用户名: 密码: 验证码:
以微型燃气轮机为核心的先进能量系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分布式能源有助于实现能源与环境的协调发展,大电网与分布式能源相结合已成为21世纪电力工业的发展方向。以微型燃气轮机(简称微燃机)为核心的能量系统是分布式能源的主要方式之一。其中,微燃机冷热电联产系统和微燃机与高温燃料电池混合发电系统是以微燃机为核心的能量系统中最具发展前景的两种形式。本文则针对这两种能量系统存在的问题,进行了深入研究,提出了一些改进措施,得到了更为先进的以微燃机为核心的能量系统。
     微燃机冷热电联产系统中,冷热电负荷的矛盾使联产系统能量梯级利用的优势无法充分发挥。本文针对这个问题,首先研究了采用怎样的调节方法才能有效缓解这个矛盾。接着提出了回注蒸汽、进气冷却等可解决或者缓解冷热电负荷矛盾的新措施,从而有效地提高了联产系统的性能及效率。进而将回注蒸汽、进气冷却、冷凝水回收等措施集成到联产系统中,得到了更为先进的以微燃机为核心的冷热电联产系统。最后,对冷热电联产系统评价准则进行了探讨,根据冷热电联产系统能量梯级利用的本质特征提出了能量梯级利用效率的新评价准则。
     微燃机与高温燃料电池组成的混合发电系统是以微燃机为核心的能量系统中的另一种重要形式,本文以固体氧化物燃料电池/微燃机(SOFC/MGT)顶层循环混合发电系统作为研究重点,对混合发电系统进行了改进研究。首先揭示了SOFC/MGT混合发电系统参数优化的规律,分析了其效率进一步提高的潜力,给出了限制效率进一步提高的主要因素。然后根据使燃料更多的发生电化学反应而更少的发生燃烧反应的思路,提出了两种效率显著提高的混合发电新系统。最后,进行了混合发电系统脱碳的研究,首先对采用常规的氨水吸收法实现CO2准零排放的SOFC/MGT混合发电系统进行了计算分析。然后又在顶层循环的SOFC/MGT混合发电系统的基础上进行改进,提出了具有更高发电效率的CO2准零排放SOFC/MGT混合发电新系统。
     本文针对以微燃机为核心的能量系统,从改善系统变工况性能,提高系统效率,提高系统环保性能以及改进系统评价方法等方面提出了一些新颖的思路与方法,研究成果将对我国分布式能源系统的发展提供有益的参考。
Developing the distributed energy system(DES) is in favor of realizing the harmonious development of energy sources and environment, so that centralized power grid combining with DES has become a main development trend of power industry during the 21st centuries. Energy system based on micro gas turbine(MGT) is one of main development way of DES. Among them, MGT cooling, heating and power cogeneration system and hybrid cycle power system with MGT and high temperature fuel cell are two kinds of DES with better prospect. Aiming at existing problem in the two kinds of energy system, some improvement measures were putted forward. The more advanced energy systems with the core component of MGT were obtained. The obtained results are beneficial to driving the development of DES in our country.
     However, the frequent mismatch problem of the cooling, heating and power load of DES weakens the advantage of energy cascaded utilization, which is an important problem in the current cogeneration system. Firstly regulating methods were studied in order to enhance the off-design performance of the cogeneration system. Then new measures including steam injection and inlet air cooling were presented.Then integrated cooling, heating and power cogeneration system with steam injection、inlet air cooling and water recovery was brought forward which is more advanced DES based on MGT. Evaluation criterion for cooling, heating and power cogeneration system was also studied at last. A new evaluation criterion which is named as energy cascade utilization efficiency was proposed from the essential features of the combined cooling heating and power generation system.
