; 55:438-455.
    [15]Song ZF, Ji XP, Li XX, et al. Inhibition of the activity of Poly(ADP-Ribose) Polymerase reduces heart ischemia/reperfusion injury via suppressing JNK mediated AIF translocation. J Cell Mol Med 2008; 12(4):1220-1228.
    [16]Parone, PA., James D, Martinou JC. Mitochondria:regulating the inevitable. Biochimie 2002; 84:105-111.
    [17]Marinissen MJ, Chiariello M, Tanos T, et al. The small GTP-binding protein RhoA regulates c-jun by a ROCK-JNK signaling axis. Mol Cell 2004; 14(1):29-41.
    [18]Jaffe AB, Hall A, Schmidt A. Association of CNK1 with Rho guanine nucleotide exchange factors controls signaling specificity downstream of Rho. Curr Biol 2005; 15(5):405-412.
    [19]Ventura JJ, Cogswell P, Flavell RA, et al. JNK potentiates TNF-stimulated necrosis by increasing the production of cytotoxic reactive oxygen species. Genes Dev 2004; 18:2905-2915.
    [20]Ferrandi C, Ballerio R, Gaillard P, et al. Inhibition of c-Jun N-terminal kinase decreases cardiomyocyte apoptosis and infarct size after myocardial ischemia and reperfusion in anaesthetized rats. Br J Pharmacol 2004; 142:953-960.
    [21]Omura T, Yoshiyama M, Shimada T, et al. Activation of mitogen-activated protein kinases in vivo ischemia/reperfused myocardium in rats. J Mol Cell Cardiol 1999; 31(6):1269-1279.
    [22]Kaiser RA, Liang Q, Bueno O, et al. Genetic inhibition or activation of JNK1/2 protects the myocardium from ischemia-reperfusion-induced cell death in vivo. J Biol Chem 2005; 280(38):32602-32608.
    1. Amano M, et al. (1997) Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science.275:1308-1311.
    2. Yasui Y, et al. (1998) Roles of Rho-associated kinase in cytokinesis; mutations in Rho-associated kinase phosphorylation sites impair cytokinetic segregation of glial filaments. J Cell Biol.143:1249-1258.
    3. Loirand G, Guerin P, Pacaud P. (2006) Rho kinases in cardiovascular physiology and pathophysiology. Circ Res.98:322-334.
    4. Bao W, et al. (2004) Inhibition of Rho-kinase protects the heart against ischemia/reperfusion injury. Cardiovasc Res.61:548-558.
    5. Zhang J, et al. (2009) Inhibition of the activity of Rho-kinase reduces cardiomyocyte apoptosis in heart ischemia/reperfusion via suppressing JNK-mediated AIF translocation. Clin Chim Acta.401:76-80.
    6. Murry CE, Jennings RB, Reimer KA. (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation.74:1124-1136.
    7. An J, Varadarajan SG, Novalija E, Stowe DF. (2001) Ischemic and anesthetic preconditioning reduces cytosolic [Ca2+] and improves Ca(2+) responses in intact hearts. Am JPhysiol Heart Circ Physiol.281:H1508-1523.
    8. Sanada S, et al. (2004) Protein kinase A as another mediator of ischemic preconditioning independent of protein kinase C. Circulation.110:51-57. 9. Alessi DR, Cuenda A, Cohen P, Dudley DT, Saltiel AR. (1995) PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. JBiol Chem.270:27489-27494.
    10. Demiryurek S, et al. (2005) Effects of fasudil, a Rho-kinase inhibitor, on myocardial preconditioning in anesthetized rats. Eur J Pharmacol.527:129-140.
    11. Ji ES, Yue H, Wu YM, He RR. (2004) Effects of phytoestrogen genistein on myocardial ischemia/reperfusion injury and apoptosis in rabbits. Acta Pharmacol Sin.25:306-312.
    12. Mohanty I, Arya DS, Gupta SK. (2006) Effect of Curcuma longa and Ocimum sanctum on myocardial apoptosis in experimentally induced myocardial ischemic-reperfusion injury. BMC Complement Altern Med.6:3.
