用户名: 密码: 验证码:
1.从人胚胎肺发育研究人原发性肺腺癌预后相关基因表达谱 2.深测序和基因芯片技术用于mRNA表达谱检测的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
该博士学位论文由相对独立的两部分工作组成。
     第一部分从人胚胎肺发育研究人原发性肺腺癌预后相关基因表达谱
     发育与肿瘤具有一定程度的相似性。从胚胎发育中探索和挖掘隐藏在肿瘤细胞内的恶性信息,为肿瘤基础及临床研究提供新的线索,正逐步成为一个新的研究方向。本研究从三个方面观察了影响原发性肺癌预后的分子事件在胚胎肺发育过程中的变化规律:1)人胚胎肺发育的mRNA表达特征:2)人胚胎肺发育与原发性肺癌基因表达谱相似性比较;3)人胚胎肺发育相关基因对原发性肺癌预后的影响。研究结果显示,胚胎肺发育在组织学层面的时空变化与分子水平的mRNA表达具有动态联系,在我们所关注的两个基因簇中,其mRNA表达随发育的进程而呈现此消彼长、互呈X状走向的表达模式。高开低走型表达模式的基因簇与细胞增殖相关;而低开高走型基因簇则和细胞与细胞、细胞与间质通讯,胞膜成熟相关。根据基因表达特征,将原发性肺腺癌与肺鳞癌投射到胚胎肺发育的动态模式中,发现肿瘤样本间的异质性明显大于正常组织;与非肿瘤成人肺相比,肺腺癌的基因表达特征与胚胎肺组织相似,肺鳞癌则与更早期肺组织相似。根据基因表达的动态分布特征,以SMC4为代表的、在胚胎肺发育过程中表达丰度呈高开低走型的基因群在肺癌组织中的表达则重新上调。进一步分析发现,SMC4基因群总体表达水平与肺腺癌患者临床预后有关,并且不依赖于患者的临床分期、淋巴结转移情况等;但却未发现它们与肺鳞癌患者临床预后有关。SMC4基因群作为分子表型与肺腺癌患者临床表型的相关性,在多组公共数据库来源的独立样本中均得到了验证。本研究结果提示,人胚胎肺发育组织与原发性肺癌在分子水平存在共性;与肺癌患者预后相关的恶性分子事件可能是胚胎记忆的重新唤起。以胚胎发育作为切入点,系统整合分析胚胎发育与肿瘤的内在联系,不失为一条探索肿瘤发生与发展机理的新途径。
     第二部分深测序和基因芯片技术用于mRNA表达谱检测的比较研究
     基于第二代测序的数字表达谱技术(next-generation sequencing based Digital Gene Expression tag profiling, DGE)已经开始用于基因表达谱研究。为了评价DGE测序平台和基因芯片平台对mRNA表达谱的检测质量,我们分别对这两个平台在基因表达谱检测能力、技术重复性、动态范围和检测结果间的一致程度等主要技术指标进行了测评。检测对象是转染了DENND2D基因和空载体的NCI-H1299细胞系的mRNA表达谱。结果显示,在两种细胞内,基因芯片平台共检测到17,362个基因,DGE测序平台共检测到15,938个,其中13,221个基因为两平台共同检测到的基因。两技术平台内两次技术重复间的相关系数均大于0.99,变异系数小于9%。基因芯片平台的动态范围固定在4个数量级,而DGE平台的动态范围根据其测序深度的不同是可拓展的。两平台检测结果的一致性高,特别是对于那些丰度较高的基因。相比于DGE测序平台,基因芯片平台更难检测出表达丰度低的基因。虽然基因芯片技术或许最终会被深测序(deep sequencing)技术取代,但由于基因芯片的成本优势,以及已经建立的硬件和数据分析基础,短期内该平台还将是基因表达谱研究领域的重要技术手段。
This PhD degree project is composed of two parts of study.