     The hybrid cycle power system with MGT and high temperature fuel cell is another kind of DES which based on MGT. The improvement study for SOFC/MGT hybrid system was carried with the typical topping cycle SOFC/MGT hybrid system as emphases. The optimization rules of main parameters of SOFC/MGT hybrid system were revealed and the constraint conditions which limit the further improvement of overall hybrid system efficiency were given. Two kinds of new SOFC/MGT hybrid systems were presented according to the basic idea to make more fuel paticipate in electrochemical reaction instead of traditional combustion reaction. The calculation results proved that their efficiency was enhanced remarkably. Then the quasi-zero CO2 emission SOFC/MGT hybrid cycle system was studied. The quasi-zero CO2 SOFC/MGT hybrid cycle system with CO2 separation from the tail flue gas by using the ammonia solution absorption method was analyzed. Then a new quasi-zero CO2 emission SOFC/MGT hybrid cycle system was proposed based on the improvement of the typical topping cycle SOFC/MGT hybrid cycle system. Research results show that the new quasi-zero CO2 emission system has higher efficiency.
     Some original ideas and means were presented aiming at energy system based on MGT in this paper from several aspects including improving performance under off-design condition, boosting system efficiency, enhancing environmental protection performance and improving system evaluation method. The research achievements will provide valuable reference for development of DES in our country.
引文
[1]刘道平,马博,李瑞阳,等.分布式供能技术的发展现状与展望.能源研究与信息,2002,18(1):1-9.
    [2]杨勇平,徐二树.分布式能量系统.现代电力,2007,24(5):72-376.
    [3]何源.分布式能源系统的分析及优化:[硕士学位论文].天津:天津大学,2007.
    [4]杨敏林,杨晓西,金红光.分布式能源系统集成方案研究.东莞理工学院学报,2006,13(4):113-116.
    [5]冉鹏,张树芳,郭江龙,等.分布式能源系统的研究现状与应用前景.热力发电,2005,34(3):1-3.
    [6]梁才浩,段献忠.分布式发电及其对电力系统的影响.电力系统自动化,2001,25(12):53~56.
    [7]高书歧.利用煤层气建设“分布式能源系统”的可行性研究.煤,2006,15(3):50-52.
    [8]张洪伟.煤气化技术与分布式能源冷热电联产技术的联合应用.煤炭加工与综合利用,2006,(1):32-33.
    [9]王志伟,雷廷宙.生物质气化发电在分布式能源中的应用.太阳能,2007,(9):35-37.
    [10]王信茂.分布式能源系统发展相关问题探讨.电力技术经济,2007,19(3):6-8.
    [11]马一太,王国志,杨昭,等.燃气轮机性能评价的模糊综合评判方法.中国电机工程学报,2003,23(9):218-220.
    [12]曹红加,聂超群,那永洁,等.声波对锥形预混火焰表面温度脉动的影响.中国电机工程学报,2004,24(10):201-204.
    [13]徐林德.分布式能源系统设计优化分析.能源工程,2007,(5):26-29.
    [14]张文普,丰镇平.微型燃气轮机环型燃烧室的设计研究.中国电机工程学报,2005,25(5):150-153.
    [15]孙可,韩祯祥,曹一家.微型燃气轮机系统在分布式发电中的应用研究.机电工程,2005,22(8):55-60.
    [16]邓玮,张化光,杨德东.微型燃气轮机控制及电力变换系统的研制.控制工程,2006,13(1):35-38.
    [17]左志远,杨晓西,丁静.微型燃气轮机的生产厂商与性能影响因素.煤气与热力,2007,27(3):76-79.
    [18]宋举星.燃料电池与微型燃气轮机联合循环系统性能分析:[硕士学位论文].济南:山东大学,2006.
    [19]徐泽亚.燃料电池/微透平混合发电装置系统建模与仿真研究:[硕士学位论文].重庆:重庆大学,2006.
    [20]靳智平.微型燃气轮机发电在我国的应用前景.电力学报,2004,19(2):95-97.
    [21]贾武元,袁春,史银建.微型燃气轮发电机组及其在军事领域的应用前景.移动电源与车辆煤,2003,(4):43-45.
    [22]杨策,刘宏伟,李晓,等.微型燃气轮机技术.热能动力工程2003,18(103):1-4.
    [23]李政,王德慧,徐大懋.微型燃气轮机变工况运行方式研究.汽轮机技术,2005,47(2):114-117.
    [24]蒋毅,刘保兴.回热型微型燃气轮机热力性能及CHP系统研究.上海理工大学报,2004,26(1):89-93.
    [25]丰镇平,刘晓勇,张永海,等.微型燃气轮机热力系统的设计分析.工程热物理学报,2002,23(sup):18-20.
