用户名: 密码: 验证码:
柴达木盆地南、北缘南华—泥盆纪构造演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国西北地区是我国大陆地质和大陆动力学研究的重点地区,作为本区重要组成部分的柴达木盆地南、北缘一直受到研究者的高度关注。本文重点选择柴南缘小庙、金水口、清水泉的基性岩墙及柴北缘牦牛山碎屑岩为研究对象,主要对其年代学及地球化学进行了详细研究,同时有针对性地对柴北缘全吉群、早古生代柴达木南北缘蛇绿岩、岩浆岩、高压—超高压变质岩及泥盆纪盆地性质进行了较为系统的综合分析研究,建立了研究区南华纪至泥盆纪比较精细的年代学格架,分析了区域地质演化过程,获得如下主要认识:
     1、对小庙辉绿岩脉及金水口变余辉长岩进行地质、地球化学及年代学详细的研究,确定小庙辉绿岩脉富集大离子亲石元素和LREE, Nb、Ta等高场强元素亏损,金水口变余辉长岩呈平坦型稀土配分模式,富集大离子亲石元素,Nb、Ta等高场强元素弱亏损,两者构造环境均为大陆裂谷,LA-ICP-MS锆石U-Pb同位素定年测得岩石结晶年龄分别为733.6±6.6Ma及796±41Ma,并结合对柴北缘全吉群沉积—火山岩系的伸展环境沉积特征研究,提出三者共同比较确切的证实了研究区存在南华纪Rodinia超大陆裂解。
     2、以清水泉辉绿岩脉为重点研究对象,确定其地球化学具轻稀土富集型,明显富集大离子亲石元素,Nb、Ta等高场强元素亏损,构造环境为活动大陆边缘岛弧,LA-ICP-MS锆石U-Pb同位素定年测得岩石结晶年龄为436.4±1.2Ma。在此基础上,结合对研究区早古生代蛇绿岩、岩浆岩及高压-超高压变质岩详细的剖析,并结合沉积学特征认为,柴北缘洋盆形成于447-521Ma,于486-445Ma发生俯冲并形成超高压榴辉岩,437-422Ma发生陆壳深俯冲;祁漫塔格弧后洋盆形成于早、中奥陶世,东昆中洋盆形成于522-460Ma,于455-436Ma发生俯冲,427-410Ma发生陆陆碰撞,并形成相应的弧后盆地及前陆盆地。
     3、通过对区内泥盆系进行野外地质和区域对比研究,并选择上泥盆统牦牛山组碎屑岩做年代学研究,认为上泥盆统牦牛山组下限不早于430-407Ma,牦牛山组为一套伸展磨拉石沉积,早、中泥盆世为前陆盆地,晚泥盆世为伸展型盆地。
     4、以关键地质事件的定时、定性为基础,结合前人的研究成果,确定了柴达木盆地南、北缘南华纪至泥盆纪构造演化如下框架:
     (1)柴达木盆地南、北缘在新元古代早期(950-982Ma)曾发育古洋盆,并于830-927Ma期间发生洋盆闭合、陆陆拼合的作用过程。
     (2)南华纪(796-733Ma)开始柴达木盆地南、北缘古陆块开始裂解、离散、向洋发展,分别在柴北缘形成具沉积特征的全吉群,柴南缘形成具裂谷构造环境的小庙辉绿岩脉及金水口变余辉长岩。
     晚寒武世—早奥陶世(467-522Ma)柴达木盆地南、北缘发展成为洋盆,分别形成蛇绿岩(蛇绿混杂岩),祁漫塔格可能为裂谷。
     早、中奥陶世(496-445Ma)柴北缘洋盆开始俯冲、消减,形成滩间山群的岛弧岩浆岩及弧后盆地沉积,随着俯冲的加剧,形成变质作用峰期在490Ma-450Ma之间的超高压榴辉岩,此阶段为大洋俯冲;中、晚奥陶世(455-436Ma)东昆中洋盆向北俯冲,在东昆北形成一条早古生代岛弧岩浆岩带,北部祁漫塔格弧后小洋盆向北俯冲,在北侧形成滩间山群岛弧火山岩建造的弧后盆地沉积。
     晚奥陶世—早志留世,柴北缘洋盆全部俯冲消减掉,陆壳在洋壳的拖拽下发生深俯冲,形成变质年龄在437-422Ma之间的超高压榴辉岩,赛什腾组的类复理石沉积可能为弧后前陆盆地沉积物;昆中洋盆与祁漫塔格洋盆在中、晚志留世(427-410Ma)闭合,祁漫塔格地区白干湖组沉积了一套复理石沉积,可能为前陆盆地的沉积物。
     中志留世至中泥盆世,碰撞造山作用加剧,在柴北缘、昆中及祁漫塔格形成缝合带,早、中泥盆世沉积因造山隆升未沉积而缺失,至中泥盆世,碰撞造山作用结束。
     (3)晚泥盆世柴达木南、北缘开始伸展构造演化,形成了一套伸展磨拉石沉积。
Northwest China is the key area of China continental geology and dynamics, as an important part of the area the south and north Qaidam have been greatly concerned by researchers. This article focuses on the diabase selected from the south Qaidam area of Xiaomiao, Jinshuikou, Qingshuiquan and clastic rock from Maoniu Moutain in the north Qaidam, and their Chronology and geochemistry were studied in detail. Meanwhile the Quanji Group, Early Paleozoic ophiolite, igneous rocks, high pressure-ultra high pressure metamorphic rocks and the nature of the Devonian basin of South and north Qaidam were targeted to studied systematicly. At last, relatively fine chronology framework from Nanhua period to Devonian was established in the study, and the regional geological evolution was analyzed, then knowledge was obtained as follows:
     1. After geology, geochemistry and geochronology of basic dykes from Xiaomiao area and blasto-gabrro from Jinshuikou area being detailed researched, it was ascertained that the diabase was enriched in large ion lithophile elements and LREE, loss of high field strength elements such as Nb and Ta, the blasto-gabrro was flat REE pattern, enriched in large ion lithophile elements, loss of high field strength elements such as Nb and Ta. They all formed in continental rift tectonic setting, crystallization ages of rocks were 733.6±6.6Ma and 796±41 Ma respectively measured by zircon U-Pb isotopic LA-ICP-MS, after that sedimentary characteristics in extensional tectonic environment from the sedimentary-volcanic Quanji Group nouth Qaidam was detailed researched, then a conclusion can be made that all these precisely confirmed the existence of the Rodinia continent breakup during Nanhua period.
