用户名: 密码: 验证码:
电镀CBN硬珩轮珩齿机理及动态仿真分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
齿轮制造创新技术的研究和应用,是提高齿轮传动质量的关键环节。齿轮的齿形及齿距误差,直接影响其传递扭矩的能力。齿面的微观几何形貌,则对齿轮传动产生的噪声,以及使用性能和寿命影响很大。为了提高现有齿轮的承载推力,各国普遍采用硬齿面技术,即通过提高齿面硬度以缩小装置的尺寸。
     对于渐开线淬硬齿面齿轮精加工,我国现行的方法主要是采用磨齿或软珩齿。磨齿加工虽能满足齿形精度要求,但其生产效率低、成本大,导致产品竞争力下降,并且齿面的微观几何形貌也不利于降低齿轮的传动噪声。而软珩轮基体是弹性体,因而导致软珩轮的静态精度在珩齿时将遭到破坏,并倾向于服从齿坯的精度,导致软珩齿加工质量不稳定。
     用超硬材料立方氮化硼(CBN)与金属结合剂电镀于钢质基体上,制成的电镀CBN硬珩轮,由于其基体具有很好的刚性,使得被加工齿轮不仅可明显改善表面质量,而且对齿形误差、齿向误差、周节累积误差等可得到有效校正,加工效率也将显著提高。
     然而,由于种种原因,用电镀CBN硬珩轮对淬硬齿面精加工,还存在诸多问题亟待探讨和解决,硬珩轮的珩齿机理以及硬珩轮的制作技术也未得到圆满解决。本文在此方面进行了一些深入探讨,并得到一些有益的结论,为推广电镀CBN硬珩轮对淬硬齿面的加工技术具有重要的现实意义。本文主要进行了以下几方面的工作:
     运用齿轮啮合、微分几何、磨削加工、摩擦学、弹性力学等理论,推出了珩齿加工珩削深度的计算模型和各个相关参数的计算方法,实现了对珩齿加工齿形误差的理论预测,揭示了硬珩齿加工齿形误差(如中凹和挖根误差)形成的内在因素,这一切均与实际相吻合。
     实现了珩磨轮和齿轮的参数化建模和参数化装配,对构成珩磨轮齿面的渐开线实现样条化处理,并对样条上的型值点实现了参数化,为珩磨轮齿面优化修形奠定了基础。
     运用有限元动态分析软件,根据实际加工条件确定模型的边界条件,对电镀CBN硬珩轮珩齿过程进行了动态仿真分析,通过对接触应力数据的采集,得到了接触应力沿啮合点的分布图,进一步揭示了齿面接触应力波动造成齿形误差的内在原因,也揭示了因重叠系数不同即齿数变化,造成齿形误差的差异。运用有限元静态分析方法,揭示了被珩齿轮齿面法向变形趋势,也从另一方面揭示了齿形误差趋势。
     利用有限元分析及优化软件,对珩磨轮齿面进行优化修形,通过对样本点回归分析,得到了齿形修改参数的最佳值,反馈到珩磨轮CAD模型,实现了珩磨轮齿面修形,齿面接触应力分布有了较大改观,为指导生产实践提供了有力保障。
     研究表明,采用电镀CBN硬珩轮珩齿加工,在齿形中部(尤其在齿数较少时),因接触应力波动较大,会产生齿形“中凹”误差,而在齿根部分,因珩削滑移距离最大,接触应力也较大而产生“挖根”误差,在珩磨轮制作方面应考虑上述因素,从而达到降低齿形误差,提高珩齿加工质量的目的。毫无疑问,这些研究结论对生产实践有重要的指导意义。
The research and application of gear innovative manufacturing technologies is key to improve the transmission quality of gear. Gear tooth shape and pitch error, will be directly affecting their ability to transfer torque. Tooth surface morphology of micro-geometry will be greatly influencing the noise of transmission, performance and life in the use. In order to improve the existing gear bearing ability, the hardened tooth surface technology is used by many countries, that is by increasing the hardness of tooth surface to reduce device size.
     For quench hardened involute gear finishing, our current method is to use grinding or soft gear-honing. Although the grinding process can meet the precision of tooth profile, but its low productivity, high cost, leading to less competitive, and the tooth surface morphology of micro-geometry is not conducive to reducing the transmission gear noise. The matrix of soft honing wheel is elastomer, resulting in its static accuracy will be decreased, and tend to obey the precision of gear blanks, causing instability of soft gear-honing processing quality.