    [26]刘莉,丰镇平,黄锦涛.100kW微型燃机冷热电联产的经济性分析.工程热物理学报,2004,25(6):910-912.
    [27]任禾盛,王金旺,刘宝兴.微型燃气轮机热电联供系统的热经济学最优化分析.上海理工大学学报,2004,26(5):443-446.
    [28]蒋毅,任禾盛,刘宝兴.微型燃气轮机冷热电联供系统的热经济性分析上海理工大学学报,2004,26(5):485-489.
    [29]柳建华,邬志敏,王瑾.微型燃气轮机热电冷三联产系统总能分析及能效特性实验研究.中国建设信息供热制冷,2005,(4):29-32.
    [30]崔国民,王静,关欣,等.微型燃气轮机能源岛系统分析仿真软件—EIS系统.上海理工大学学报,2004,26(5):490-495.
    [31]冯志兵,金红光.冷热电联产系统的评价准则.工程热物理学报,2005,26(5):725-728.
    [32]王志伟,张泰岩,云曦,等.微型燃气轮机冷热电联供系统的评价指标比较.电力科学与工程,2006,(3):34-37.
    [33]皇甫艺,吴静怡,王如竹,等.冷热电联产CCHP综合评价模型的研究.工程热物理学报,2005,26(sup):13-16.
    [34]刘殿海,杨勇平,杨昆,等.分布式能量系统的综合评价.工程热物理学报,2005,26(3):382-384.
    [35]Sangtongkitcharoen W, Vivanpatarakij S, Laosiripojana N, et al. Performance Analysis of Methanol-fueled Solid Oxide Fuel Cell System Incorporated with Palladium Membrane Reactor. Chemical Engineering Journal,138(3):436-441.
    [36]Stephen V, Kevin L, Shailesh V, et al. Status of Pressurized SOFC/Gas Turbine Power System Development at siemens, Westinghouse. ASME, Turbo Expo 2002.
    [37]Palsson J, Selimovic A, Sinnesson L. Combined Solid Oxide fuel Cell and Gas Turbine System for Efficient Power and Heat Generation. Journal of Power Sources,2000,86 (2):442-448.
    [38]Tian Yun. Modeling of Solid Oxide Fuel Cell-Gas turbine Hybrid Power Plant. Singapore:Nanyang Technological University,2002.
    [39]Aristide F M, Colin F M, Theodosios K. Microturbine/Fuel Cell Coupling for High-efficiency Electrical-power Generation.ASME,2000.
    [40]Sy A A, Robert R, Moritz A. Turbogenerator for Fuel Cell/Gas Turbine Hybrid Power Plant. ASME, Turbo Expo 2001.
    [41]Chan S H, Ho H K, Tian Y. Modeling of Simple Hybrid Solid Oxide Fuel Cell and Gas Turbine Power Plant. Journal of Power Sources,2002, 109(1):111-120.
    [42]Petruzzi, L,Cocchi, S, Fineschi, F. A Global Thermo-Electrochemical Mode for SOFC Systems Design and Engineering. Journal of Power Sources,2003,118(1):96-107.
    [43]Meng Ni,Michael K H Leung, Dennnis Y C Leung. Parametric Study of Solid Oxide Fuel Cell Performance. Energy Conversion and Management, 2007,48(5):1525-1535.
    [44]Tanaka K, Wen C, Yamada K. Design and Evaluation of Combined Cycle System with Solid Fuel Cell and Gas Turbine. Fuel,2000, 79(12):1493-1507.
    [45]Jose Luz Sliveira, Elisangela Martins Leal, Luiz F Ragonha Jr. Analysis of a Molten Carbonate Fuel Cell:Cogeneration to Produce Electricity and Cold Water. Energy,2001,26(10):891-904.
    [46]Costamagna P, Magistri L, Massardo A F. Design and Part-load Performance of a Hybrid System Based on a Solid Oxide Fuel Cell Reactor and a Micro Gas Turbine. Journal of Power Sources,2001,96(2):352-368.
    [47]Li Zhou, Mo jie, Cheng Baolian, Yi et al. Performance of an Anode-supported Tubular Solid Oxide Fuel cell (SOFC) Under Pressurized Conditions.Electrochimica Acta,2008,53 (16):5195-5198.