     2. Qingshuiquan diabase was choiced to major concern, it was confirmed that its geochemistry was LREE enrichment type, significantly enriched in large ion lithophile elements such as Nb and Ta, loss of high field strength elements, the diabase derived from the active continental margin arc tectonic setting, and its crystallization age is 436.4±1.2Ma measured by zircon U-Pb isotopic LA-ICP-MS. On this basis, combined with sedimentary characteristics and the detailed analysis of the features of Early Paleozoic ophiolite, igneous rocks and high pressure-ultra high pressure metamorphic rocks, a conclusion can be made that the north Qaidam Ocean formed in 447-521 Ma, then the subduction occurred and the UHP eclogite formed in 486-445Ma, deep subduction occurred in crust during the period of 437-422Ma; back-arc oceanic basin in Qimantage formed in the Early and Middle Ordovician, eastern Kunlun oceanic basin formed in 522-460Ma, then subduction occurred at 455-436Ma, at last continental collision occurred in 427-410Ma, at the same time the corresponding arc basin and the foreland basin were formed.
     3. after detailed study of the field geology and regional comparative on Devonian in the area researched, and selecting geochronology study of the Upper Devonian clastic rock, a conclusion can be made that the Upper Devonian Maoniushan group was not earlier than the 430-407Ma, Maoniushan group deposits was a stretch molasse, Early and Middle Devonian was foreland basin, Late Devonian was extensional basin.
     4. The key geological events to the timing and qualitative, combined with previous research results were been to determine the tectonic evolution framework from Nanhua period to Devonian in the area researched.
     (1) Early Neoproterozoic(950-982Ma)existed an ocean in the area studied, the ocean was closed during the period of 830-927Ma.
     Ancient continent started to crack and discrete to become an ocean during the period of 796-733Ma in the north and south Qaidam, there formed Quanji Group with extensional environment sediments in the nouth, and Xiaomiao basic dykes and Jinshuikou blasto-gabrro derived from cracking tectonic environment in the south.
     During the period of Late Cambrian to Early Ordovician(467-522Ma), the area researched evolved into an ocean basin, Qimantage orogenic belt may be a rift.
     North Qaidam ocean may start subducting during the Early to Middle Ordovician(496-445Ma), Tanjianshan Group deposited island arc magmatic rocks and sediments from back-arc basin, with the increase of the subduction, the UHP eclogite was formed in 490Ma-450Ma, this stage may be ocean subduction, eastern Kunlun ocean occurred subduction toward nouth during the period of Middle to Late Ordovician(455-436Ma), so Early Paleozoic island arc magmatic belt came into being in the nouth of eastern Kunlun ocean, at the same time, the Qimantage small ocean occurred subduction toward nouth, then it formed arc volcanic sediments from Back-arc basin existing in the north Tanjianshan Group.
     When all the subduction of oceanic crust reduced off during the Late Ordovician to Early Silurian, the continental crust occurred deep subduction under the drag of the oceanic crust, then eclogite was formed with the age of 437-422Ma, Class of flysch from Saishiteng group may be the sediments from retroarc foreland basin, eastern Kunlun ocean and Qimantage ocean was closed in the Late Silurian, the flysch deposit in Baiganhu Group may retroarc foreland basin sediments.