     With superhard materials of cubic boron nitride (CBN) and the metal plating on the steel matrix, made-up electroplated CBN hard wheel, because its rigidity matrix is a very good, making surface quality of gear to be machined could not only improve, but also the profile error and lead error, the cumulative pitch error and other can be corrected, processing efficiency will be improved significantly.
     However, for various reasons, hard honing wheel with electroplated CBN finishing on the quenching hardened gear, there are many problems that must be explored and resolved, gear-honing mechanism of hard honing wheel and the process techniques of hard honing wheel has not been satisfactorily resolved. In the paper, some depth investigation and some useful results were gotten, for the promotion of electroplating CBN hard honing wheel on the quench hardened gear finishing technology has important practical significance.
     This article was the following areas:
     Based on the gear meshing, differential geometry, grinding, friction, elasticity and other theories, educed out calculation model of honing cutting depth, and given out the calculation method of various parameters in the model, realized the theoretical prediction on the tooth profile error, revealed the internal formation factors of the tooth profile error (such as the concave and the dig root error) in gear-honing processing, all of thus match to the practice.
     The parametric modeling of gear-honing wheel and gear, and parametric assembly were achieved, the involute constructed of tooth surface of honing wheel was converted into spline, and the fit points on the spline was parameterized, for honing teeth surface modification optimized was possible.
     By the dynamic finite element analysis software, according to the actual processing conditions setting the model boundary conditions, the dynamic simulation of gear-honing process was done with electroplating CBN hard honing wheel, through the tooth contact stress data collection, contact stress distribution at engaging points has been drafted, further revealed the internal factors of the tooth profile error caused by the tooth surface contact stress fluctuations, also revealed changes in profile error caused by the difference of contact ratio for the different number of teeth. By the static finite element analysis, revealed the gear surface normal deformation trend, it also revealed the profile error in the other side.
     In the help of finite element analysis and optimization software, the tooth surface of honing wheel was optimally modified, through regression analysis of the sample points, the value of the best parameters to modify tooth profiles were obtained, back to the CAD model of honing wheel, the tooth surface modification of the honing wheel was achieved, tooth surface contact stress distribution had been greatly improved, as the guide provided a strong guarantee for the production practice.
     With electroplating CBN hard honing wheel, studies show that on the tooth middle (especially when there are fewer in number of teeth), fluctuations due to contact stress will result in tooth "concave" error, and in parts of the tooth root, as honing cutting the maximum slip distance, contact stress is also larger and have a "dig root" error, in the honing wheel production, these factors should be considered to achieve the lower profile error and increase the quality of the purpose of honing process. There is no doubt that these findings have important guidance to production practice.
引文
[1] 51报告在线.2007年年末齿轮行业分析盘点.http://www. 51report. com/ free/detail/ 69478.html,2007.11.21.
    [2]李洪友.齿轮的脉冲电化学光整加工技术基础研究[D].大连:大连理工大学,2003.
    [3]魏冰阳,方宗德,周彦伟等.螺旋锥齿轮超声振动研磨的声弹性机理[J].中国机械工程,2004,06: 16-20.
    [4]郝君,于涛.珩齿珩轮修形研究[J].煤矿机械工程,2003,06: 54–56.
    [5]王长路,李秀明,刘毅.CBN整形外珩轮研究[J].机械传动,2002,Vol.26(2),67-70.
    [6]王长路,刘毅,陈立.CBN珩轮整形珩齿机理研究[J].机械传动,2002,Vol.26(3),20-23.
    [7]安立宝.齿轮加工技术新进展[J].航空工艺技术,1994,01: 33–35.
    [8]李延斌,郑鹏,周国祥.硬齿面齿轮精密热滚挤加工方法[J].沈阳工业大学学报,2002,06: 457-460.
    [9]任志刚.硬齿面齿轮热滚挤技术工艺与装备研究[D].沈阳:沈阳工业大学,2007.
    [10]庄中.硬齿面精加工机床[J].机床,1989,12:20-21.
    [11]严勇,汤子琳.硬齿面齿轮精加工技术及其发展现状[J].重庆大学学报,1993,Vol.16(6),138-143.
    [12]庄中.热后齿轮的精加工方法[J].机械工艺师,1990,4:40-42.
    [13]詹东安,吴序堂,孙景友等.“剃齿刀随机修形法”的理论研究与试验[J].工具技术,1998,Vol.32(3),6-9.
