用户名: 密码: 验证码:
海底隧道风化槽复合注浆堵水关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
厦门翔安海底隧道穿越海底F1、F2、F3、F4四个风化深槽(囊),风化深槽(囊)为全、强风化花岗岩地层,该地层透水性强、出水量大、水压高、海水补给无限,突水、涌泥的风险很大。安全穿越不良地质体及地层结构界面是海底隧道修建的关键问题,对其准确地探测、预报并采取可靠的注浆加固方案及施工方法是海底隧道安全顺利施工的重要保证。海底隧道复杂的地质条件和特殊的水边界,使单一的注浆方式或注浆材料往往不能达到目的,因而就提出了复合注浆。
     本论文在对国内外相关文献资料进行广泛调研的基础上,针对厦门海底隧道风化槽的工程特点,利用颗粒流软件对风化槽突水过程进行仿真模拟,分析风化槽突水机理,提出防止隧道突水的控制措施和注浆加固的必要性,通过风化槽注浆圈的渗流计算和流固耦合模拟分析确定其合理参数。同时,对复合注浆技术进行系统研究,包括全、强风化花岗岩地层复合注浆的工艺研究、设备及效果评价、注浆材料选择的试验研究等。在以上研究成果的基础上,提出复合注浆工法的设计方法、加固模式和突水防治措施,通过工程实例形成海底隧道穿越风花槽复合注浆关键技术体系。主要研究成果如下:
     (1)海底隧道隔水岩层突水通道形成过程的颗粒流数值仿真分析表明,对于不同地质模式,隧道突水的关键位置可能不同,但其形成机制都是在隧道开挖卸载和风化槽水压驱动下,岩层裂纹萌生、扩展、水压跟踪传递,从隔水层变成导水层的复杂演化过程。应用颗粒流仿真手段,可以实现对海底隧道穿越风化槽突水通道的初步预测与定位。注浆圈参数的确定是“堵水限排”设计的关键问题,注浆圈的渗流理论计算和流固耦合模拟分析是确定其合理参数的有效途径。以上研究是海底隧道穿越风化槽注浆堵水设计的前提和基础。
     (2)基于散体介质理论的颗粒流分析方法,运用其内置的Fish语言定义流体域,建立了流动方程和压力方程。同时,针对具有凝聚力的致密土体,引入颗粒接触粘结模型,建立能反映颗粒体与流体域耦合作用的土体注浆颗粒流模型。在此基础上,通过数值仿真试验,对土体压密—劈裂式复合注浆过程进行细观模拟研究,分别对比了不同注浆压力和不同土体性质下浆体压力扩散及劈裂缝的发生、发展规律。
     (3)土体复合注浆影响范围是浆液锋面沿着劈裂缝扩散的最远距离。宾汉体浆液劈裂注浆最大扩散半径由注浆压力差,裂隙宽度,流速和浆液的流变参数等因素共同决定。流体时变性对注浆扩散半径计算值影响很大,注浆理论忽略时变性会给工程设计带来不利影响。全、强风化花岗岩地层注浆加固机理以劈裂、挤压土体为主,对于该地层2.5 m的孔距完全能够满足注浆帷幕要求。
     (4)水泥结石体在海水腐蚀过程中,其内部结构经历了一个先由于腐蚀产物的填充作用而逐渐密实再过渡到由于腐蚀产物继续产生和膨胀,使密实度逐渐降低,最后发展为强度逐渐降低的过程。建议海底隧道风化槽地层,注浆材料以HSC特种注浆材料为首选,其次是普通水泥。马丽散作为一种新型注浆材料,在风化槽富水地层堵水加固效果良好。
     (5)提出复合注浆技术工法设计方法、加固模式和突水防治措施。复合注浆机制就在于它采用多种注浆方式或注浆材料分步骤地改善工程载荷作用的边界条件、应力传递的连续性和完整性。海底隧道复合注浆设计原则主要是材料复合、方式复合、注浆顺序、参数、设备的选择及效果评价等。采用复合注浆方法对F1风化槽进行了堵水和加固,取得了满意的效果,系统介绍了右线隧道F1风化深槽的地质情况、注浆机理、复合注浆方案、参数、施工工艺及注浆效果的检验、评价情况等,形成了海底隧道穿越风化槽复合注浆关键技术体系。
According to the geological exploration data, Xiamen Xiang'an subsea tunnel will pass through the four deep weathered slots of troughs, F1、F2、F3、F4, where the strata are complete or strong weathered weak rocks. These strata have high permeability coefficients, huge water amount, high water pressure, and high risk of water and silt pouring in tunnel with infinite seawater supply. Passing through unfavorable geologic bodies and strata interface is one of the most difficult problems during subsea tunnel construction. So tunnel geological forecast ahead, grouting reinforcement schemes and construction method optimization are important issues to guarantee the safety of subsea tunnel construction. Due to the complicated geological and water conditions, composite grouting technique is introduced, which can take advantage of different grouting technologies and materials.