     During the period of Middle Silurian to Middle Devonian, with the increasing of collision orogeny, north Qaidam, eastern Kunlun, and Qimantage graduateed into suture zone, Early and Middle Devonian deposits became sedimentary gap due to the orogenic uplift, collision orogeny was finished until Middle Devonian.
     (3) Nouth and south Qaidam began to form extensional tectonic evolution in Late Devonian, and there deposited a series of extensional molasse.
引文
[1]边千韬,李涤徽.阿尼玛卿蛇绿岩带花岗—英云闪长岩锆石U-Pb同位素定年及大地构造意义[J].地质科学,1999,34(4):420-426
    [2]边千韬,罗小全,李涤徽,等.青海省阿尼玛卿带布青山蛇绿混杂岩的地球化学性质及形成环境[J].地质学报,2001,75(1):45-55
    [3]陈丹玲,宋勇,刘良.柴北缘鱼卡河榴辉岩围岩的变质时代及其地质意义[J].地学前缘,2007,14:108-116
    [4]陈丹玲,宋勇,刘良,等.柴北缘鱼卡河榴辉岩的超高压变质年龄:锆石LA-ICP-MS微区定年[J].中国科学D辑(地球科学),2007,37:279-287
    [5]陈发景.中国中、新生代含油气盆地构造和动力学背景[J].现代地质,1992,6(3):317-327
    [6]陈发景,汪新文,张光亚,等.中国中、新生代前陆盆地的构造特征和地球动力学[J].地球科学,1996,21(4):366-372
    [7]陈能松,孙敏,张克信,等.东昆仑变闪长岩体的40Ar-39Ar和U-Pb年龄:角闪石过剩Ar和东昆仑早古生代岩浆岩带证据[J].科学通报,2000,45(21):2337-2342
    [8]陈能松,何蕾,孙敏,等.东昆仑造山带早古生代变质峰期何逆冲构造变形年代的精确限定[J].科学通报,2002,47(8):628-631
    [9]陈能松,孙敏,王勤燕,等.东昆仑造山带中带的锆石U-Pb定年与构造演化启示[J].中国科学D辑:地球科学,2008,38(6):657-666
    [10]陈亮,孙勇,裴先治,等.德尔尼蛇绿岩40Ar-39Ar年龄:青藏最北端古特提斯洋盆存在和延展的证据[J].科学通报,2001,46(5):424-426
    [11]陈道公,李彬贤,夏群科,等.变质岩中锆石U-Pb计时问题评述——兼论大别造山带锆石定年[J].岩石学报,2001,17(1):129-138
    [12]谌宏伟,罗照华,莫宣学,等.东昆仑喀雅克登塔格杂岩体的SHRIMP年龄及其地质意义[J].岩石矿物学杂志,2006,25(1):25-32
    [13]邓晋福,赵海玲,莫宣学,等.中国大陆根柱构造大陆动力学的钥匙[M].北京:地质出版社,1996,1-111
    [14]邓晋福,莫宣学,罗照华,赵海玲,等.火成岩构造组合与壳-幔成矿系统[J].地学前缘,1999,6(2):259-270
    [15]丁兴,周新民,孙涛.华南陆壳基底的幕式生长——来自广东古寨花岗闪长岩中锆石LA-ICP-MS定年的信息[J].地质论评,2005,51(4):382-392
    [16]方向,张跃中,常承永,等.柴达木盆地构造特征与构造演化[R].中国石油青海油田.2006,4-33
    [17]冯益民,何世平.祁连山及其邻区大地构造基本特征——兼论早古生代海相火山岩的成因环境[J].西北地质科学,1995,16(1):92-103
    [18]冯益民,何世平.祁连山大地构造与造山作用[M].北京:地质出版社,1996:1-140
    [19]冯益民,曹宣铎,张二朋,等.西秦岭造山带结构造山过程及动力学[M].西安:西安地图出版 社,2002,69-98
    [20]高长林,秦德余,吉让寿,等.扬子板块北部古被动大陆边缘的地球化学特征[J].岩石矿物学杂志,199],10(4):330-338
    [21]高长林,叶德燎.前陆盆地的类型及油气远景[J].石油实验地质,2000,22(2):99-104
    [22]高俊,汤耀庆,赵民.新疆南天山蛇绿岩的地质地球化学特征及形成环境初探[J].岩石学报,1995.11:85-97
    [22]高延林,吴向农,左国朝.东昆仑山清水泉蛇绿岩特征及其大地构造意义[J].西北地质科学,1988,21:17-28
    [23]郭进京.中祁连东段晋宁期碰撞型花岗岩及其地质意义[J].地球学报,1999,20(1):10-15
    [24]韩英善,彭琛.托莫尔日特蛇绿混杂岩带地质特征及其构造意义[J].青海地质,2000,1:18-25
    [25]郝国杰,陆松年,李怀坤,等.柴北缘沙柳河榴辉岩岩石学及年代学初步研究[J].前寒武纪研究进展,2001,24:]54-162
    [26]郝国杰,陆松年,辛后田,等.青海都兰地区前泥盆纪古陆块的物质组成和重大地质事件[J].吉林大学学报(地球科学版),2004,34(4):495-516
    [27]郝国杰.青海都兰地区前泥盆纪变质岩系物质组成及地质演化[D].长春:吉林大学,2005
    [28]郝杰,刘小汉,桑海清.新疆东昆仑阿牙克岩体地球化学与40A-39Ar年代学研究及其大地构造意义[J].岩石学报,2003,19(3):517-522
    [29]何登发,吕修祥,林永汉,等.前陆盆地分析[M].北京:石油工业出版社,1996:200-220
    [30]候贵廷,李江海,Halls H C,等.华北晚前寒武纪镁铁质岩墙群的流动构造及侵位机制[J].地质学报,2003,77(2):210-215
    [31]胡能高,赵东林,徐柏青,等.北秦岭含柯石英榴辉岩的发现及其意义[J].科学通报,1994,21:2013
    [32]琴,郝杰,张国新,等.新疆东昆仑地区新元古代蛇绿岩Sm-Nd全岩—矿物等时线定年及其地质意义[J].岩石学报,2004,20(3):457-462
    [33]霍尔斯,基性岩墙群用于研究地球动力作用的重要性及可能性[J].国外地质科技,1984,6:39-50
    [34]贾群子,杨忠堂,肖朝阳.祁连山铜金钨铅锌矿床成矿规律和成矿预测[M].北京:地质出版社,2007,75-141
    [35]简平,程裕淇,刘敦一.变质锆石成因的岩相学研究——高级变质岩U-Pb年龄解释的基本依据[J].地学前缘,2001,8(3):183-191
    [36]姜春发,杨经绥,冯秉贵,等.昆仑开合构造[M].北京:地质出版社,1992:58-154
    [37]姜春发,王宗起,李锦轶.中央造山带开合构造[M].北京:地质出版社,2000:1-100
    [38]兰朝利.新疆东昆仑蛇绿岩岩石学、地球化学及其大地构造意义[D].北京:中国科学院研究生院,2001
    [39]李继亮.碰撞造山带的大地构造相[A].见:佚名.现代地质学研究论文集(上)[M].南京:南京大学出版社,1992:9-21
    [40]李继亮,孙枢,郝杰,等.碰撞造山带的碰撞事件时限的确定[J].岩石学报,1999,15(2):315-320
    [41]李怀坤,陆松年,赵风清,等.柴达木北缘新元古代重大地质事件年代格架[J].现代地质,1999,13(2):224-225