     Part I A Study on Expression Signature Prognostic for Survival of Lung Adenocarcinoma from mRNA Profiling in Human Lung Development
     Purpose:It is demonstrated that embryonic development to some extent resembles tumorigenesis. Thus, it would be helpful to better understand molecular feature of tumors which is characterized by gene expression signatures in embryonic developmental process. In this study, we tried to identify the development signature as being survival related gene expression profile by following observations:1) the mRNA expression profile in human embryonic development; 2) similarity comparison of gene expression signature between human embryonic development and primary non-small cell lung cancer (NSCLC); and 3) the association between embryonic development gene signature and risk stratification of NSCLC. Results:Two sets of genes which exhibited "X" expression pattern were identified. Gene ontology analysis showed that the genes activated in early stage of development associated with cell proliferation, while another set of genes up-regulated in late stage was implicated in cell-cell, cell-matrix communication and cell membrane maturation. By gene expression profiling, we defined a human fetal lung developmental landscape on which the gene expression data from NSCLC were projected. It was found that the gene signatures from adenocarcinoma and squamous cell carcinoma were similar to gene expression profiles in developing lung tissues. The expression of SMC4 represented gene set activated in early stage and gradually abated in mid-late stage of development was up-regulated in NSCLC tissue. Further, independent of TNM staging parameters, the expression of SMC4-gene set correlated with overall survival of lung adenocarcinoma patients, and the phenomenon was subsequently validated by multiple independent sample sets. However, there was no association between developmental signature and the prognosis of patients with lung squamous cell cancer. Conclusion:Part of lung adenocarcinoma transcriptome is composed of developmental gene signatures and survival related malignant features may be reminiscent of embryonic behavior. Comprehensive analysis on development signatures of cancers would be a meaningful approach to uncover critical clues to tumorigenesis.
     Part II Power of Deep Sequencing and Agilent Microarray for Gene Expression Profiling Study
     Next-generation sequencing based Digital Gene Expression tag profiling (DGE) has been used to study changes in gene expression profiling. To compare the quality of the data generated by microarray and DGE, we examined the gene expression profiles of an in vitro cell model with both platforms. In this study,17,362 and 15,938 genes were detected by microarray and DGE, respectively, with 13,221 overlapping genes. The correlation coefficients between the technical replicates were>0.99 and the detection variance was<9% for both platforms. The dynamic range of microarray was fixed with 4 orders of magnitude, while the dynamic range of DGE was extendable. The consistency of the two platforms was high, especially for those abundant genes. It was more difficult for the microarray to distinguish the expression variation of less abundant genes. Although microarrays might be eventually replaced by DGE or transcriptome sequencing (RNA-seq) in the near future, microarrays are still stable, practical and feasible, which renders the same useful for most biological researchers.
引文
[1]Cancer Facts & Figures 2009.2009.
    [2]A. D. Lopez NEC, Piha aT. A descriptive model of the cigarette epidemic in developed countries. Tobacco Control. 1994.3(3):242-47.
    [3]Garcia M JA, Ward EM CMM, Hao Y SRL, Thun MJ. Global Cancer Facts & Figures 2007.2009.
    [4]McGlynn KA, Tsao L, Hsing AW, Devesa SS, Fraumeni JF Jr. International trends and patterns of primary liver cancer. Int J Cancer.2001.94(2):290-6.
    [5]Judith Mackay ME, Omar S. The Tobacco Atlas,2nd Edition.2006.
    [6]Boffetta P, Nyberg F. Contribution of environmental factors to cancer risk. Br Med Bull.2003.68:71-94.
    [7]Leaf C. Why we're losing the war on cancer (and how to win it). Fortune.2004.149(6):76-82,84-6,88 passim.
    [8]Correa P. A human model of gastric carcinogenesis. Cancer Res.1988.48(13):3554-60.
    [9]Hanahan D, Weinberg RA. The hallmarks of cancer. Cell.2000.100(1):57-70.
    [10]Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature.2009.458(7239):719-24.