     In this paper, based on domestic and foreign documents, integrated Xiamen Xiang'an subsea tunnel passing through the weathered slot F1 project, meso-mechanical simulation of groundwater inrush pathway formation between the weathered slot and the tunnel are discussed by using PFC software, appropriate parameters of grouting circle for tunnels with limiting discharge lining is proposed, which can provide reference for the design and construction of composite grouting in weathered slot Fl. Meanwhile, theoretical study and meso-mechanical simulation on composite grouting in the strong-weathered granite stratum are analyzed, grouting materials is introduced by the seawater corrosion test of strength concrete. Combined with above study and engineering case, the key technique of composite grouting for water blockage in weathered slot of subsea tunnel is presented.
     The work in the present paper can be summarized in the following:
     (1) Based on the weathered slot configuration and the spatial relation between the weathered slot and the tunnel, the weathered slot water burst is divided into different geological modes. Combined with above study, numerical tests with PFC under coupling environment are conducted to investigate the initiation of fractures, activation of weathered slot and formation of groundwater inrush pathway during the tunnel passing closely through the weathered slot structures with high water pressure. Keeping the completeness and stability of the rock pillars is of key importance to avoid water burst and to minimize there relevant loss when the tunnel passing closely by the weathered slot structures. To find the appropriate parameters of grouting circle is the key issue to perfectly blocking ground water and limiting discharge. The effects of grouting circle will not share the external water pressure on lining with tunnel lining, but to block ground water and reduce the external water pressure on lining remarkably with low discharge. The study can provide instructional advice for the design and construction of composite grouting in Xiamen Xiang'an subsea tunnel passing through the weathered slot F1 project.
     (2) Based on the theory of particle flow, the domain of flow is defined by using Fish language implemented in PFC and the formulas for flow and pressure are put forward respectively. Furthermore, the Contact-Bond Model is introduced due to the complicated properties of low permeability soil to build PFC model, which can reflect Fluid-solid coupling between particles flow and flow domain. Combined with above study, the process of fracture grouting in soil is simulated from micro-viewpoint under coupling environment. In addition, the emergence and development of crack and grouting pressure in soil is analyzed under different grouting pressure and soil properties.
     (3) It shows that grouting diffusion radius of bingham fluid is related to grouting pressure difference, gap width, flow velocity and time-dependent behavior of rheological parameters. So it is unreasonable to miss the time-dependent behavior of grouts in computing diffusion radius.The interval of 2.5m can form complete curtain grouting in strong-weathered granite and the mechanism of grouting is fracture grouting no more than penetrate grouting.
     (4) Grouting materials test indicates that the use of seawater causes an earlier strength compared to the same with tap water. However, after a long period the use of seawater may results in the formation of deeper corrosion compared to tap water, especially the influence is found to be significant for higher W/C. It is understood that at the early age, the microstructure of concrete improved due to the use of seawater. Then it reduces gradually, because seawater may cause deterioration of concrete strength after a long time. Based on the grouting test, it recommended that High Strength Concrete(HSC) and Portland Cement have an satisfactory effects in the strong-weathered granite stratum. Especially, malisan grouting play a improtant role in water-enriched weathered slot.
     (5) Characteristics and design principles of composite grouting are achieved. Composite grouting is a economic and effective measure to strengthen the weathered slot to the fullest extent, which means grouting in the ground by using different grouting technologies and materials according to a special time and space sequence. In order to assure that the subsea tunnel can pass the weathered slot F1 successfully, the technique of composite grouting is adopted to reinforce the soil to block up the water and a good result is gained. The geological condition, grouting mechanism, scheme and parameters, and the verification and appraisal of the construction technology and grouting effect are introduced in this paper, and therefore composite grouting key technology is formed.
引文
[1]张顶立.海底隧道不良地质体及结构界而的变形控制技术[J].岩石力学与工程学报,2007,26(11):2161~2169.
    [2]吕明,GRV E.挪威海底隧道经验[J].岩石力学与工程学报,2005,24(23):42220~4222.
    [3]工梦恕,皇甫明.海底隧道修建中的关键问题[J].建筑科学与工程学报,2005,22(4):1~4.
    [4]孙钧.海底隧道工程设计施工若干关键技术的商榷[J].岩石力学与工程学报,2006,25(8):1513~1521.
    [5]EISENSTEIN Z D. Large undersea tunnels and the progress of tunneling technology[J]. tunneling and Underground Space Technology,1994,9(3):283-292.