    [14]郭建强,徐燕申,彭泽民.剃齿加工过程的研究[J].工具技术,1997,31:16-18.
    [15]姚文席.齿面相对滑动速度和诱导法曲率变化对剃齿精度的影响[J].北京机械工业学院学报,1994,Vol.9(1),1-14.
    [16]王钰.高硬齿面滚齿加工探析[J].机械管理开发,2002,66:43-45.
    [17] T. Emura, L. Wang, M. Yamanaka et al. A PC-Based Synchronous Controller for NC Gear Grinding Machines Using Multithread CBN Wheel [J]. Journal of MechanicalDesign, 2001, Vol.123, 590– 597.
    [18] Hua-Yun You, Pei-Qing Ye, Jin-song Wang et al. Design and application of CBN shape grinding wheel for gears [J]. International Journal of Machine Tools and Manufacture, 2003, Vol.43, 1269–1277.
    [19]徐璞,穆临平,蒋新柏等.硬齿面齿轮珩齿技术的进展[J].太原工业大学学报,1993,9:45-50.
    [20]蒋海青,郭姣,李文斌.超硬材料内啮合珩轮珩齿原理及应用[J].山西机械,2002,114:4-5.
    [21]于涛,王素玉,杨俊茹等.齿轮式金刚石修整轮在外啮合珩齿新工艺中的应用[J].金刚石与磨料磨具工程,2005,145:8-10.
    [22]小谷和弘.热处理后齿轮的高效精加工[J].蒋修治译,齿轮, 1990,Vol.14(2),39-42.
    [23]詹东安,任济生,王素玉等.齿轮形超硬修磨轮的设计与制作技术[J].机械科学与技术,2000,Vol.19(1),34-36.
    [24]王维,许虹,郑鹏等.电镀金刚石珩轮滚珩渐开线硬齿面技术的应用[J].机械设计与制造,1999,3:57.
    [25]沈玉梅,韩玉梅.齿轮的珩齿工艺及珩磨轮的制作[J].一重技术,2004,101:34-35.
    [26]吴喜让,李坤,畅为航.轮齿研磨和珩磨时的磨屑形成机理[J].精密制造与自动化,2004,158:28-31.
    [27]王斌修,周锦进,李淑玉等.Si3N4陶瓷齿轮的电火花珩齿工艺研究[J].大连理工大学学报,1999,Vol.39(5),658-661.
    [28]凌文锋,王小椿,姜虹.螺旋锥齿轮珩齿技术的研究与珩磨轮的优化设计[J].北京交通大学学报,2007,Vol.31(1),50-54.
    [29]王志良.精密小模数齿轮珩磨研究[J].航天工艺,1995,2:9-12.
    [30]李鸣鸣.大模数斜齿轮可控电解珩磨电解间隙的计算[J].洛阳工学院学报,2000,Vol.21(3), 15-17.
    [31]于涛,王素玉,孙景友.内啮合珩齿啮合理论分析及试验[J].机械设计与研究,2004,Vol.20(4),66-68.
    [32]张春明.关于内珩齿工艺的实验研究[J].汽车工艺与材料,1996,5:14-15.
    [33]詹东安,吴序堂,孙景友等.内啮合珩齿的理论研究和微机模拟齿面接触分析[J].工具技术,1997,Vol.31(9),9-12.
    [34]郭振光.内啮合珩齿[J].机械制造,1987,9:6-8.
    [35]吴修义.国内外数控内齿珩轮珩齿机床介绍[J].机械科学与技术,1998,Vol.27(2),5-7.
    [36]阮光珊,沈立勤.内啮合珩齿工艺的研究和应用[J].机床,1990,12:29-32.
    [37]阮光珊.内啮合珩齿原理及生产应用[J].制造技术与机床,1995,7:11-15.
    [38]李同意.内啮合珩齿的理论分析及试验[J].齿轮,1990,Vol.14(1),35-40.
    [39] H.K. Tonshoff, C.Marzenell.珩齿加工中电镀金刚石工具的磨损[J].机械工程师,2000,11: 1–4.
    [40]吴能章.基于空间啮合的内齿轮剃齿干涉分析[J].机械传动,2006,Vol.30(1),9-11.
    [41]刘丰林,游华云.内齿轮CBN成形磨齿法[J].磨床与磨削,1998,4:44– 46.
    [42]郭振光.蜗杆式珩齿的应用及工艺分析[J].制造技术与机床,1981,6:13-15.