    [11]Merlo LM, Pepper JW, Reid BJ, Maley CC. Cancer as an evolutionary and ecological process. Nat Rev Cancer. 2006.6(12):924-35.
    [12]Dingli D, Chalub FA, Santos FC, Van Segbroeck S, Pacheco JM. Cancer phenotype as the outcome of an evolutionary game between normal and malignant cells. Br J Cancer.2009.101(7):1130-6.
    [13]Ye CJ, Stevens JB, Liu G, et al. Genome based cell population heterogeneity promotes tumorigenicity:the evolutionary mechanism of cancer. J Cell Physiol.2009.219(2):288-300.
    [14]Bardelli AP, D. W. Silliman NP, J. Szabo SS, et al. Mutational analysis of the tyrosine kinome in colorectal cancers. Science.2003.300(5621):949.
    [15]Wood LDP, D. W. Jones SL, J. Sjoblom TL, et al. The genomic landscapes of human breast and colorectal cancers. Science.2007.318(5853):1108-13.
    [16]Greenman CS, P. Smith RD, G. L. Hunter CB, et al. Patterns of somatic mutation in human cancer genomes. Nature. 2007.446(7132):153-8.
    [17]Stephan C JK, Lein M DEP. PSA and other tissue kallikreins for prostate cancer detection. Eur J Cancer.2007. 43(13):1918-26.
    [18]Thompson IMP, D. K. Goodman PJT, C. M. Lucia MSP, et al. Prevalence of prostate cancer among men with a prostate-specific antigen level    [19]L B. Prostate-specific antigen as a diagnostic tool:how useful and reliable is it. Future Oncol.2007.3(5):501-3.
    [20]Welch HGS, L. M. Woloshin S. Prostate-specific antigen levels in the United States:implications of various definitions for abnormal. J Natl Cancer Inst.2005.97(15):1132-7.
    [21]Graves PRH, T. A. Molecular biologist's guide to proteomics. Microbiol Mol Biol Rev.2002.66(1):39-63; table of contents.
    [22]Anderson L. Candidate-based proteomics in the search for biomarkers of cardiovascular disease. J Physiol.2005. 563(Pt 1):23-60.
    [23]Anderson NL ANG. The human plasma proteome:history, character, and diagnostic prospects. Mol Cell Proteomics. 2002.1(11):845-67.
    [24]FDA Clears Breast Cancer Specific Molecular Prognostic Test. NEW01555.html.
    [25]van'VLJ, Dai H, de Vijver MJ v, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002.415(6871):530-6.
    [26]Skates SJH, N. Yu YX, F. J. Berchuck AH, et al. Preoperative sensitivity and specificity for early-stage ovarian cancer when combining cancer antigen CA-125Ⅱ, CA 15-3, CA 72-4, and macrophage colony-stimulating factor using mixtures of multivariate normal distributions. J Clin Oncol.2004.22(20):4059-66.
    [27]Malu Polanski Anderson NL. A List of Candidate Cancer Biomarkers for Targeted Proteomics. Biomarker Insights. 2006.2:1-48.
    [28]Skates SJH, N. Yu YX, F. J. Berchuck AH, et al. Preoperative sensitivity and specificity for early-stage ovarian cancer when combining cancer antigen CA-125Ⅱ, CA 15-3, CA 72-4, and macrophage colony-stimulating factor using mixtures of multivariate normal distributions. J Clin Oncol.2004.22(20):4059-66.
    [29]Zlobec IM, P. Baumhoer DB, K. Terracciano LJ, J. R. Lugli A. Multimarker phenotype predicts adverse survival in patients with lymph node-negative colorectal cancer. Cancer.2007.112(3):495-502.
    [30]Lindstrom AKS, U. Tot TL, B. M. Hellberg D. Predicting the outcome of squamous cell carcinoma of the uterine cervix using combinations of individual tumor marker expressions. Anticancer Res.2007.27(3B):1609-15.