    [6]高延法,施龙清等.底板突水规律与突水优势面[D].徐州:中国矿业大学出版社,1996.
    [7]李治国.隧道岩溶处理技术[J].铁道标准设计,2003,9(S1):36~40.
    [8]涂忠仁,孙钧,蔡晓鸿.海底隧道围岩抗力系数计算方法研究[J].岩土工程学报,2006,28(8):1000~1007.
    [9]傅子仁,查念祖,薛文城.新永春隧道高压涌水段处理过程之探讨[J].岩石力学与工程学报,2004,S2:391~399.
    [10]黄俊,张顶立.水底隧道穿越风化槽技术及施工效应研究[J].公路,2005,6:203~207.
    [11]杨米加.注浆理论的研究现状及发展方向[J].岩石力学与工程学报,2001,20(6):839~842.
    [12]赫哲.岩体渗透注浆的理论研究[J].岩石力学与工程学报,2001,20(4):492~496.
    [13]阮文军.基于浆液粘度时变性的岩体裂隙注浆扩散模型[J].岩石力学与工程学报,2005,24(15):2709~2714.
    [14]Lombardi G.水泥灌浆浆液是稠好还是稀好?[A].现代灌浆技术译文集[C].北京:水利电力出版社,1991:76~81.
    [15]陈愈炯.压密和劈裂灌浆加固地基的原理和方法[J].岩土工程学报,1994,16(2):22~28.
    [16]Raabe. E W. Soil Fracturing Techniques for Terminating Settlements and Restoring Levels of baldings and Structures[J]. Ground Engineering,1990,23(4):33-45.
    [17]Mori A. Tamura M. Hydrofracturing Pressure of Cohesive Soils[J]. Soils and Foundations, 1987,27(1):15-22.
    [18]Scheweiger H F, Kummerer C. Numerical Modeling of Settlement Compensation by Means of Fracture Grouting[J]. Soils and Foundations,2004,44(1):71-86.
    [19]岩土注浆理论与工程实例协作组.岩土注浆理论与工程实例[M].北京:科学出版社,2001:115~118.
    [20]白云,侯学渊.软上地基劈裂灌浆加固的机理和应用[J],岩土工程学报,1991,13(3):89~93.
    [21]陈进杰,王祥琴.劈裂灌浆及其效果分析[J],石家庄铁道学院学报,1995,8(2):124~129.
    [22]邹金锋,李亮,杨小礼.劈裂注浆扩散半径及压力衰减分析[J].水利学报,2006,37(03): 314~319.
    [23]邹金锋等.劈裂注浆能耗分析[J],中国铁道科学,2006,27(02):52~55.
    [24]邹金锋等.土体劈裂灌浆力学机理分析[J],岩土力学,2006,27(04):625~629.
    [25]王哲,龚晓南.劈裂注浆法在运营铁路软土地基处理中的应用[J],岩石力学与工程学报,2005,24(09):1619~1623.
    [26]张忠苗,邹健.桩底劈裂注浆扩散半径和注浆压力研究[J].岩土工程学报,2008,30(2):181-185.
    [27]杨秀竹,王星华,雷金山.宾汉体浆液扩散半径的研究及应用[J].水利学报,2004,35(6):75~79.
    [28]李冠奇.致密土体劈裂注浆的力学机理及试验研究[D].北京:铁道科学研究院.2006.
    [29]李蓉,李治国.海底隧道全、强风化花岗岩地层注浆技术研究[J].现代隧道技术,2008,45(01):21~29.
    [30]顾淦臣,束一鸣,沈长松.土石坝工程经验与创新[M1.北京:中国电力出版社,2004.
    [31]罗长军.土坝坝体劈裂式灌浆施工技术的商榷[J].岩石力学与工程学报,2005,24(09):1606~1611.
    [32]王洪恩,卢超.堤坝劈裂灌浆防渗加固技术[M].北京:中国水利水电出版社,2006.
    [33]武科,马秀媛,赵青.FLAC3D在土坝劈裂灌浆防渗稳定性分析中的应用[J].岩土力学,2005,26(3):484~487.
    [34]尤明庆.水压致裂法测量地应力方法的研究[J].岩土工程学报,2005,27(3):350~353.
    [35]孙锋,卢超,尤春安,李大勇.劈裂灌浆钻孔附近弹塑性应力分析[J].水利与建筑工程学报,2006,4(4):28~30.
    [36]梁正召.三维条件下的岩石破裂过程分析及其数值试验方法研究[D].沈阳:东北大学,2005.
    [37]彭文斌.FLAC 3D实用教程[M].北京:机械工业出版社,2008.