    [48]Calisea F, Dentice d Accadia M, Palomboa A, et al. Simulation and exergy analysis of a hybrid Solid Oxide Fuel Cell(SOFC)-Gas Turbine System. Energy,2006,31 (15):3278-3299.
    [49]Fabian Mueller, Robert Gaynor, Allie E Auld, et al. Synergistic integration of a gas turbine and solid oxide fuel cell for improved transient capability. Journal of Power Sources,2008,176 (1):229-239.
    [50]Jin Sik Yang, Jeong L Sohn, Sung Tack Ro. Performance Characteristics of a Solid Oxide Fuel Cell/Gas Turbine Hybrid System with Various Part-load Control Modes. Journal of Power Sources,2007,166 (1):155-164.
    [51]Weihsiang Lai, Chian Hsiao, Chienhsiung Lee, et al. Experimental Simulation on the Integration of Solid Oxide Fuel Cell and Micro-turbine Generation. Journal of Power Sources,2007,171 (1):130-139.
    [52]周韦慧,陈乐怡.国外二氧化碳减排技术措施的进展.中外能源,2008,13(3):7-13.
    [53]段立强,林汝谋,蔡睿贤,等.C02零排放的整体煤气化联合循环系统研究进展.燃气轮机技术,2002,15(3):31-35.
    [54]林汝谋,段立强,金红光.CO2准零排放的IGCC系统探索研究.工程热物理学报,2002,23(6):661-664.
    [55]段立强,林汝谋,金红光,等.降低IGCC系统中回收C02能耗的新思路.工程热物理学报,2003,24(4):541-545.
    [56]王威.LNG冷(?)利用动力系统及微型燃气轮机系统的研究:[博士学位论文].北京:中国科学研究院研究生院,2003.
    [57]袁春,何国库.微型燃气轮机发电技术进展.移动电源与车辆,2002,(4):39-40.
    [58]何季民.微燃发电机展望.东方电气评论,2003,17(2):67-70.
    [59]赵士杭.新概念的微型燃气轮机的发展.燃气轮机技术2001,14(2):8-13.
    [60]翁一武,翁史烈,苏明.以微型燃气轮机为核心的分布式供能系统.中国电力,2003,36(3):1-4.
    [61]陈启梅,翁一武,翁史烈,等.燃料电池-燃气轮机混合发电系统性能研究.中国电机工程学报,2006,26(4):31-35.
    [62]Grillo O,Magistri L,Massardo A F. Hybrid systems for distributed power generation based on pressurization and heat recovering of an existing 100kW molten carbonate fuel cell. Journal of Power Sources, 2003,115(2):252-267.
    [63]杜建一,王云,徐建中.分布式能源系统与微型燃气轮机的发展与应用.工程热物理学报,2004,25(5):786-788.
    [64]茅以惠,余国和.吸收式与蒸汽喷射式制冷机.北京:机械工业出版社,1985.
    [65]王如竹,王丽伟.低品位热能驱动的绿色制冷技术:吸附式制冷.科学通报,2005,50(2):101-111.
    [66]魏兵,王志伟,李莉,等.微型燃气轮机冷热电联产系统经济性分析.热力发电,2007,(7):1-5.
    [67]魏兵,王志伟,李莉,等.微型燃气轮机冷热电联供系统及其在国外的发展状况.电力需求侧管理,2006,8(6):62-64.
    [68]胡学浩,陈斌.中国分布式冷热电联产发展现状及并网问题.沈阳工程学院学报,2006,1(2):7-12.
    [69]陈卫民,陈国呈,崔开涌,等.分布式并网发电系统在孤岛时的运行控制.电力系统自动化,2008,32(9):88-91.
    [70]程健,许世森.高温燃料电池发电系统研究.中国电力2007,40(3):18-22.
    [71]张会生,刘永文,苏明,等.高温燃料电池—燃气轮机混合发电系统性能分析.热能动力工程,2002,17(2):118-121.
    [72]Hiroo Yasue,Hisashi Kato, Kazuhiko Takasu. Development of a 1000 kW-class MCFC plant in Japan. Journal of Power Sources,1998,71 (1):89-94.
