用户名: 密码: 验证码:
外源性糖皮质激素诱导的大鼠垂体前叶细胞凋亡和中药干预作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、背景和目的
     糖皮质激素(Glucocorticoid, GC)是肾上腺皮质激素的一种,由束状带合成和分泌,具有重要的生理学意义。目前,GC已经成为临床各科室广泛应用的药物,具有抗炎、抗过敏、抗休克、免疫抑制等药理作用。但长期大量系统应用GC会产生严重的不良反应,诸如感染(病毒、细菌、真菌等)、消化道溃疡或穿孔、皮质功能亢进或减退、电解质紊乱、骨质疏松或缺血性骨坏死、以及对神经精神的影响等,还可加重原有的糖尿病、高血压等,不适当的停药或减量还可引起病情反跳。近年来,在深入研究GC作用机理的同时对减轻其副作用的措施也进行了一系列卓有成效的研究。目前的共识:GC的释放受到下丘脑-垂体-肾上腺轴(Hypothalamic-Pituitary-Adrenal axis, HPAA)的调控,它又对此神经内分泌环施行强烈的负反馈作用。GC负反馈作用基本位点除了下丘脑和海马结构外,主要就是垂体前叶的促肾上腺皮质激素(Adrenocorticotrophic Hormone, ACTH)细胞。用下丘脑室旁核分泌的促肾上腺皮质激素释放激素(Corticotropin Release Hormone,CRH)刺激这些细胞导致ACTH的释放,ACTH是肾上腺皮质合成和释放GC的主要刺激物。GC对于ACTH细胞功能的负反馈作用发生在几个水平上,最具特征性的是对ACTH的合成和释放以及CRH受体的表达。任何剂量的GC如果抑制了CRH和ACTH的分泌,且在用药期内这种抑制没有被恢复,均会产生中心性肾上腺分泌不足,久而久之会引起外周肾上腺的萎缩。GC长期治疗后的停药,无论在人还是鼠上均出现了HPAA对内源性或者外源性刺激的反应功能降低,这种功能变化反映在HPAA的各层次器官上。有人将鼠肾上腺切除后2周,给予持续的地塞米松导致了鼠垂体前叶细胞非常显著的凋亡活动,同时有丝分裂活动被抑制。尽管不可能知道是垂体的哪一类细胞减少,但已经提示总的垂体细胞减少到2周前基础水平以下。LA Nolan等人认为,GC停药伴随着短时或长时的HPAA的分泌能力的损伤。这种垂体前叶对GC的反应在鼠上包括了凋亡介导的细胞数量减少、被损伤细胞的恢复、未定型的前体细胞分化及其他类型分泌细胞的转化。这预示着,如果有足够的时间垂体前叶细胞完全恢复是可能的。
     中医认为,“肾”的功能涉及到垂体-肾上腺皮质系统,HPAA是中西医结合肾本质研究的一个焦点。近年来国内外对肾虚本质和补肾药作用机理的探讨取得了多方面的进展。广泛涉及内分泌系统、免疫系统和基础代谢等方面。临床上用补肾方药治疗肾虚病人长能调节阴阳、改善症状恢复健康。补肾中药与GC合用,可减轻或消除长期应用GC所致的脑垂体前叶细胞的形态改变。中医辨证论治的目的在于肾阴阳平衡上着手调整,使HPAA功能得以恢复。张景岳创制的右归丸常被作为“阴中求阳”的代表方,它选用大量补阴药填补命门真阴,以治命门火衰,用少量补阳药温阳化气、直接温补肾阳。罗汉文等报道,右归丸可以提高血中可的松浓度,使垂体ACTH细胞数高于对照组。
     基于上述的理论依据,本实验选用右归丸作为GC导致HPAA功能抑制的保护性药物,探讨其作用机理可能与减轻GC诱导的垂体前叶细胞凋亡有关。
     二、方法
     通过外源性给予糖皮质激素建立大鼠肾阳虚模型,即糖皮质激素副作用动物模型,进行体内实验;利用原代培养的垂体前叶细胞进行体外实验;按照随机对照的原则分组;应用免疫组织化学染色、TUNEL染色、Real-Time qPCR及流式细胞技术检测各组垂体前叶细胞的凋亡量、凋亡相关蛋白的表达以及线粒体膜电位的变化;方差分析比较各组的差异,得出结论。
     三、结果
     体内实验和体外实验均得出地塞米松加右归丸组的凋亡细胞数明显少于地塞米松组(P<0.05);凋亡促进蛋白及其mRNA的表达在地塞米松加右归丸组明显少于地塞米松组(P<0.05),而抗凋亡蛋白及其mRNA在地塞米松组的表达高于地塞米松组(P<0.05);线粒体膜电位下降的细胞数在地塞米松加右归丸组明显少于地塞米松组(P<0.05)。
     四、结论
     本实验通过大鼠体内和体外两方面的研究,结合当前的理论基础我们可以得出结论:中药右归丸可以减轻糖皮质激素诱导的大鼠垂体前叶细胞的凋亡;其机制可能是参与了凋亡的线粒体途径,正向调节凋亡抑制蛋白而反向作用于促凋亡蛋白。本研究为中药右归丸治疗糖皮质激素所导致的HPAA抑制提供了理论基础。
Background and Object
     Glucocorticoids (GC) is a kind of adrenal cortex hormones synthesized and secreted by fascicular zone, and it has physiological significance. At present, GC has been widely used clinically, and has anti-inflammatory, anti-allergic, anti-shock, immune suppression and other pharmacological effects. But long-term GC systemic application will cause a large number of serious adverse reactions, such as infection (viruses, bacteria, fungi, etc.), gastrointestinal ulceration or perforation, adrenocortical hyperfunction or insufficiency, electrolyte disturbance, osteoporosis or ischemic bone necrosis, as well as neuropsychiatric impact, but also aggravate the existing diabetes, high blood pressure. Inappropriate withdrawal or reduction of GC can also cause disease to rebound. The current consensus:release of GC regulated by the hypothalamus-pituitary-adrenal axis (HPAA), it has a strong negative feedback action on the neuroendocrine loop, mainly on anterior pituitary adrenocorticotropic hormone (ACTH) cell except for the hypothalamus and hippocampus