    [38]Belytschko T, Lu Y Y, Gu L. Tabbara M. Element-free Galerkin methods for static and dynamic fracture[J]. International Journal for solids structures,1995a,(32):2547-2570.
    [39]Belytschko T, Tabbara M. Dynamic fracture using element-free Galerkin methods[J]. International Journal for Numerical Methods in Engineering.1996, (39):923-938.
    [40]Belytschko T, Organ D, Gerlch C. Element-free Galerkin methodsfor dynamic fracture in concrete[J]. Comput methods Appl. Mech. Engrg,2000, (187):385-399.
    [41]寇晓东.无单元法追踪结构开裂及拱坝稳定研究[D].北京:清华大学,1998.
    [42]寇晓东,周维恒.应用无单元法近似计算拱坝开裂[J].水利学报,2000,31(10):28~35.
    [43]李卧东等.模拟裂纹传播的新方法-无网格伽辽金法[J].岩土力学,2001,22(4):33~36.
    [44]曹国金.无单元法进展、改进及其应用[D].南京:河海大学,2003.
    [45]Blandford GE, Ingraffea AR, Ligget JA. Two-dimensional stress intensity factor computations using the boundary element method[J]. Int J Num Methods Eng,1981; 17:387-406.
    [46]Portela A. Dual boundary element incremental analysis of crack growth[J]. Ph.D. thesis, Wessex Institute of Technology, Portsmouth University, Southampton, UK,1992.
    [47]Mi Y, Aliabadi MH. Dual boundary element method for three dimensional fracture mechanics analysis[J]. Eng Anal Boundary Elements,1992,10:161-71.
    [48]Yamada Y, Ezawa Y, Nishiguchi I. Reconsiderations on singularity or crack tip elements[J]. Int J Numer Methods Eng,1979,14:1525-44.
    [49]Aliabadi MH, Rooke DP. Numerical fracture mechanics[M]. Southampton:Computational Mechanics Publications. Dordrecht:Kluwer Academic Publishers,1991.
    [50]Bonnet M, Maier G, Polizzotto C. Symmetric Galerkin boundary element methods[J]. Appl Mech,1998,51(11):669-704.
    [51]Brebbia CA, Telles JCF, Wrobel LC. Boundary element techniques:theory&applications in engineering[M]. Berlin:Springer,1984.
    [52]Wang J, Mogilevskaya SG, Crouch SL. A Galerkin boundary integral method for non-homogenous materials with crack[M]. Elsworth, Tunicci, Heasley, editors. Rock mechanics in the national interest. Rotterdam:Balkema,2001:1453-60.
    [53]王泳嘉,邢纪波.离散单元法及其在岩土工程中的应用[M].沈阳:东北工学院出版社,1991.
    [54]石根华(著),裴觉民(译).数值流形元方法与非连续变形分析[M].北京:清华大学出版社,1987.
    [55]杨强,程勇刚,张浩.基于格构模型的岩石类材料开裂数值模拟[J].工程力学,2003,20(1):117~120.
    [56]杨强,张浩,周维垣.基于格构模型的岩石材料破坏过程的数值模拟[J].水利学报,2002,4:46~50.
    [57]D. F. Malan, J. A. L. Napier. Computer modeling of granular material micro fracturing [J]. Tectonophysics,1995,248:21-37.
    [58]Zhong Liu, Larry R. Myer, Neville G.W. Cook. Numerical simulation of the effects of heterogeneity on macro-behavior of granular materials[J]. Computer method and advances in Geomechanics, Siriwardance & Zaman (eds.),1994, Balkema, Rotterdam.
    [59]C. Faihurst. Geomaterials and recent developments in micro-mechanical numerical models[J], News, Journal,1997,4(2):11-14.
    [60]Schlangen E, computational Garboczi EJ. Fracture simulations of concrete using Lattice models:aspects[J], Engineering Fracture Mechanics,1997,57(2):319-332.
    [61]E. Schlangen & J. G. M. Van Mier. Crack propagation in sandstone:A combined experimental and numerical approach[J], Rock Mech. Rock Eng,1995,28(2):93.
    [62]邢纪波(著).梁-颗粒模型导论[M].北京:地震出版社,1999.
    [63]唐春安.岩石破裂过程中的灾变[M].北京:煤炭工业出版社,1993.
    [64]唐春安,王述红,傅宇方.岩石破裂过程数值试验[M].北京:科学出版社,2003a.
    [65]唐春安,朱万成.混凝土损伤与断裂-数值试验M].北京:科学出版社,2003b.
    [66]A. Fakhimia F. Carvalhoc T. Ishidad J.F. Labuze. Simulation of failure around a circular opening in rock [J]. International Journal of Rock Mechanics&Mining Sciences.2002,39(4): 507~515.