    [73]郝洪亮,张会生,翁史烈.底层与顶层MCFC-MGT联合循环系统性能分析.动力工程,2007,27(3):451-457.
    [74]许世森,程健.燃料电池发电系统.北京:中国电力出版社,2006.
    [75]骆仲泱,张小丹,方梦祥,等.高温燃料电池技术分析及前景展望.热力发电,2003,(1):6-9.
    [76]和彬彬,杨勇平,段立强.微燃机冷热电联供系统变工况性能研究.热能动力工程,2008,23(6):615-619.
    [77]金苏敏,陶玉灵.柴油机废烟气驱动的热管废热溴化锂制冷机运行特性,南京化工大学学报,2001,23(6):23-26.
    [78]李鹏荣,张明方,张忠燕.超小型热水型溴化锂制冷空调系统的研制.制冷技术,2005,(4):51-54.
    [79]段立强,林汝谋,蔡睿贤,等.整体煤气化联合循环(IGCC)底循环系统变工况特性.中国电机工程学报,2002,22(2):26-30.
    [80]冯志兵,金红光.冷热电系统特性的探讨.工程热物理学报2004,25(S):1-4.
    [81]姚秀平.燃气轮机及其联合循环发电.北京:中国电力出版社,2004.
    [82]和彬彬,段立强,杨勇平.回注蒸汽型微型燃气轮机系统研究,中国电机工程学报,2008,28(14):1-5.
    [83]张士杰,李宇红,叶大均.燃机热电冷联供自备电站优化配置研究.中国电机工程学报,2004,24(10):183-188.
    [84]翁一武,苏明,翁史烈.先进微型燃气轮机的特点与应用前景.热能动力工程,2003,18(2):111-115.
    [85]闻雪友,陆犇,李名家.燃气轮机湿空气回注循环分析.热能动力工程,2006,21(1):14-18.
    [86]徐之平,卢玫,李凌,等.微型燃气轮机回热器.动力工程2003,23(6):2752-2760.
    [87]吴仲华.能的梯级利用与燃气轮机总能系统.北京:机械工业出版社1988.
    [88]De Paepe M, Dick E. Analysis of efficiency and water recovery in steam injected gas turbines. Proceedings of ASME-IGTI TURBO, Orlando, USA, 1997.
    [89]De Paepe M, Dick E, Huvenne P. Industrial application of water recovery in steam injected gas turbines. VDI Berichte, Orlando,USA,1998.
    [90]Macchi A E, Poggio. A cogeneration plant based on a steam injection gas turbine with recovery of waterinjected:design criteria and initial operation experience. Proceedings of ASME-IGTI TURBO,The Hague, Netherlands, 1994.
    [91]De Paepe M, Dick E. Technological and economical analysis of water recovery in steam injected gas turbines. Applied Thermal Engineering, 2001,21 (2):135-156.
    [92]陈雷田,徐文斌,胡志杰.利用冰蓄冷技术提高燃气轮机的功率和效率.暖通空调,2004,34(5):101-103.
    [93]姜周曙,黄国辉,王建,等.PG6551(B)燃气轮机进气冷却系统的研制.动力工程,2006,26(6):790-794.
    [94]邱丽霞,郝艳红.燃气轮机进气冷却技术经济比较.电站系统工程,2006,22(2):41-45.
    [95]杨勇平,和彬彬,段立强.进气冷却在微型燃气轮机冷电联供系统中的应用.动力工程,2008,28(5):705-711.
    [96]王静,崔国民,李美玲.带回热微型燃气轮机系统动态过程分析.热能动力工程,2004,19(6):562-566.
    [97]张晓晖,陈效孺,杨茉.冷热电联产系统对CO2排放影响的分析研究.热能动力工程,2005,20(3):296-299.
    [98]冯小平,张蓓红,龙惟定.影响冷热电联产系统经济性因素的灰关联分析.热能动力工程,2006,21(4):342-344.
    [99]王振明.我国热电联产的现状、前景与建议.中国电力,2003,36(9):43-49.
    [100]孙建国,冯志兵.冷热电联产系统的发展及前景.燃气轮机技术,2006,19(2):11-17.