structures. The corticotrophin releasing hormone (CRH) secreted by hypothalamic paraventricular nucleus can stimulate this cells to release ACTH, which is the main stimulus for GC. If any dose of GC inhibited the secretion of CRH and ACTH, and such a suppression has not been restored in the period of treatment, it will cause lack of central adrenal gland hormone and shrinkage of the peripheral adrenal. GC withdrawal after long-term treatment can reduce the HPAA reaction to endogenous or exogenous stimuli both in people and mice. This functional change reflects in the various levels of organs on the HPAA. Some people given rats dexamethasone sustainedly on 2 weeks after adrenalectomy, which resulted in very significant apoptotic activity in anterior pituitary cells, meanwhile mitotic activity was inhibited. While it is impossible to know what kind of pituitary cells decreased. but the total pituitary cells has been suggested that reduced to a level below the base at two weeks ago. LA Nolan believed GC withdrawal is accompanied by short-or long-term secretion damage of HPAA capacity. This anterior pituitary reaction maybe caused by cell-mediated apoptosis, damaged cells restoration, undifferentiated precursor cell differentiation and transformation of other types of secretory cells. This indicated that if there is sufficient time, full restoration of anterior pituitary cells is possible.
     Traditional Chinese medicine (TCM) believes that "kidney" function related to the pituitary-adrenal cortex system. HPAA is a research focus on the nature of kidney of combination of Chinese and Western medicine. Clinical use of TCM of tonifying kidney to treat kidney deficiency can regulate yin and yang, improve the symptoms and return to be healthy. TCM of tonifying kidney combined with the GC can reduce or eliminate the morphological changes of the brain anterior pituitary cells induced by long-term application of GC. At home and abroad, the nature of kidney deficiency and mechanism of TCM of tonifying have been made progress in many aspects in recent years, which concerned extensively the endocrine system, immune system, basic metabolism and so on. The purpose of TCM treatment based on syndrome differentiation is to begin to adjust the balance of kidney yin and yang, so that the HPAA function can be resumed. The Yougui Pill created by Zhang Jingyue is a typical "nourishing yin and tonifying yang" representative, which use a large number of tonifying yang tonic drugs to cure decline of vital gate fire, and use a small amount of warm yang and promote qi transformation drugs directly to warm and supplement kidney yang. Luo Hanwen et al. reported, Yougui Pill can increase the blood concentrations of cortisone, and the number of pituitary ACTH cells were more than control group.
     Therefore, based on the above theories, we choice Yougui Pill as protective drugs to cure HPAA disfunction experiment induced by GC, and explore its mechanism that may be related to reducing apoptosis of anterior pituitary cells.