    [67]周健,池水,池城蔚.颗粒流方法及PFC2D程序[J].岩土力学,2000,(3):271~274.
    [68]周健,池永,廖雄华.颗粒流理论及其工程应用简介[J].岩土工程师,2001a,13(4):1~4.
    [69]周健,池毓蔚,池永.砂土双轴试验的颗粒流模拟[J].岩上工程学报,2001b,(6):701~704.
    [70]廖雄华,周健,徐建平,林利敏.粘性土室内平面应变试验的颗粒流模拟[J].水利学报,2002,33(12):11~17.
    [71]陶振宇,沈小莹.库区应力场的耦合分析[[J].武汉水利电力学院学报,1988,21(1):8~13.
    [72]件彦卿.岩体水力学基础(四)岩体渗流场与与应力场耦合的等效连续介质模型[[J].水文地质工程地质,1997(3):10~14.
    [73]王媛,徐志英,速宝玉.裂隙岩体渗流与应力耦合分析的四自由度全耦合法[J].水利学报,1998(7):55~59.
    [74]王媛等.复杂裂隙岩体渗流与应力弹塑性全耦合分析[J].岩石力学与工程报,2000,19(2).
    [75]Raven K.G. Gale J.E. Water flowing natural rock fracture as a function of stress and sample size[J]. Int. J. Rock Mech. Sci.&Geomech. Abstr.,1985,4(22):151-161.
    [76]柴军瑞.考虑渗透动水压力时等效连续岩体渗流场与应力场耦合分析的数学模型[J].四川大学学报(工程科学版),2001,33(6):14~17.
    [77]Lemos J V, Lorig L J. Hydromechanical modeling of jointed rock masses using the distinct element method[J]. In:Mechanics of jointed&faulted rock. Rotterdam:Balkema,1990
    [78]王洪涛.裂隙网络渗流与离散元耦合分析充水岩质高边坡的稳定性[J].水文地质工程地质,2002,(2):30~33.
    [79]陶连金,姜德义,孙广义,张东日.节理岩体中地下水流动的离散元模拟[J].煤炭学报,2000,25(1):1~4.
    [80]张有天,王镭,陈平.边界元法及其在工程中的应用[M].北京:水力水电出版社,1989.
    [81]张有天.岩石水力学与工程[M].北京:中国水利水电出版社,2005.
    [82]Potyond D O, Cundall P A. A bonded particle model for rock[J]. Int.J.Rock Mech. Min. Sci. 2004,41(8):1329-1364.
    [83]周健,张刚,孔戈.渗流的颗粒流细观模拟[J].水利学报,2006,37(01):28~32.
    [84]Yang M.J.; Yue Z.Q.; Lee P.K.; Su B.; Tham L.G. Prediction of grout penetration in fractured rocks by numerical simulation[J]. Canadian Geotechnical Journal, Volume 39, Number 6, December 2002,pp.1384-1394 (11).
    [85]O. Chupin Numerical Modeling of Cement Grout injection in Saturated Porous Media[J]. 16th ASCE Engineering Mechanics Conference July 16-18,2003, University of Washington, Seattle.
    [86]Nicolini E. Nova R. Modeling of a tunnel excavation in a non-cohesive soil improved with cement injections[J]. Computers and Geotechnics 2000.27.249-272.
    [87]Nicholson DP.Gammage C.Chapman T. The use of finite element methods to model compensation grouting[J]. Grouting in the Ground.1994.11. The Institution of Civil Engineers. Thomas Telford: London.1994.297-312.
    [88]Helmut F. Schweiger, C.Kummerer. Numerical modeling of settlement compensation by means of fracture grouting[J]. Soils and foundations,2004,44(1):71-86.
    [89]Gollegger.J. Numerical and analytical studies of the effects of compensation grouting[D]. Austria:Graz University of Technology,2001.
    [90]S.K.A.Au, K.Soga, M.D.Bolton. Effect of Mult-iple Injection on Long-tern Compensation Grouting-Laboratory and Numerical Studies[A]. Geotechnical Aspects of Underground Construction in Soft Groud[C]. Toulouse, France:R. Kastner,2002,657-661.
    [91]Buchet G, Van Cotthem A.3D'steady state'numerical modeling of tunneling and compensation grouting. FLAC and Numerical Modeling in Geomechanics, Proceedings of theInternational FLAC Symposium, Minneapolis,1999.11, Balkema:Rotterdam,1999;255-261.
    [92]C.wisser, C.E.Augarde, H.J.Burd. Numerical modeling of compensation grouting above shallow tunnels [J]. international journal for numerical and analytical methods in geomechanics,2005,29,443-471.