    [31]Gamboa-Dominguez AS, S. Reyes-Gutierrez EH, C. Quintanilla-Martinez LB, R. Hofler HF, F. Luber B. Prognostic significance of p21WAF1/CIP1, p27Kip1, p53 and E-cadherin expression in gastric cancer. J Clin Pathol.2007. 60(7):756-61.
    [32]Karam JAL, Y. Karakiewicz PIA, R. Sagalowsky AIR, C. G. Shariat SF. Use of combined apoptosis biomarkers for prediction of bladder cancer recurrence and mortality after radical cystectomy. Lancet Oncol.2007.8(2):128-36.
    [33]Stokes A, Joutsa J, Ala-Aho R, et al. Expression Profiles and Clinical Correlations of Degradome Components in the Tumor Microenvironment of Head and Neck Squamous Cell Carcinoma. Clin Cancer Res.2010.
    [34]Debruyne EN, Delanghe JR. Diagnosing and monitoring hepatocellular carcinoma with alpha-fetoprotein:new aspects and applications. Clin Chim Acta.2008.395(1-2):19-26.
    [35]Tomasi TB Jr. Structure and function of alpha-fetoprotein. Annu Rev Med.1977.28:453-65.
    [36]Ransohoff DF. Rules of evidence for cancer molecular-marker discovery and validation. Nat Rev Cancer.2004.4(4): 309-14.
    [37]Bredel M, Scholtens DM, Harsh GR, et al. A network model of a cooperative genetic landscape in brain tumors. JAMA.2009.302(3):261-75.
    [38]Huang YW, Huang TH, Wang LS. Profiling DNA methylomes from microarray to genome-scale sequencing. Technol Cancer Res Treat.2010.9(2):139-47.
    [39]Ramaswamy S, Ross KN, Lander ES, Golub TR. A molecular signature of metastasis in primary solid tumors. Nat Genet.2003.33(1):49-54.
    [40]Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature.2000.403(6769):503-11.
    [41]Sorlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA.2001.98(19):10869-74.
    [42]Garber ME, Troyanskaya OG, Schluens K, et al. Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci USA.2001.98(24):13784-9.
    [43]Hu Z, Chen X, Zhao Y, et al. Serum MicroRNA Signatures Identified in a Genome-Wide Serum MicroRNA Expression Profiling Predict Survival of Non-Small-Cell Lung Cancer. J Clin Oncol.2010.
    [44]Wijnhoven BP, Hussey DJ, Watson DI, Tsykin A, Smith CM, Michael MZ. MicroRNA profiling of Barrett's oesophagus and oesophageal adenocarcinoma. Br J Surg.2010.
    [45]Yang H, Gu J, Wang KK, et al. MicroRNA expression signatures in Barrett's esophagus and esophageal adenocarcinoma. Clin Cancer Res.2009.15(18):5744-52.
    [46]Yanagisawa K, Shyr Y, Xu BJ, et al. Proteomic patterns of tumour subsets in non-small-cell lung cancer. Lancet. 2003.362(9382):433-9.
    [47]Chen G, Gharib TG, Wang H, et al. Protein profiles associated with survival in lung adenocarcinoma. Proc Natl Acad Sci USA.2003.100(23):13537-42.
    [48]Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs:insights into functions. Nat Rev Genet.2009.10(3): 155-9.
    [49]Budhu A, Forgues M, Ye QH, et al. Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell.2006.10(2): 99-111.
    [50]Bianchi F, Nicassio F, Di FPP. Unbiased vs. biased approaches to the identification of cancer signatures:the case of lung cancer. Cell Cycle.2008.7(6):729-34.
    [51]Fan C, Oh DS, Wessels L, et al. Concordance among gene-expression-based predictors for breast cancer. N Engl J Med.2006.355(6):560-9.
    [52]Ein-Dor L, Zuk O, Domany E. Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proc Natl Acad Sci USA.2006.103(15):5923-8.
    [53]Nicassio F, Bianchi F, Capra M, et al. A cancer-specific transcriptional signature in human neoplasia. J Clin Invest. 2005.115(11):3015-25.