    [42]李怀坤,陆松年,王惠初,等.青海柴北缘新元古代超大陆裂解的地质记录——全吉群[J].地质调查与研究,2003,26(1):27-37
    [43]李怀坤,陆松年,相振群,等.东昆仑中部缝合带清水泉麻粒岩锆石SHRIMP U-Pb年代学研究[J].地学前缘,2006,13(6):311-321
    [44]李曙光,陈移之,张国伟,等.一个距今10亿年侵位的阿尔卑斯型橄榄岩体:北秦岭晚元古代板块构造体制的证据[J].地质论评,1991,37(3):235-242
    [45]李曙光.蛇绿岩生成构造环境的Ba-Th-Nb-La判别图[J].岩石学报,1993,9(2):146-157
    [46]李荣社,计文化,杨永成,等.昆仑山及邻区地质[M].北京:地质出版社,2008:77-101
    [47]李卫东,彭湘萍,康正文,等.东昆仑木孜塔格地区畅流沟蛇绿岩岩石地球化学特征及其构造意义[M].新疆地质,2003,21(3):263-268
    [48]李献华,李寄嵎,刘颖,等.华夏古陆古元古代变质火山岩的地球化学特征及其构造意义[J].岩石学报,1999,15(3):364-370
    [49]刘良,车自成,罗金海,等.阿尔金山西段榴辉岩的确定及其地质意义[J].科学通报,1996,41(16):1485-1488
    [50]刘和甫.前陆盆地类型及褶皱—冲断层样式[J].地学前缘,1995,2(3-4):59-68
    [51]龙晓平,金巍,葛文春,等.东昆仑金水口花岗岩体锆石U-Pb年代学及其地质意义[J].地球化学,2006,35(4):333-345
    [52]陆松年.新疆库鲁克塔格元古宙地质演化[J].中国地质科学院天津地质矿产研究所所刊,1992,26-27:223-224
    [53]陆松年.从罗迪尼亚到冈瓦纳超大陆——对新元古代超大陆研究几个问题的思考[J].地学前缘,2001,8(4):441-448
    [54]陆松年,于海峰,赵风清,等.青藏高原北部前寒武纪地质初探[M].北京:地质出版社,2002:1-130
    [55]陆松年,李怀坤,陈志宏,等.新元古时期中国古大陆与罗迪尼亚超大陆的关系[J].地学前缘,2004,11(2):515-523
    [56]陆松年,陈志宏,李怀坤,等.秦岭造山带中两条新元古代岩浆岩带[J].地质学报,2005,79(2):165-173
    [57]陆松年,于海峰,李怀坤,等.中国前寒武纪重大地质问题研究——中国西部前寒武纪重大地质事件群及其全球构造意义[M].北京:地质出版社,2006:175-193
    [58]毛景文,张招崇,杨建民,等.北祁连山西段铜金铁钨多金属矿床成矿系列和找矿评价[M].北京:地质出版社,2003:40-240
    [59]孟繁聪,张建新,杨经绥,等.柴北缘锡铁山榴辉岩的地球化学特征[J].岩石学报,2003,19(3):435-442
    [60]孟繁聪,张建新,杨经绥.柴北缘锡铁山早古生代HP/UHP变质作用后的构造热事件——花岗岩和片麻岩的同位素与岩石地球化学证据[J].岩石学报,2005,21(1):45-56
    [61]孟繁聪,张建新.柴北缘绿梁山早古生代花岗岩浆作用与高温变质作用的同时性[J].岩石学报,2008,24(7):1585-1594
    [62]赖绍聪,邓晋福,赵海玲.柴达木北缘古生代蛇绿岩及其构造意义[J].现代地质,1996,10(1):
    18-28
    [63]潘裕生,周伟明,许荣华,等.昆仑山早古生代地质特征与演化[J].中国科学D辑,1996,26(4):302-307
    [64]青藏油气区石油地质志编写组.中国石油地质志(卷十四)[M].北京:石油工业出版社,1987:79-81
    [65]青海省地质矿产局.青海省区域地质志[M].北京:地质出版社,1991:8-28
    [66]青海省地质矿产局.青海省岩石地层[M].武汉:中国地质大学出版社,1997:14-59
    [67]青海省地质调查研究院,1:25万库朗米其提幅区域地质调查报告[R].2003:9-272
    [68]青海省地质调查研究院,1:25万兴海幅区域地质调查报告[R].2003:128-226
    [69]青海省地质调查研究院,1:25万布喀达坂峰幅区域地质调查报告[R].2003:103-241
    [70]任纪舜,姜春发,张正坤,等.中国大地构造及其演化[M].北京:科学出版社,1980
    [71]任纪舜,牛宝贵,刘志刚.软碰撞、叠复造山和多旋回缝合作用[J].地学前缘,1999,6(3):85-93
    [72]任军虎,柳益群,冯乔,等.东昆仑清水泉辉绿岩脉地球化学及LA-ICP-MS锆石U-Pb定年[J].岩石学报,2009,25(5):1135-1145
    [73]陕西省地质调查研究院.1:25万阿牙克库木湖幅区域地质调查报告[R].2003:78-187
    [74]陕西省地质调查研究院.1:25万于田县幅区域地质调查报告[R].2003
    [75]史仁灯,杨经绥,吴才来,等.柴达木北缘超高压变质带中的岛弧火山岩[J].地质学报,2004,78(1):52-64
    [76]宋述光,杨经绥.柴达木盆地北缘都兰地区榴辉岩中透长石+石英包裹体:超高压变质作用的证据[J].2001,地质学报,75(2):180-185
    [77]苏建平,胡能高,张海峰,等.北祁连山西段吊大阪花岗片麻岩的锆石U-Pb年龄及地质意义[J].地质科技情报,2004,23:11-14
    [78]孙肇才.简论鄂尔多斯盆地地质构造风格及其油气潜力——纪念朱夏院士逝世10周年[J].石油实验地质,2000,22(4):291-296
    [79]孙延贵,郝维杰,韩英善,等.柴达木盆地北缘东段托莫尔日特似蛇绿岩岩石组合特征[J].中国区域地质,2000,19(3):258-264
    [80]汤良杰,金之钧,张明利,等.柴达木震旦纪—三叠纪盆地演化研究[J].地质科学,1999,34(3):289-300
    [81]田作基,罗志立,罗蛰潭,等.新疆阿瓦提陆内前陆盆地[J].石油与天然气地质,1996,17(4):282-286
    [82]万渝生,许志琴,杨经绥,等.祁连造山带及邻区前寒武纪深变质基底的时代和组成[J].地球学报,2003,24(4):319-324
    [83]王德滋.壳幔作用与花岗岩成因——以中国东南沿海为例[J].高校地质学报,1999,5(3):241-250
    [84]王剑.华南新元古代裂谷盆地演化——兼论与Rodinia解体的关系[M].北京:地质出版社,2000:1-150
    [85]王云山,庄庆兴,史从彦,等.柴达木北缘的全吉群[A].中国震旦亚界[c].天津:天津科学技术出版社,]980:214-229
    [86]王云山,陈基娘.青海省及毗邻地区变质地带与变质作用[M].北京:地质出版社,1987:65-213
    [87]王毅智,梁超云,王桂秀.柴达木盆地北缘麻粒岩的发现及地质意义[J].青海地质,2000,9(1):33-38
    [88]汪云亮,张成江,修淑芝.玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别[J].岩石学报,2001,17(3):413-421
    [89]王勤燕,陈能松,李晓彦,等.全吉地块基底达肯大坂岩群和热事件的LA-ICP-MS锆石U-Pb定年[J].科学通报,2008,53(14):1693-1701
    [90]王惠初,陆松年,袁桂邦,等.柴达木盆地北缘滩间山群的构造属性及形成时代[J].地质通报,2003,22(7):487-493
    [91]王惠初,陆松年,莫宣学,等.柴达木盆地北缘早古生代碰撞造山系统[J].地质通报,2005,24(7):603-612
    [92]王惠初.柴达木盆地北缘早古生代碰撞造山及岩浆作用[D].北京:中国地质大学,2006