    [93]Chambosse.G, Otterbein.R. State of the art of compensation grouting in Germany[A].Proc.15th Int. Conf. on Soil Mechanics and Foundation Engineering [C]. Istanbul.Turkey. Rotterdam: A.A.Balkema,2001:1511-1514.
    [94]李宁,张平.灌浆的数值仿真分析模型探讨[J].岩石力学与工程学报,2002,21(3):326~330.
    [95]李向红.CCG注浆技术的理论研究与应用研究[D].上海:同济大学,2002.
    [96]罗平平.裂隙岩体可灌性及灌浆数值模拟研究[D].南京:河海大学,2006.
    [97]郝哲.岩体注浆行为研究及其计算机模拟[D].沈阳:东北大学,1998.
    [98]杨秀竹.静动力作用下浆液扩散理论与试验研究[D].长沙:中南大学,2005.
    [99]赵林.基于分形理论的裂隙岩体注浆扩散规律研究[D].成都:西南交通大学,2008.
    [100]吴顺川.压力注浆复合锚固桩地基处治理论研究及工程应用[D].北京:北京科技大学,2004.
    [101]王东.武广线韶关段某岩溶隧道涌(突)水量预测及对施工影响评价[D].成都:西南交通大学,2008.
    [102]刘高.深埋长大隧道涌(突)水条件及影响因素分析[J].天津城市建设学院学报,2002,8(3):160~165.
    [103]白明洲.深埋隧道岩溶突水灾害的地质条件研究[J].铁道工程学报,2006(3):21~24.
    [104]李兴高.隧道渗涌水量的随机模型预测[J].中国安全科学学报,2002,12(4):60~64.
    [105]刘招伟.圆梁山隧道岩溶突水机理及防治对策研究[D].北京:中国地质大学,2004.
    [106]蒋建平.隧道工程突水机制及对策[J].中国铁道科学,2006,27(5):76~82.
    [107]沈荣喜,吴秀仪,刘长武,曾德建.海底隧道施工过程中突水风险研究[J].2008,32(3):385~388.
    [108]张明聚,郜新军,郭衍敬.海底隧道突水分析及其在翔安隧道中的应用[J].北京工业大学学报,2007,33(3):273~277.
    [109]WU Q, WANG M, WU X. Investigations of groundwater bursting into coal mine seam floors from fault zones[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(4): 557-571
    [110]谭志祥.断层突水的力学机制[].江苏煤炭,1998,(3):16~18.
    [111]ZHANG J C, SHEN B H. A coal mining under aquifers in China:a case study[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(4):629-639.
    [112]WANG J A, PARK H D. Fluid permeability of sedimentary rocks in a complete stress-strain process[J]. Engineering Geology,2002,63(2):291-300.
    [113]ZHANG J C. Stress-dependent permeability variation and mine subsidence[C]//Pacific Rocks 2000. Rotterdam:A. A. Belkema,2000:811-816.
    [114]CHARLEZ P A. Rock mechanics (Ⅱ:petroleum applications)[M].Paris:Technical Publisher, 1991.
    [115]孙秀堂,常成,王成勇.岩石临界CTOD的确定及失稳断裂过程区的研究[J].岩石力学与工程学报,1995,14(4):312~319.
    [116]朱珍德,胡定.裂隙水压力对岩体强度的影响[J].岩土力学,2000,21(1):64~67.
    [117]NOGHABAI K. Discrete versus smeared versus element-embedded crack models on ring problem[J]. Journal of Engineering Mechanics,1999,125(6):307-314.
    [118]VALKO P, ECONOMIDES M J. Propagation of hydraulically induced fractures-a continuum damage mechanics approach[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1994,31(3):221-229.
    [119]杨延毅,周维垣.裂隙岩体的渗流-损伤耦合分析模型及其工程应用[J].水力学报,1991,(5):19~27.
    [120]朱珍德,孙钧.裂隙岩体非稳态渗流场与损伤场耦合分析模型[J].水文地质工程地质,1999,26(2):35~42.
    [121]郑少河,朱维中.裂隙岩体渗流损伤拙合模型的理论分析[J].岩石力学与工程学报,2001,20(2):156~159.
    [122]LI L, HOLT R M. Simulation of flow in sandstone with fluid coupled particle model[C]// Rock Mechanics in the National Interest. [S.1.]:Swets Zeitinger Lisse,2001:165-172.
    [123]BRUNO M S, DORFMANN A, LAO K. Coupled particle and fluid flow modeling of fracture and slurry injection in weakly consolidated granular media[C]//Rock Mechanics in the National Interest.[S.1.]:Swets Zeitinger Lisse,2001:173-180.