    [43]杨培生,周应虎.国外圆柱齿轮蜗杆式珩齿综述[J].机床,1982,12:2-5.
    [44]马师良.蜗杆珩轮珩齿精度的试验研究[J].机床,1985,5:23-26.
    [45]鹿玲,陈锦江,杨莉等.蜗杆式振动珩齿珩磨啮合纹路研究[J].燕山大学学报,1998,Vol.22(4):324-327.
    [46]段路茜.TI蜗杆传动啮合理论研究及优化设计[D].天津:天津大学,2004.
    [47]杨有亮,杨基州.环面蜗杆珩齿实验与研究[J].机械传动,1992,Vol.16(1),38-40.
    [48]郝君,于涛.环面蜗杆珩齿加工原理[J].山东农业大学学报,2003,Vol.34(2),275– 277.
    [49] Johannes Beeker.采用球面珩齿技术的高性能硬齿面加工工艺[J].何澜译,WMEM, 2003,5:49–52.
    [50] E. Brinksmeier, C. Schneider. Grinding at very Low Speeds [J]. CIRP Annals - Manufacturing Technology, 1997, Vol.46(1), 223– 226.
    [51] Naser Amini, B.G. Rosrn and H. Westberg. Optimization of Gear Tooth Surfaces [J]. International Journal of Machine Tools and Manufacture, 1998, Vol.38(5-6), 425–435.
    [52] H.K. T?nshoff, T. Friemuth. Properties of Honed Gears During Lifetime [J]. CIRP Annals - Manufacturing Technology, 2000, Vol.49(1), 431– 434.
    [53] E. Brinksmeler, A. Glwerzew. Chip Formation Mechanisms in Grinding at Low Speeds [J]. CIRP Annals - Manufacturing Technology, 2003, Vol.52(1), 253– 258.
    [54] E. Brinksmeier, A. Giwerzew. Hard gear finishing viewed as a process of abrasive wear [J]. Wear, 2005, 258: 62–69.
    [55] B. Karpuschewski, H.-J. Knoche, M. Hipke, Gear finishing by abrasive processes [J]. CIRP Annals - Manufacturing Technology, 2008, Vol.57(2), 621– 640.
    [56] R. P. Upadhyaya, S. Malkin. Thermal Aspects of Grinding With Electroplated CBN Wheels [J]. Journal of Manufacturing Science and Engineering, 2004, Vol.126, 107–114.
    [57] S. Barone. Gear Geometric Design by B-Spline Curve Fitting and Sweep Surface Modelling [J]. Engineering with Computers, 2001, 17: 66– 74.
    [58] Faydor L.Litvin, Qi Fan, Daniele Vecchiato et al. Computerized generation and simulation of meshing of modified spur and helical gears manufactured by shaving [J]. Computer methods in applied mechanics and engineering, 2001, 190: 5037– 5055.
    [59] Faydor L. Litvin, Ignacio Gonzalez-Perez, Alfonso Fuentes et al. Generalized concept of meshing and contact of involute crossed helical gears and its application [J]. Computer Methods in Applied Mechanics and Engineering, 2005, Vol.194(2), 3710–3745.
    [60] F.L. Litvin, I.H. Seol. Computerized determination of gear tooth surface as envelope to two parameter family of surfaces [J]. Computer methods in applied mechanics and engineering, 1996, 138: 213– 225.
    [61] F.L. Litvin, Jian Lu, D.P. Townsend et al. Computerized simulation of meshing of conventional helical involute gears and modification of geometry [J]. Mechanism and Machine Theory, 1999, 34: 123– 147.
    [62] I. H. Seol, F. L. Litvin. Computerized design, generation and simulation of meshing and contact of worm-gear drives with improved geometry [J]. Computer methods in applied mechanics and engineering, 1996, 138: 73– 103.
    [63] F. Klocke, E. Brinksmeier, K. Weinert. Capability Profile of Hard Cutting and Grinding Processes [J]. CIRP Annals - Manufacturing Technology, 2005, Vol.54(2), 22– 45.
    [64] C. Heinzel, N. Bleil. The Use of the Size Effect in Grinding for Work-hardening [J]. CIRP Annals - Manufacturing Technology, 2007, Vol.56(1), 327– 330.
    [65] M. Reichstein, F. Catoni. Grinding of Gears with Vitreous Bonded CBN-Worms [J]. CIRP Annals - Manufacturing Technology, 2006, 55: 355– 358.