    [93]王秉璋,张森琦,张智勇,等.东昆仑东端扎那合惹地区元古宙蛇绿岩[J].中国区域地质,2001,20(1):52-57
    [94]汪相,Kienast J R微粒暗色包体中锆石的形态演化及其制约机制[J].中国科学(D辑),2000,30(2):180-187
    [95]王国灿,陈能松;朱云海,等.东昆仑东段昆中构造带晚加里东期逆冲型韧性剪切变形的年代学证据及其意义[J].地质学报,2003,432
    [96]文世宣.喀喇昆仑山——昆仑山地区古生物[M].北京:科学出版社,1999
    [97]吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,2004,49(16):1589-1604
    [98]邬介人,任秉琛.青海锡铁山块状硫化物矿床的类型及地质特征[J].中国地质科学院西安地质矿产研究所所刊,1987,20:1-88
    [99]吴才来,杨经绥,Wooden J,等.柴达木山花岗岩锆石SHRIMP定年[J].科学通报,2001,46(20):1743-1747
    [100]吴才来,杨经绥,许志琴,等.柴达木盆地北缘古生代超高压带中花岗质岩浆作用[J].地质学报,2004,78(5):659-674
    [101]吴才来,郜源红,吴锁平,等.柴达木盆地北缘大柴旦地区古生代花岗岩锆石SHRIMP定年[J].岩石学报,2007,23(8):1861-1875
    [102]吴才来,郜源红,吴锁平,等.柴北缘西段花岗岩锆石SHRIMP U-Pb定年及其岩石地球化学特征[J].中国科学D辑(地球科学),2008,38(8):930-949
    [103]夏林圻,夏祖春,任有祥,等.祁连、秦岭山系海相火山岩[M].中国地质大学出版社,1991,1-227
    [104]夏林圻,夏祖春,徐学义.北祁连山早古生代洋脊—洋岛和弧后盆地火山作用[J].地质学报,1998,72(4):301-312
    [105]夏林圻.造山带火山岩浆作用[J].西北地质,2001,34(3):18-28
    [106]肖庆辉,李晓波,刘树臣,等.当代地质科学前沿:我国今后值得重视的前沿领域研究[M].北京:地质出版社,1-50
    [107]肖庆辉,李晓波,贾跃明,等.当代造山带研究中值得重视的若干前沿问题[J].地学前缘,1995,2(1-2):43-50
    [108]肖序常.从扩张速率试论蛇绿岩的类型划分[J].岩石学报,1995,11:10-23
    [109]解玉月.昆中断裂东段不同时代蛇绿岩特征及形成环境[J].青海地质,1998,7(1):27-36
    [110]熊兴武,张雄华,章泽军,等.赣西北港口—马坳地区地层学研究进展[J].江西地质,1994,8(4):252-263
    [111]许志琴,崔军文,张建新.大陆山链变形构造动力学[M].北京:地质出版社,1996:3-20
    [112]许志琴,杨经绥,张建新,等.阿尔金断裂两侧构造单元的对比及岩石圈剪切机制[J].地质学报,1999,73(3):193-205
    [113]许志琴,杨经绥,吴才来,等.柴北缘超高压变质带形成与折返的时限及机制[J].地质学报,2003,77(2):163-176
    [114]许志琴,杨经绥,李海兵,等.造山的高原——青藏高原的地体拼合、碰撞造山及隆升机制[M].地质出版社,2007:1-120
    [115]许靖华.弧后碰撞造山带的大地构造相[J].南京大学学报,1994,6(1):1-11
    [116]徐旺春,张宏飞,柳小明.锆石U-Pb定年限制祁连山高级变质岩系的形成时代及其构造意义[J].科学通报,2007,52(10):1174-1180
    [117]许荣华,Harris N, Lewis C,等.拉萨至格尔木的同位素地球化学[A].中—英青藏高原综合地质考察队.青藏高原地质演化[M].北京:科学出版社,1990:280-320
    [118]杨经绥,许志琴,李海兵,等.我国西部柴北缘地区发现榴辉岩[J].科学通报,1998,43(14):1544-1549
    [119]杨经绥,许志琴,宋述光,等.青海都兰榴辉岩的发现及对中国中央造山带内高压—超高压变质带研究的意义[J].地质学报,2000,74(2):156-168
    [120]杨经绥,宋述光,许志琴,等.柴达木盆地北缘早古生代高压—超高压变质带中发现典型超高压矿物——柯石英[J].地质学报,2001,75(2):175-179
    [121]杨经绥,张建新,孟繁聪,等.中国西部柴北缘—阿尔金的超高压变质榴辉岩及其原岩性质探讨[J].地学前缘,2003,10(3):291-314
    [122]杨经绥,刘福来,吴才来,等.中央造山带中两期超高压变质作用:来自含柯石英锆石的定年证据[J].地质学报,2003,77(4):463-477
    [123]杨经绥,史仁灯,吴才来,等.柴达木盆地北缘新元古代蛇绿岩的厘定——罗迪尼亚大陆裂解的证据[J]?地质通报,2004,23(9-10):892-898
    [124]殷鸿福,张克信,陈能松,等.中华人民共和国区域地质调查报告(1:25万东给措纳湖幅)[M].武汉:中国地质大学出版社,2003:1-450
    [125]于凤池,魏刚锋,孙继东.黑色岩系同构造金矿床成矿模式——以滩间山金矿床为例[M].西安:西北大学出版社,1994:1-130
    [126]余能.东昆仑金水口变质岩系及其流体包裹体特征[D].长春:吉林大学,2005
    [127]袁洪林,吴福元,高山,等.东北地区新生代侵入岩的激光锆石探针U-Pb年龄测定与稀土元素成分分析[J].科学通报,2003,48(4):1511-1520
    [128]袁桂邦,王慧初,李惠民,等.柴北缘绿梁山地区辉长岩的锆石U-Pb年龄及意义[J].前寒武纪 研究进展,2002,25(1):37-40
    [129]曾建元,杨宏仪,万渝生,等.北祁连山变质杂岩中新元古代(-775Ma)岩浆活动记录的发现:来自SHRIMP锆石U-Pb定年的证据[J].科学通报,2006,51(5):575-581
    [130]张国伟,郭安林,刘福田,等.秦岭造山带三维结构及其动力学分析[J].中国科学D辑,1996,26:1-6
    [131]张旗,周国庆.中国蛇绿岩[M].北京:科学出版社,2001
    [132]张旗,周国庆,王焰.中国蛇绿岩的分布、时代及其形成环境[J].岩石学报,2003,19(1):1-8
    [133]张雪亭,吕惠庆,陈正兴,等.柴北缘造山带沙柳河地区榴辉岩相高压变质岩石的发现及初步研究[J].青海地质,1999,12(2):1-13
    [134]张建新,张泽明,许志琴,等.阿尔金构造带西段榴辉岩的Sm-Nd及U-Pb年龄——阿尔金构造带中加里东期山根存在的证据[J].科学通报,1999,44(10):1109-1112
    [135]张建新,杨经绥,许志琴,等.柴北缘榴辉岩的峰期和退变质年龄:来自U-Pb及Ar-Ar同位素测定的证据[J].2000,29(3):217-222
    [136]张建新,万渝生,许志琴,等.柴达木北缘德令哈地区基性麻粒岩的发现及其形成时代[J].岩石学报,2001,17(3):453-458
    [137]张建新,杨经绥,许志琴,等.阿尔金榴辉岩中超高压变质作用证据[J].科学通报,2002,47(3):231-234
    [138]张建新,万渝生,孟繁聪,等.柴北缘夹榴辉岩的片麻岩(片岩)地球化学、Sm-Nd和U-Pb同位素——深俯冲的前寒武纪变质基底[J]?岩石学报,2003,19:443-451
    [139]张建新,孟繁聪,万渝生,等.柴达木盆地南缘金水口群的早古生代构造热事件:锆石U-PbSHRIMP年龄证据[J].地质通报,2003,22(6):397-404