    [124]施龙青,韩进.底板突水机制及预测预报[M].北京:中国矿业大学出版社,2004.
    [125]李连崇,唐春安,梁正召,马天辉,张永彬.含断层煤层底板突水通道形成过程的仿真分析[J].岩石力学与工程学报,2009,28(2):290~297.
    [126]杨天鸿,唐春安,谭志宏等.岩体破坏突水模型研究现状及突水预测预报研究发展趋势[J].岩石力学与工程学报,2007,26(2):268~277.
    [127]杨天鸿,唐春安,刘红元等.承压水底板突水失稳过程的数值模型初探[J].地质力学学报,2003,9(3):281~287.
    [128]吕春峰,王芝银,李云鹏.含裂隙煤层底板突水规律的数值模拟与工程应用[J].岩土力 学,2003,24:112~116.
    [129]刘志军,胡耀青.带压开采底板破坏规律的三维数值模拟研究[J].太原理工大学学报,2004,35(4):400~406.
    [130]R. H. C. Wong, W. L. Leung, S.W.Wang. Shear strength studies on rock-link models containing arrayed open joints[J]. Rock Mechanics in National Interest, Elsworth, Tinucci and Heasley(eds),2001 Swets& Zeittinger Lisse, ISBN 90 2651 8277,843-849.
    [131]李连崇.承压水煤层底板突水的数值试验研究[D].沈阳:东北大学,2003.
    [132]李治国,孙振川,王小军,牟松,徐海廷,陈飞.厦门翔安海底服务隧道F1风化槽注浆堵水技术[J].岩石力学与工程学报,2007,26(S2):3841~3848.
    [133]张斌.海底隧道风化深槽施工效应模拟及应用研究[D].北京工业大学,2007.
    [134]李光耀,夏支埃.厦门东通道海底隧道风化深槽的岩土工程特征研究[J].资源环境与工程,2006,20(1):23~28.
    [135]厉顺荣.厦门翔安海底隧道在施工中应注意的几个方面[J].隧道建设,2006,26(4):43~45.
    [136]郭衍敬,张明聚,张斌.海底隧道穿越风化深槽施工方案[J].北京工业大学学报,2006,32(6):520~525.
    [137]EISENSTEIN Z D. Large undersea tunnels and the progress of tunneling technology[J]. Tunneling and Underground Space Technology,1994,9(3):283-292.
    [138]DAHLO T S, NILSEN B. Stability and rock cover of hard rock subsea tunnels[J]. Tunneling and Underground Space Technology,1994,9(2):151-158.
    [139]TSUJI H, SAWADA T, TAKIZAWA M. Extraordinary inundation accidents in the Seikan undersea tunnel[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1996,33(1):1-14.
    [140]PALMSTROM A, SKOGHEIM A. New milestones in subsea blasting at water depth of 55 m[J]. Tunneling and Underground Space Technology,2000,15(1):65-68.
    [141]华渊,潘建立,周太全.厦门海底隧道右线穿越F1风化槽施工方案探讨[J].岩石力学与工程学报,2007,26(S2):3743~3750.
    [142]徐海廷,王全胜,孙国庆,李治国.厦门翔安海底隧道土石交界软弱地层全断面注浆试验研究[J].铁道工程学报,2009,(1):67~71.
    [143]甘恩来,牟松.海底隧道风化深槽帷幕注浆技术[J].石家庄铁道学院学报,2008,21(2)102~105.
    [144]刘应亮,周意勇.全断面帷幕注浆在厦门海底风化深槽施工中的应用[J].石家庄铁道职业技术学院学报,2008,7(Supp.):77-83.
    [145]张明聚,张斌,黄明琦,郭衍敬.厦门翔安隧道穿越风化深槽施工效应及技术措施[J].北京工业大学学报,34(2):155~158.
    [146]曾凡贤.厦门海底隧道F1风化深槽施工技术实证分析[J].石家庄铁道职业技术学院学报,2008,7(Supp.):32-37.
    [147]惠武平.“马丽散”在厦门海底隧道风化槽帷幕注浆中的应用[J].石家庄铁道职业技术学 院学报,2008,7(Supp.):149~152.
    [148]潘建立.通过F1风化槽采用CRD法对初期支护安全性的计算分析[J].石家庄铁道职业技术学院学报,2008,7(Supp.):4~8.
    [149]韩金田.复合注浆技术在地基加固中的应用研究[D],长沙:中南大学,2007.
    [150]曾远.土体破坏细观机理及颗粒流数值模拟[D].上海:同济大学,2006.
    [151]庄宁.裂隙岩体渗流应力耦合状态下裂纹扩展机制及其模型研究[D].上海:同济大学,2006.