    [66] Chen Chi-Pin, Liu Jian, Wei Guo-Chan et al. Electro-Chemical Honing of Gears—A new Method of Gear Finishing [J]. CIRP Annals - Manufacturing Technology, 1981, Vol.30(1), 103– 106.
    [67] Bogdan W. Kruszinski. Model of Gear-Grinding Process [J]. CIRP Annals - Manufacturing Technology, 1995, 44: 321– 324.
    [68] Jeong-Du Kim, Dong-Sik Kim. The development of software for shaving cutter design [J]. Journal of Materials Processing Technology, 1996, 59: 359– 366.
    [69] Bogdan W. Kruszynski. Stanislaw Midera. Forces in Generating Gear Grinding- Theoretical and Experimental Approach [J]. CIRP Annals - Manufacturing Technology, 1998, 47: 287– 290.
    [70] M.A. Haidar, A. Ishibashi, K. Sonoda et al. Minimization of effect of CBN wheel wear on ground gear errors [J]. International Journal of Machine Tools & Manufacture, 1999, 39: 607– 626.
    [71] G. Burkhard, F. Rehsteiner. High Efficiency Abrasive Tool for Honing [J]. CIRP Annals - Manufacturing Technology, 2002, 51: 271– 274.
    [72] K. Oobayashi, K. Irie, F. Honda. Producing gear teeth with high form accuracy and fine surface finish using water-lubricated chemical reactions [J]. Tribology International, 2005, 38: 243– 248.
    [73] E. Brinksmeier, J. C. Aurich, E. Govekar et al. Advances in Modeling and Simulation of Grinding Processes [J]. CIRP Annals - Manufacturing Technology, 2006, 55: 667– 696.
    [74] B.Y. Wei, X.Z. Deng, Z.D. Fang. Study on ultrasonic-assisted lapping of gears [J]. International Journal of Machine Tools and Manufacture, 2007, Vol.47, 2051–2056.
    [75] Matthieu Barge, Joel Rech, Hedi Hamdi et al. Experimental study of abrasive process [J]. Wear, 2008, 264: 382– 388.
    [76]吕明,轧刚,张华等.被剃齿面中凹误差的分析计算[J].太原工业大学学报,1995,Vol.26(3),1-7.
    [77]吕明,梁锡昌,郑晓华等.刀齿与轮齿变形对剃齿误差的影响[J].机械工程学报,2000,Vol.36(5), 76-80.
    [78]吕明,马红民,徐增伦.硬齿面齿轮珩齿刀制造新工艺的研究[J].金刚石与磨料磨具工具,2003,137: 46-47.
    [79]马红民.硬齿面齿轮用珩齿刀CAD与制造工艺的研究[D].太原:太原理工大学,2003.
    [80]侯晓晶.电镀CBN内齿珩轮的理论分析与工艺研究[D].太原:太原理工大学,2004.
    [81]侯晓晶,牛卫晶,吕明.电镀CBN珩齿刀的工艺研究[J].现代制造工程,2004,2: 84-85.
    [82]梁国星.激光扫描钎焊镀膜CBN外珩轮的理论分析与工艺研究[D].太原:太原理工大学,2005.
    [83]孙鹏,梁国星,吕明.电镀CBN珩齿刀工艺的分析与改进[J].机械工程与自动化,2005,131: 91-93.
    [84]辛苏生,张宇,吕明.高精度CBN外啮合齿轮状珩齿刀制造新工艺[J].机械工程与自动化,2007,142: 68-70.
    [85] M.D Zhang, M. Lv, G. Ya et al. Theoretical Research on Gear-honing and Manufacturing Technology with Electroplated CBN Honing Wheel [J]. Key Engineering Materials, 2006, 304: 408– 412.
    [86] M. Lv, M.D Zhang, G. Ya et al. Investigation of Manufacturing Technology in Electroplating CBN on Gear-honing-tool [J]. Key Engineering Materials, 2006, 315: 593– 596.
    [87] ManDong Zhang, Ming Lv, Shengqiang Yang. Theoretical Research on Tooth Profile Modification with Electroplated CBN Hard Honing Wheels [J]. Key Engineering Materials, 2008, 375: 226– 230.
    [88] LV Ming, ZHANG Mandong, XIONG Chenxi. The Error Analysis on Tooth Profiles with Electroplated CBN Hard Gear-Honing-Tools [J], Key Engineering Materials, 2009, 407: 73–76.
    [89]李文龙.大型齿轮在机测量原理及技术的研究[D].大连:大连理工大学,2000.