    [101]王云波,李政,倪维斗.层次分析法在多联产系统综合性能评价中的应用.动力工程,2006,26(4):580-586.
    [102]冯志兵,金红光.冷热电联产系统节能特性分析.工程热物理学报,2006,27(4):541-544.
    [103]卢立宁.固体氧化物燃料电池联合发电系统性能计算与优化研究:[硕士学位论文].大连:大连理工大学,2004.
    [104]段立强,杨勇平,徐二树.固体氧化物燃料电池产功机理研究.工程热物理学报,2009,30(2):181-185.
    [105]Duan Liqiang,He Binbin,Yang Yongping. Study on SOFC-MGT hybrid cycle system with high efficiency. Proceeding of the ASME International Mechanical engineering Congress and Exposition,Boston,USA, 2008:261-270.
    [106]段立强,杨勇平,林汝谋.与SOFC整合的C02准零排放IGCC新系统研究.工程热物理学报,2006,27(5):725-728.
    [107]Duan Liqiang, Lin Rumou, Deng Shimin,et al. A novel IGCC system with steam injected H2/O2 cycle and CO2 recovery. Energy Conversion and Management,2004,45(6):797-809.
    [108]丁国良,黄冬平.二氧化碳制冷技术.北京:化学工业出版社,2007.
    [109]李英杰,赵长遂.碳酸钙循环煅烧-碳酸化吸收C02的热力学分析.热能动力工程,2008,23(6):306-310.
    [110]李振山,房凡,蔡宁生.高浓度C02下CaC03循环煅烧试验与模拟.热能动力工程,2007,22(6):642-646.
    [111]程文龙,赵锐,陈则韶,等.对一种利用液化天然气冷能实现零排放的能量系统的评估.中国电机工程学报,2005,25(16):102-106.
    [112]乔春珍,肖云汉,徐祥,等.两种不同再生方式下含碳能源直接制氢的比较.中国电机工程学报,2006,26(18):95-99.
    [113]刘妮,刘道平,谢应明.水合物法高效储存二氧化碳气体的实验研究.中国电机工程学报,2009,29(14):36-39.
    [114]段立强,徐钢,林汝谋,等.IGCC系统热力与环境性能结合的评价准则.中国电机工程学报,2004,24(12):263-267.
    [115]马倩倩,孙秀雅,孟波,等.二氧化碳减排技术的研究进展.辽宁化工2009,38(3):176-179.
    [116]裴克毅,孙绍增,黄丽坤.全球变暖与二氧化碳减排.节能技术2005,23(3):239-243.
    [117]邝生鲁.构建新型二氧化碳减排技术体系.现代化工,2008,28(2):2-13.
    [118]李小森,鲁涛.二氧化碳分离技术在烟气分离中的发展现状.现代化工2009,29(4):25-30.
    [119]徐凯.回收烟气中二氧化碳技术研究.化工设计,2009,19(2):11-13.
    [120]晏水平,方梦祥,张卫风,等.烟气中CO2化学吸收法脱除技术分析与进展.化工进展,2006,25(9):1018-1024.
    [121]凌爱军,唐敏,周晓艳,等.MDEA配方溶液在珠海LNG项目脱碳中的应用.内蒙古石油化工,2008,(14):48-50.
    [122]曾令可,李萍,程小苏,等.窑炉烟气中二氧化碳的回收工艺探讨.中国陶瓷工业,2009,16(2):1-4.
    [123]Andrea Corti,Lidia Lombardi.Reduction of carbon dioxide emissions from a SCGT/CC by ammonia solution absorption-preliminary results. Int J Thermodynamics,2004,7(4):173-181.
    [124]James T Yeh,Kevin P Resnik,Kathy Rygle, et al. Semi-batch absorption and regeneration studies for CO2 capture by aqueous ammonia. Fuel Processing Technology,2005,86(15):1533-1546.
    [125]茅以惠,余国和.吸收式与蒸汽喷射式制冷机.北京:机械工业出版社1985.
    [126]解国珍,姜守忠,罗勇.制冷技术.北京:机械工业出版社,2008.
    [127]高健,倪维斗,李政.煤基发电系统燃烧前后氨水吸收CO2的对比.热能动力工程,2002,24(1):127-131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700