    [140]张建新,孟繁聪,杨经绥,等.柴北缘榴辉岩的pT演化历史[J].岩石矿物学杂志,2005,24(4):245-254
    [141]张建新,孟繁聪,于胜尧,等.柴北缘绿梁山高压基性麻粒岩的变质演化历史:岩石学及锆石SHRIMP年代学证据[J].地学前缘,2007,14:85-97
    [142]张建新,孟繁聪,董国安.柴达木盆地北缘锡铁山副片麻岩所记录的多期构造热事件[J].地质通报,2007,26(6):631-638
    [143]张建新,孟繁聪,Mattinson C G.南阿尔金—柴北缘高压—超高压变质带研究进展、问题及挑战[J].高校地质学报,2007,13(3):526-545
    [144]张招崇,毛景文,左国朝,等.北祁连山西段早元古代变质火山岩的地球化学特征及其构造背景[J].矿物岩石,1998,18(4):22-30
    [145]张雪亭,杨生德,杨站君,等.青海省板块构造研究——1:100万青海省大地构造图说明书[M].北京:地质出版社,2007:29-121
    [146]张雪亭,杨生德,杨站君,等.青海省区域地质概论——1:100万青海省大地构造图说明书[M].北京:地质出版社,2007:15-23
    [147]张贵宾,宋述光,张立飞,等.柴北缘超高压变质带沙柳河蛇绿岩型地幔橄榄岩及其意义[J].岩石学报,2005,21(4):1049-1058
    [148]张克信,黄继春,殷鸿福,等.放射虫等生物群在非史密斯地层研究中的应用——以东昆仑阿 尼玛卿混杂岩带为例[J].中国科学(D辑),1999,29(6):542-550
    [149]张克信,林启祥,朱云海,等.东昆仑东段混杂岩建造时代厘定的古生物新证据及其大地构造意义[J].中国科学(D辑),2004,34(3):210-218
    [150]赵风清,郭进京,李怀坤.青海锡铁山地区滩间山群的地质特征及同位素年代学[J].地质通报,2003,22(1):28-31
    [151]郑永飞.超高压变质与大陆碰撞研究进展:以大别—苏鲁造山带为例.科学通报,2008,53(18):2129-2152
    [152]中国地质大学(武汉)地质调查研究院,1:25万阿拉克湖幅区域地质调查报告[R].2003:94-206
    [153]周鼎武,张成立,韩松,等.东秦岭早古生代两条不同构造岩浆杂岩带的形成构造环境[J].岩石学报,1995,11(2):115-126
    [154]周鼎武,张成立,王居里,等.武当地块基性岩墙群研究及其地质意义[J],科学通报,1997,42(23):2546-2549
    [155]周鼎武,张成立,刘良,等.武当地块基性岩墙群的Sm-Nd定年及其相关问题讨论[J].地球学报,1998,19(1):25-30
    [156]莊文星,孙明志.祁连缝合带基盘再活化:中酸性深成岩铷—锶,钐—钕同位素及地球化学特征研究.第三届(2002)海峡两岸祁连山及邻区地质学研讨会——中央造山带的演化[C],2002:120-122
    [157]朱云海,张克信,陈能松,等.东昆仑造山带不同蛇绿岩带的厘定及其构造意义[J].地球科学(中国地质大学学报),1999,24(2):134-137
    [158]左国朝,吴茂炳,毛景文,等.北祁连西段中元古代早期蛇绿岩的确定[J].甘肃地质学报,1999,8(2):1-7
    [159]左国朝,吴汉泉.北祁连中段早古生代双向俯冲-碰撞造山模式剖析[J].地球科学进展,1997,12(4):315-323
    [160]Ashwal L D, Tucker R D and Zinner E K. Slow cooling of deep crustal granuliteand Pb-loss zircon[J]. Geochim. Acta,1999,63(18):2839-2851
    [161]Bally A W, Snelson S. Fact and principles of world petroleum occurrence[J]. Men.Can.Soc.Petro.Geol.,1980:9-75
    [162]Barbarin B. Granitoids main petrogenetic classification in relation to origin and tectonic setting[J]. Geol. J.1990,25:227-238
    [163]Barbarin B. Genesis of the two main types of peraluminous granitoids[J]. Geology.1996,24: 295-298
    [164]Barbarin B. A review of the relationships between granitoid types, there origins and there geodynamic environments[J]. Lithos.1999,46:605-626
    [165]Belousova E A, Griffin W L. Igneous zircon:trace element composition as an indicator of source rock type[J]. Contrib Mineral Petrol,2002,143:602-622
    [166]Bian Q T, Li D H, Pospelov I, et al. Age, geochemistry and tectonic setting of Buqingshan ophiolites, North Qinghai-Tibet Plateau, China[J]. Journal of Asian Earth Sciences,2004,23:577-596
    [167]Bird P. Initiation of intracontinental subduction in the Himalayas[J]. J.Geophs. Res.,1978,83(B10): 4975-498
    [168]Bird P. Continental delamination and the colorado plateau[J]. J.Geophs.Res.,1979,84(B13): 7561-7571
    [169]Bocealetti M, Gianelli G, Sani F. Tectonic regime, granite emplacement and crustal structure in the Inner zone of the Northern Apennines (Tuscany,Italy):a new hypothesis.Tectonophysics[J],1997, 270(1-2):127-143
    [170]Cabanis B, Lecolle M. Le digramme La/10-Y/15-Nb/8:un outil pour la discrimination de series volcaniques et la mise en evidence des processus de melange et/ou de contamination crustale[J]. C R Acad Sci. SerⅡ,1989,309:2023-2029
    [171]Chappell B J and White A J R. Two Contrasting Granite Types[J]. Pac. Geol.,1974,8:173-174
    [172]Chopin C, Monie P. Coesite and pure pyrope in high grade blueschists of the western ALPS:A first record consequences[J]. Contri Miner petro,1984,86:107-118