    [54]Sweet-Cordero AM, S. Subramanian AY, H. Roix JJL, C. Mesirov JG, T. R. Jacks T. An oncogenic KRAS2 expression signature identified by cross-species gene-expression analysis. Nat Genet.2005.37(1):48-55.
    [55]van't VLJ, Bernards R. Enabling personalized cancer medicine through analysis of gene-expression patterns. Nature. 2008.452(7187):564-70.
    [56]Mischel PS, Cloughesy TF, Nelson SF. DNA-microarray analysis of brain cancer:molecular classification for therapy. Nat Rev Neurosci.2004.5(10):782-92.
    [57]Chang HY, Sneddon JB, Alizadeh AA, et al. Gene expression signature of fibroblast serum response predicts human cancer progression:similarities between tumors and wounds. PLoS Biol.2004.2(2):E7.
    [58]Glinsky GV, Berezovska O, Glinskii AB. Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest.2005.115(6):1503-21.
    [59]Murray MJ, Lessey BA. Embryo implantation and tumor metastasis:common pathways of invasion and angiogenesis. Semin Reprod Endocrinol.1999.17(3):275-90.
    [60]Ferretti C, Bruni L, Dangles-Marie V, Pecking AP, Bellet D. Molecular circuits shared by placental and cancer cells, and their implications in the proliferative, invasive and migratory capacities of trophoblasts. Hum Reprod Update. 2007.13(2):121-41.
    [61]Soundararajan R, Rao AJ. Trophoblast'pseudo-tumorigenesis':significance and contributory factors. Reprod Biol Endocrinol.2004.2:15.
    [62]第三次全国死因调查主要情况.中国肿瘤.2008.(05):344-345.
    [63]Potti A, Mukherjee S, Petersen R, et al. A genomic strategy to refine prognosis in early-stage non-small-cell lung cancer. N Engl J Med.2006.355(6):570-80.
    [64]Moriya Y, Iyoda A, Kasai Y, et al. Prediction of lymph node metastasis by gene expression profiling in patients with primary resected lung cancer. Lung Cancer.2009.64(1):86-91.
    [65]Shedden K, Taylor JM, Enkemann SA, et al. Gene expression-based survival prediction in lung adenocarcinoma:a multi-site, blinded validation study. Nat Med.2008.14(8):822-7.
    [66]Wang Y, Klijn JG, Zhang Y, et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet.2005.365(9460):671-9.
    [67]Chuang HY, Lee E, Liu YT, Lee D, Ideker T. Network-based classification of breast cancer metastasis. Mol Syst Biol.2007.3:140.
    [68]Naxerova K, Bult CJ, Peaston A, et al. Analysis of gene expression in a developmental context emphasizes distinct biological leitmotifs in human cancers. Genome Biol.2008.9(7):R108.
    [69]Hartwell KA, Muir B, Reinhardt F, Carpenter AE, Sgroi DC, Weinberg RA. The Spemann organizer gene, Goosecoid, promotes tumor metastasis. Proc Natl Acad Sci USA.2006.103(50):18969-74.
    [70]Liu S, Dontu G, Mantle ID, et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res.2006.66(12):6063-71.
    [71]Ben-Porath I, Thomson MW, Carey VJ, et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet.2008.40(5):499-507.
    [72]Lu YJ, Guo SP, Tong T, et al. Establishment and characterization of a SV40T-transformed human bronchial epithelial cell line. Lung Cancer.1998.19(1):15-24.
    [73]Lechner JF, Tokiwa T, LaVeck M, et al. Asbestos-associated chromosomal changes in human mesothelial cells. Proc Natl Acad Sci USA.1985.82(11):3884-8.
    [74]Roepman P, Wessels LF, Kettelarij N, et al. An expression profile for diagnosis of lymph node metastases from primary head and neck squamous cell carcinomas. Nat Genet.2005.37(2):182-6.