    [152]李付法.锦屏水电站辅助洞突水、突泥机理及预测预报研究[D].成都:西南交通大学,2006.
    [153]关宝树.隧道力学概论[M].成都,西南交大出版社,1993.
    [154]刘高.深埋长大隧道涌(突)水条件及影响因素分析[J].天津城市建设学院学报,2002,8(3):160~165.
    [155]李兵,张顶立,房倩,孙锋,王婷.风险系数法在海底隧道平面线位确定中的应用[J].北京交通大学学报.2009,33(4):13~17.
    [156]李术才,徐帮树,李树忱.海底隧道衬砌结构选型及参数优化研究[J].岩石力学与工程学报,2005,24(21):3894~3902.
    [157]谢兴华,盛金昌,速宝玉等.隧道外水压力确定的渗流分析方法及排水方案比较[J].岩石力学与工程学报,2002,21(增2):2375~2378.
    [158]刘招伟,张顶立,张民庆.圆梁山隧道毛坝向斜高水压富水区注浆施工技术[J].岩石力学与工程学报,2005,24(10):1728~1734.
    [159]王秀英,王梦恕,张弥.计算隧道排水量及衬砌外水压力的一种简化方法[J].北方交通大学学报,2004,28(1):8-10.
    [160]张成平,张顶立,王梦恕,项彦勇.高水压富水区隧道限排衬砌注浆圈合理参数研究[J].岩石力学与工程学报,2007,26(11):2270~2276.
    [161]陈俊儒.基于流固耦合的海底隧道注浆圈合理参数研究[D],长沙:中南大学,2009.
    [162]王秀英,王梦恕,张弥.山岭隧道堵水限排衬砌外水压力研究[J].岩土工程学报,2005,27(1):125~127.
    [163]JIANG M J, SHEN Z J. Microscopic analysis of shear band in structured clay[J]. Chinese Journal of Geotechnical Engineering,1998,20(2):103-108.
    [164]陈铁林,陈生水,周成.黏土结构性参数测定研究[J].岩土工程学报,2008,30(8):1146~1151.
    [165]周成,蔡正银,谢和平.天然裂隙土坡渐进变形解析[J].岩土工程学报,2006,28(2):174~178.
    [166]阮文军.注浆扩散与浆液若干基本性能研究[J].岩土工程学报,2005,27(1):69~73.
    [167]沈崇棠,刘鹤年.非牛顿流体力学及其应用[M].北京:高等教育出版社,1989:75-78.
    [168]陈铁林,滕红军,张顶立.厦门翔安海底隧道富水砂层注浆试验[J].2007,26(S2):3711~3717.
    [169]刘鹏.青岛胶州湾隧道工程注浆技术研究[D].青岛:山东科技大学,2007.
    [170]陈兆林,陈天同,曲明.珊瑚礁混凝土的应用研究[J].海军工程技术,1989,(1):1~10.
    [171]张茂辉,蒋济同,冯正农.青岛海水拌和混凝土力学性能与试验研究[J].青岛海洋大学学报,23(4),1993,10:119~125.
    [172]张莹,张玉敏.海水侵蚀环境下混凝土强度的研究[J].山东建筑工程学院学报,2002,17(2):24~28.
    [173]Huseyin Yigiter, Halit Yazici, Serdar Aydin. Effects of cement type, water/cement ratio and cement content on sea water resistance of concrete[J]. Building and Environment,42 (2007): 1770-1776.
    [174]Sunil Kumar. Influence of water quality on the strength of plain and blended cement concretes in marine environments[J]. Cement and Concrete Research,30 (2000):345-350.
    [175]Tarek Uddin Mohammed, Hidenori Hamada, Toru Yamaji. Performance of seawater-mixed concrete in the tidal environment[J]. Cement and Concrete Research,34 (2004):593-601.
    [176]Hsien-Kuang LiuaO, Nyan-Hwa Taib, Wen-Hung Leea. Effect of seawater on compressive strength of concrete cylinders reinforced by non-adhesive wound hybrid polymer composites [J]. Composites Science and Technology,62 (2002):2131-2141.
    [177]李成学.注浆技术在含水粉细砂地层隧道中的应用研究[D].北京:北京交通大学,2005.
    [178]杨秀竹,王星华,雷金山.宾汉体浆液扩散半径的研究及应用[J].水利学报,2004,35(6):75~79.
    [179]郜新军.海底隧道突涌水分析及应用研究[D].北京:北京工业大学,2007.
    [180]胡文涛.厦门海底隧道风化深槽全断面帷幕注浆方案设计[J].石家庄铁道学院学报,2002,20(2):130~134.
    [181]张民庆,彭峰.地下工程注浆技术[M].北京:地质出版社,2008:64~70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700