    [173]Collins W J, Beams S D, White A J R and Chappell B W. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contr. Mineral. Petrol.1982,10:189-200
    [174]Condie K C. Geochemical changes in basalts and andsites across the Archaean-Proterozoic boundary: Identification and significance[J]. Lithos,1989,23:1-18
    [175]Condie K C. Continent grouping during formation of Rodinia at 1.35~0.9 Ga[J]. Gondwana Research,2001,(1):5-16
    [176]Cottin J Y, Lorand J P, Agrinier P, et al. Isotopic(O. Sr. Nd) and trace Element geochemistry of the Laouni Layered intrusions (Pan-African belt, Hoggar, Algeria):evidence for post-collisional continental tholeiitic magmas variably contaminated by continental crust[J]. Lithos,1998,45: 197-222
    [177]Dalziel W D. Neoproterozoic-Paleozoic geography and tectonics:review, hypothesis.environmental speculation[J]. Geol. Sec. Amer. Bull.,1991,109(1):16-42
    [178]Decelles P G, Currie B S. Long-term sediment accumulation in the Middle Jurassic-early Eocene Cordilleran retroarc foreland-basin system[J]. Geology,1996,24(7):591-594
    [179]Defant M J and Drummond M S. Derivation of some modern arc magmas by melting of young subducted litho-sphere[J]. Nature,1990,347:662-665
    [180]Dewey J F. Extensional collapse[J].Tectonics,1988,7(6):1123-1139
    [181]Dickinson W R. Plate tectonics and sedimentation[J]. Tulsa:Spec. Publ. Soc. Econ.Plaeont,1974,22: 1-27
    [182]Dichinson W R. Plate Rectonics and Hydrocarbon Accumulation[A]. Plate tectonics evolution of sedimentary basin[C]. New Orleans:AAPG, Short course,1976(1):1-56
    [183]Ernst W G. Tectonic history of subduction zones inferred from retrograde blueschist P-T paths[J]. Geology,1988,16:1081-1084
    [184]Evans J R, Zucca J J. Active high-resolution seismic tomography of compressional wave velocity and attenuation structure at Medicine Lake volcano, northern California Cascade Range[J].J. Geophys. Res.,1988,93:15016-15036
    [185]Gao S, Liu X M, Yuan H L. Determination of forty two major and trace element in USGS and NIST SRM glasses by laser ablation inducitely coupled plasma-mass spectrometry[J]. Geostand Newsl, 2002,26(2):181-195
    [186]Grand S P, van der Hilst R D, Wildiyantoro S. Global seismic tomography:a snapshot of convection in the Earth[J]. GSA Today 1997,7:1-7
    [187]Grandstein F M, Ogg J G, Smith A G, et al. A geologic time scale[M]. New York, Columbia University Press.2004
    [188]Halls H C. The importance and potential of mafic dyke swarms in studies of geodynamic processes[J]. Geo science Canada,1982.9(3):145-154
    [189]Hart S R, Hauri E H and Oschmann L A. Mantle plume and entrainment:isotopic evidence[J]. Science,1982,256:517-520
    [190]Hoffman P F. Did the breakup of Laurentia turn Gondwana inside out?[J]. Science.1991,252: 1409-1412
    [191]Hsu K J. The concept of tectonic facies[J]. Bulletin of Technique University Istanbul,1991,44 (1-2): 25-42
    [192]Jakes P and White A J R. Major and trace element abundances in volcanic rocks of orogenic areas[J]. Bull Geol. Soc. Am,1972,83:29-40
    [193]Le Roex A.P.and Dick, H.J.B. Geochemistry, mineralogy and petrogenesis of lavas erupted along the Southwest Indian Ridge between the Bouvet triple junction and 11 degrees east[J]. J.Petrol.,1983,24: 267-318
    [194]Li Z X, Zhang L H and Powell C M. South China in Rodinia:part of the missing link between Australia-East Antaretica and Laurentia[J]?Geology,1995,23(5):407-410.