    13. Chomczynski P. (1993) A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques.15: 532-534,536-537.
    14. Erwig LP, et al. (2006) Differential regulation of phagosome maturation in macrophages and dendritic cells mediated by Rho GTPases and ezrin-radixin-moesin (ERM) proteins. Proc Natl Acad Sci U S A.103: 12825-12830.
    15. Tosello-Trampont AC, Nakada-Tsukui K, Ravichandran KS. (2003) Engulfment of apoptotic cells is negatively regulated by Rho-mediated signaling. JBiol Chem.278:49911-49919.
    16. Song ZF, et al. (2008) Inhibition of the activity of poly (ADP-ribose) polymerase reduces heart ischaemia/reperfusion injury via suppressing JNK-mediated AIF translocation. J Cell Mol Med.12:1220-1228.
    17. Matsui T, et al. (1996) Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO J.15: 2208-2216.
    18. Coleman ML, et al. (2001) Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK Ⅰ. Nat Cell Biol.3:339-345.
    19. Sahai E, Olson MF, Marshall CJ. (2001) Cross-talk between Ras and Rho signalling pathways in transformation favours proliferation and increased motility. EMBO J.20:755-766.
    20. Piazzolla D, Meissl K, Kucerova L, Rubiolo C, Baccarini M. (2005) Raf-1 sets the threshold of Fas sensitivity by modulating Rok-alpha signaling. J Cell Biol.171:1013-1022.
    21. Manapov F, Muller P, Rychly J. (2005) Translocation of p21(Cip1/WAF1) from the nucleus to the cytoplasm correlates with pancreatic myofibroblast to fibroblast cell conversion. Gut.54:814-822.
    22. Vial E, Sahai E, Marshall CJ. (2003) ERK-MAPK signaling coordinately regulates activity of Racl and RhoA for tumor cell motility. Cancer Cell. 4: 67-79.
    23. Mavria G, et al. (2006) ERK-MAPK signaling opposes Rho-kinase to promote endothelial cell survival and sprouting during angiogenesis. Cancer Cell. 9:33-44.
    24. Boulton TG, et al. (1990) An insulin-stimulated protein kinase similar to yeast kinases involved in cell cycle control. Science.249:64-67.
    25. Torii S, Nakayama K, Yamamoto T, Nishida E. (2004) Regulatory mechanisms and function of ERK MAP kinases. JBiochem.136:557-561.
    26. Sugden PH, Clerk A. (2006) Oxidative stress and growth-regulating intracellular signaling pathways in cardiac myocytes. Antioxid Redox Signal. 8: 2111-2124.
    27. Bueno OF, Molkentin JD. (2002) Involvement of extracellular signal-regulated kinases 1/2 in cardiac hypertrophy and cell death. Circ Res.91: 776-781.
    28. Lips DJ, et al. (2004) MEK1-ERK2 signaling pathway protects myocardium from ischemic injury in vivo. Circulation.109:1938-1941.
    29. Harris IS, et al. (2004) Raf-1 kinase is required for cardiac hypertrophy and cardiomyocyte survival in response to pressure overload. Circulation.110: 718-723.
    30. Yamaguchi O, et al. (2004) Cardiac-specific disruption of the c-raf-1 gene induces cardiac dysfunction and apoptosis. J Clin Invest.114:937-943.
    31. Yue TL, et al. (2000) Inhibition of extracellular signal-regulated kinase enhances Ischemia/Reoxygenation-induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart. Circ Res. 86:692-699.
    32. Hausenloy DJ, Tsang A, Mocanu MM, Yellon DM. (2005) Ischemic preconditioning protects by activating prosurvival kinases at reperfusion. Am J Physiol Heart Circ Physiol.288:H971-976.
    33. Mocanu MM, Bell RM, Yellon DM. (2002) PI3 kinase and not p42/p44 appears to be implicated in the protection conferred by ischemic preconditioning. JMol Cell Cardiol.34:661-668.
    34. Hausenloy DJ, Yellon DM. (2004) New directions for protecting the heart against ischaemia-reperfusion injury:targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway. Cardiovasc Res.61:448-460.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700