    [75]Lee ES, Son DS, Kim SH, et al. Prediction of recurrence-free survival in postoperative non-small cell lung cancer patients by using an integrated model of clinical information and gene expression. Clin Cancer Res.2008.14(22): 7397-404.
    [76]Tomida S, Takeuchi T, Shimada Y, et al. Relapse-related molecular signature in lung adenocarcinomas identifies patients with dismal prognosis. J Clin Oncol.2009.27(17):2793-9.
    [77]Bhattacharjee A, Richards WG, Staunton J, et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci USA.2001.98(24):13790-5.
    [78]Raponi M, Zhang Y, Yu J, et al. Gene expression signatures for predicting prognosis of squamous cell and adenocarcinomas of the lung. Cancer Res.2006.66(15):7466-72.
    [79]Bild AH, Yao G, Chang JT, et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature.2006.439(7074):353-7.
    [80]Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis:a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA.2005.102(43):15545-50.
    [81]Mootha VK, Lindgren CM, Eriksson KF, et al. PGC-lalpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet.2003.34(3):267-73.
    [82]Gleason DF, Mellinger GT. Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J Urol.1974.111(1):58-64.
    [83]Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature.2000.406(6797):747-52.
    [84]Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature.2000.403(6769):503-11.
    [85]Freije WA, Castro-Vargas FE, Fang Z, et al. Gene expression profiling of gliomas strongly predicts survival. Cancer Res.2004.64(18):6503-10.
    [86]Borczuk AC, Gorenstein L, Walter KL, Assaad AA, Wang L, Powell CA. Non-small-cell lung cancer molecular signatures recapitulate lung developmental pathways. Am J Pathol.2003.163(5):1949-60.
    [87]Liu HK, A. T. Kohane ISS, Y. Predicting survival within the lung cancer histopathological hierarchy using a multi-scale genomic model of development. PLoS Med.2006.3(7):e232.
    [88]Gibbs RA, Rogers J, Katze MG, et al. Evolutionary and biomedical insights from the rhesus macaque genome. Science.2007.316(5822):222-34.
    [89]Hassan KA, Chen G, Kalemkerian GP, Wicha MS, Beer DG. An embryonic stem cell-like signature identifies poorly differentiated lung adenocarcinoma but not squamous cell carcinoma. Clin Cancer Res.2009.15(20):6386-90.
    [90]Making the most of microarrays. Nat Biotechnol.2006.24(9):1039.
    [91]Kuo WP, Liu F, Trimarchi J, et al. A sequence-oriented comparison of gene expression measurements across different hybridization-based technologies. Nat Biotechnol.2006.24(7):832-40.
    [92]FDA Clears Test that Helps Identify Type of Cancer in Tumor Sample.
    [93]Irizarry RA, Warren D, Spencer F, et al. Multiple-laboratory comparison of microarray platforms. Nat Methods. 2005.2(5):345-50.
    [94]Shendure J. The beginning of the end for microarrays. Nat Methods.2008.5(7):585-7.
    [95]Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. RNA-seq:an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res.2008.18(9):1509-17.
    [96]Velculescu VEZ, L. Vogelstein BK, K. W. Serial analysis of gene expression. Science.1995.270(5235):484-7.
    [97]Kahvejian A, Quackenbush J, Thompson JF. What would you do if you could sequence everything. Nat Biotechnol. 2008.26(10):1125-33.
    [98]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods.2001.25(4):402-8.
    [99]Wilhelm BT, Marguerat S, Watt S, et al. Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature.2008.453(7199):1239-43.
    [100]'t HP A, Ariyurek Y, Thygesen HH, et al. Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. Nucleic Acids Res.2008.36(21): e141.
    [101]Thellin O, Zorzi W, Lakaye B, et al. Housekeeping genes as internal standards:use and limits. J Biotechnol.1999. 75(2-3):291-5.
    [102]Chen H, Sharp BM. Oliz, a suite of Perl scripts that assist in the design of microarrays using 50mer oligonucleotides from the 3'untranslated region. BMC Bioinformatics.2002.3:27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700