    [195]Li Z X, Zhang L H and Powell C M. Positions of the East Asian cratons in the Neoproterozoic super-continent Rodinia [J]. Austrnlia Earth Science,1996,43(6):593-604
    [196]Li Z X. Tectonic History of the Major East Asian Lithospheric Blocks Since the Mid-Proterozoic-A Synthesis. Mantle Dynamics and Plate Interactions in East Asia, Geodynamies 27[M]. Washington D C:American Geophysical Union.1998:221-243
    [197]Li Z X, Li X H, Kinny P D, et al. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze cration, South China and correlation with other continents:Evidence for a mantle superplume that broke up Rodinia[J]. Precam. Res.,2003,122:85-109
    [198]Ludwig K R. Isoplot/Ex version 2.49. A Geochronological Toolkit for microsoft Excel[M]. Berkeley: Berkeley Geochronology Center Special Publication No.1a,2003:1-56
    [199]Mahood G and Hildreth W. Large partition coefficients for trace elements in high-silica rhyolites[J]. Geochim Cosmochim Acta,1983,47:11-30Maruyama S. Plume tectonics[J]. Jour. Geol. Soc. Japan, 1994,100(1):24-49
    [200]Maruyama S, Liou J G and Terabayashi M. Blueschists and eclogites of t he World and their exhumation[J]. International Geology Review,1996,38:485-594
    [201]Mattinson C G, Wooden J L, Liou J G, et al. Geochronology and tectonic significance of Middle Proterozoic granitic orthogneiss, North Qaidam HP/UHP terrane, Western China[J]:Mineralogy and Petrology,2006,88:227-241
    [202]McMenaming M A S and McMenaming D L S. The Emergence of Animals:the Cambrain Breakthough[M]. New York:Columbia University Pres.1990:1-217
    [203]Melson W G, Vallier T L, Wright T L, et al. Chemical diversity of abyssal volcanic glass erupted along Pacific, Atlantic and Indian Ocean Sea-Floor Spreading Centers. In:The geophysics of the Pacific Ocean Basin and its Margin[M]. Washington D C.:Am Geophys Union,1976:351-367
    [204]Meschede M. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chem Geol,1986,56:207-218
    [205]Miller C F. Are strongly peraluminous magmas derived from pelitic sedimentary sources[J]? J. Geology,1985,93:673-689
    [206]Moores E. South west U.S.-east Antarctica(SWEAT)connection:a hypothesis. Geology,1991, 19:425-428
    [207]Pearce J A. Trace Element Characteristics of Lavas from Destructive Plate Boundaries[A]. In:Thorpe R S,ed.Andesites:Orogenic Andesites and Related Rocks. Chichester[C]:Willy,1982:525-548
    [208]Pearce J A.Role of the sub-continental lithosphere in magma genesis at active continental margin[A]. In:Hawkesworth C J and Norry M J(eds.). Continental Basalts and Mantle Xenoliths[C]. Nantwich: Shiva Publishing,1983:158-185
    [209]Petford N, Atherton M, Na-rich partial melts from newly underplated basaltic crust[J]:the Cordillera Blanca Batholith, Peru. J Petrol.,1996,37:1491-1521
    [210]Pitcher W S. Granite type and tectonic envionment[M]. Mountain Buiding Precesses. Lodon: Academic Press,1983:19-40
    [211]Robertson A H F. Role of the tectonic facies concept in orogenic analysis and its application to Tethys in the eastern Mediterranean region[J]. Earth Science Reviews,1994, (37):139-213
    [212]Smith D C. Coesite in clinopyroxene in the Caledonides and its implications for dynamlcs[J]. Nature, 1984,310:641-644
    [213]Song S G, Yang J S, Liou J Q et al. Petrology,geochemistry and isotopic ages of eclogites from the Dulan UHPM Terrane, the North Qaidam, NW China[J]. Lithos,2003,70:195-211
    [214]Song S G, Zhang L F, Niiu Y L, et al. Geochronology of diamond-bearing zircons from garnet periodotite in the North Qaidam UHPM belt, Northern Tibetan Plateau:A record of complex histories from oceanic lithosphere subduction to continental collision[J]. Earth and Planetary Science Letters, 2005,234:99-118
    [215]Song S G, Zhang L F, Niu Y L. et al. Evolution from oceanic subduction to continental collision:A case study of the Northern Tibetan Plateau inferred from geochemical and geochronological data[J]. Journal of Petrology,2006,47:435-455
    [216]Vavra G, Schmid R, Gebauer D. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to- granulite facies zircons:geochronology of the Ivrea Zone(Southern Alps) [J]. Contrib. Mineral. Petrol.,1999,134:380-404
    [217]Walker GPL, Eyre PR. Dike complexes in American Samoa[J]. J.Volc. Geother. Res,1995,69: 241-245
    [218]Wan Y S, Yang J S, Xu Z Q, et al., Geochemical characteristics of the Maxianshan complex and Xinglongshan Group in the segment of the Qilian orogenic belt[J]. Geol. Soc. China(Taiwan),2000, 43(1):107-124
    [219]Wan Y S, Simon A. W, Dunyi L, et al. Further evidence for-1.85Ga metamorphism in the Central Zone of the North China Craton:SHRIMP U-Pb dating of zircon from metamorphic rocks in the Lushan are, Henan Province[J]. Gondwana Research,2006,9(1-2):189-197
    [220]Weaver B L. The origin of ocean island basalt end-member composition:trace element and isotopic constraints[J]. Earth Planet. Sci. Lett.,1991,104:381-397
    [221]Wilson M. Igneous Petrogenesis[M]. London:Unwin Hyman,1989,1-466
    [222]Windley B F. The evolving continents[M]. Second Edition John Wiley and Sons Lte,1984
    [223]Wood D A, Joron J L and Treuil M. A re-appraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic setting[J]. Earth Planet. Sci. Lett., 1979,45:326-336
    [224]Xu P, Sun R, Liu F, et al. Seismis tonography showing subduction and slab breakoff of the Yangtze block beneath the Dabie-Sulu orogenic belt. Chinese Science Bulletin,2000,45:70-73
    [225]Yang J S, Qu J C, Xu Z Q, et al. Qingshuiquan ophiolite of East Kunlun:a lower Paleozoic suture. Abstract for the Symposium of Up-lift Deformation and Deep Structure of Northern Tibet. No.48 Montpellier,1995
    [226]Yang J S, Robinson P T, Jiang C F, et al. Ophiolites of the Kunlun Mountains, China and their tectonic implications[J]. Tectonophysics,1996,258(1):215-231
    [227]Yang J S, Xu Z Q, Zhang J X, et al. Early Palaeozoic North Qaidam UHP metamorphic belt on the north-eastern Tibetan plateau and a paired subduction model[J]. Terra Nova,2002,14(5):397-404
    [228]Yang J S, Liu F, Wu C L, et al. Two ultrahigh-pressure metamorphic events recognized in the central orogenic belt of China:Evidence from the U-Pb dating of coesite-bearing zircons[J]. International Geology Review,2005,47:327-343
    [229]Zhang Y F and Zheng J K. The geological outline on the Hoh Xil and its adjacent region[M]. Seismological Press,1-177
    [230]Zhang J, Zhang Z, Xu Z, et al. petrology and geochronology of eclogites from the western segment of the Altyn Tagh, northwestern China[J]. Lithos,2001,56(2-3):187-206
    [231]Zhang J X, Yang J S, Mattinson C G, et al. Two contrasting eclogite cooling histories, North Qaidam HP/UHP terrane, western China:Petrological and isotope constraints[J]. Lithos,2005,84:51-76

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700