    [90]吴大任,骆家舜.齿轮啮合原理(附微分几何简介)[M].北京:科学出版社,1985.
    [91]李特文.齿轮啮合原理[M].卢贤占,高业田译.上海:上海科学技术出版社,1984.
    [92]陈勇平.平面磨削力建模及其应用研究[D].长沙:中南大学,2007.
    [93]唐进元,杜晋,陈勇平.齿轮磨削中磨削力数学模型的研究[J].制造技术与机床,2008,1:73-76.
    [94]修世超,蔡光起.决速点磨削周边磨削层模型及参数[J].机械工程学报,2006,Vol.42(11), 197-201.
    [95]谢良富,张鸿海,陈日曜等.极薄磨削下磨屑形成机理探讨[J].华中理工大学学报,1994,Vol.22(2), 35-39.
    [96]庄司克雄.磨削加工技术[M].郭隐彪,王振忠译.北京:机械工业出版社,2007.
    [97] Francesca Di Puccio, Marco Gabiccini, Massimo Guiggiani. Alternative formulation of the theory of gearing [J]. Mechanism and Machine Theory, 2005, 40: 613– 637.
    [98] Stefan Bjorklund. The influence of surface roughness in elliptical contacts [J]. Tribology International, 2001, 34: 841– 845.
    [99] F.L. Litvin, N.X. Chen, J.-S. Chen. Computerized determination of curvature relations and contact ellipse for conjugate surfaces [J]. Computer methods in applied mechanics and engineering, 1995, 125: 151– 170.
    [100] R. Maiti and A. K. Roy. Minimum Tooth Difference in Internal-External Involute Gear Pair [J]. Mechanism and Machine Theory, 1996, 31: 475– 485.
    [101] S. P. Radzevich. Mathematical Modeling of Contact of Two Surfaces in the First Order of Tangency [J]. Mathematical and Computer Modelling, 2004, 39: 1083– 1112.
    [102] Anders Flodin,Soren Andersson. A simplified model for wear prediction in helical gears [J]. Wear, 2001, 249: 285– 292.
    [103] Anders Flodin,Soren Andersson. Simulation of mild wear in helical gears [J]. Wear, 2000, 241: 123– 128.
    [104] Huseyin Imrek, Hayrettin Duzcukoglu. Relation between wear and tooth width modification in spur gears [J]. Wear, 2007, 262: 390– 394.
    [105] S. Glodez,H. Winter, H.P, Stuwe. A fracture mechanics model for the wear of gear flanks by pitting [J]. Wear, 1997, 208: 177–183.
    [106] Jacek Michalski, Leszek Skoczylas. A comparative analysis of the geometrical surfacetexture of a real and virtual model of a tooth flank of a cylindrical gear [J]. journal of materials processing technology, 2008, 204: 331–342.
    [107]周长城,胡仁喜,熊文波.ANSYS11.0基础与典型范例[M].北京:中国电子工业出版社,2007.
    [108]赵万友.接触问题的分析方法研究与工程应用[D].西安:西安电子科技大学,2007.
    [109]尚晓江,苏建宇,王化锋.ANSYS/LS-DYNA动力分析方法与工程实例[M].北京:中国水利水电出版社,2008.
    [110]常江.齿轮副的静、动态数值计算与动态光弹性实验研究[D].天津:天津大学,2005.
    [111] Y. Zhang, Z. Fang. Analysis of tooth contact and load distribution of helical gears with crossed axes [J]. Mechanism and Machine Theory, 1999, 34: 41– 57.
    [112] Tengjiao Lin, H. Ou, Runfang Li. A finite element method for 3D static and dynamic contact/impact analysis of gear drives [J]. Computer methods in applied mechanics and engineering, 2007, 196: 1716– 1728.
    [113] M. Celik. Comparison of three teeth and whole body models in spur gear analysis [J]. Mechanism and Machine Theory, 1999, 34: 1227–1235.
    [114] S. Ulaga, M. Ulbin, J. Flasker. Contact problems of gears using Overhauser splines [J]. International Journal of Mechanical Sciences, 1999, 41: 385– 395.
    [115] Jaakko Kleemola, Arto Lehtovaara. Experimental simulation of gear contact along the line of action [J]. Tribology International, 2009, 42: 1453– 1459.
    [116] D.A.Doman, A.Warkentin, R.Bauer. Finite element modeling approaches in grinding [J]. International Journal of Machine Tools & Manufacture, 2009, 49: 109–116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700