     Methods
     Given rat exogenous glucocorticoid to build deficiency of kidney yang model, that is, animal model of glucocorticoid side effects, used as experiments in vivo, and primary cultured anterior pituitary cells used as experiments in vitro; in accordance with the principles of randomized controlled to group; application of Immunohistochemistry staining, TUNEL staining, Real-Time qPCR and flow cytometry to detect apoptosis in anterior pituitary cells in each group and the expression of apoptosis-related proteins, as well as changes in mitochondrial membrane potential; variance analysis to compare the differences in each group and draw the conclusion.
     Results
     In vivo and in vitro experiments, the number of apoptotic cells in dexamethasone plus Yougui pill group was less than that in dexamethasone group (P<0.05); apoptosis promoting protein and its mRNA expressions in dexamethasone plus Yougui pill group were significantly less than dexamethasone group (P<0.05), while the anti-apoptotic protein and its mRNA expressions in dexamethasone plus Yougui pill group were significantly hihger than dexamethasone group(P<0.05); the number of mitochondrial membrane potential decline cells in dexamethasone plus Yougui pill group was significantly less than dexamethasone group (P<0.05).
     Conclusion
     Through the results of this study combined with the current theoretical basis, we can conclude:Traditional Chinese medicine Yougui pill can reduce the glucocorticoid-induced apoptosis in rat anterior pituitary cells. Its mechanism may be involved in the mitochondrial pathway of apoptosis, positive regulation of apoptosis inhibitory protein and reverse effect on pro-apoptotic protein. This study provides a theoretical basis for using Yougui pill to treat the suppression of HPAA caused by exogenous glucocorticoid.
引文
1邝安堃,吴裕,丁霆,等.某些助阳药对于大剂量皮质素所致耗现象的影响.中华内科杂志,1963,2:113
    2连香,李宏广,魏袁林,等.养血补肾片对阳虚证动物模型卵巢功能的影响.中国中西医结合杂志,1998,18:620-622
    3郑东平,朱燕俐,丁名城,等.腺嘌呤诱发肾阳虚动物模型的研制.中国医药学报,1990,5:68-73
    4王彩霞.论中医模型研究的思路.中国医药学报,1997,12:173-174
    5 Richter B, Neises G, Clar C. Glucocorticoid withdrawal schemes in chronic medical disorders. Endocrinology and Metabolism Clinics of North America,2002,31:751-778
    6 Huang TS. Corticotropin secretagogues facilitate recovery of the hypothalamus-pituitary-adrenal axis suppressed by prolonged treatment with dexamethasone. Metabolism,1994,43:544-548
    7 Nolan LA, Levy A. Anterior pituitary trophic responses to dexamethasone withdrawal and repeated dexamethasone exposures. Journal of Endocrinology,2001,169:263-270
    8 Carnahan MC, Goldstein DA. Ocular complications of topical, peri-ocular, and systemic corticosteroids, Curr. Ophthalmol,2000,11:478-483
    9 Cooper MS. Sensitivity of bone to glucocorticoids. Clin,2004,107:111-123
    10 De Mello WC. Heart failure:howimportant is cellular sequestration? The role of the rennin-angiotensin-aldosterone system. J. Mol. Cell,2004,37:431-438
    11 Freel EM, Connell JM. Mechanisms of hypertension:the expanding role of aldosterone. J. Am. Soc. Nephrol,2004,15:1993-2001
    12 Rosmond R. Role of stress in the pathogenesis of the metabolic syndrome. Psychoneuroendocrinology,2005,30:1-10
    13 Cope CL, Black E. The production rate of cortisol in man. Br. Med. J.1958,14:1020-1024
    14 Peterson RE, Pierce CE. The metabolism of corticosterone in man. J. Clin. Invest,1960,39: 741-757
    15 Esteban NV, Loughlin T, Yergey AL et al. Daily cortisol production rate in man determined by stable isotope dilution/mass spectrometry. J. Clin. Endocrinol. Metab,1991,72:39-45
    16 Malkoski SP, Dorin RI. Composite glucocorticoid regulation at a functionally defined negative glucocorticoid response element of the human corticotropin-releasing hormone gene. Mol. Endocrinol,1999,13:1629-1644
    17 Raber J. Detrimental effects of chronic hypothalamic-pituitary-adrenal axis activation. From obesity to memory deficits. Mol. Neurobiol,1998,18:1-22
    18 Nolan LA, Kavanagh E,Stafford L. Anterior pituitary cell population control:Basal cell Turnover and the effects of Adrenalectomy and Dexamethasone Treatment. Journal of Neuroendocrinology,1998,10:207-215
    19 Ford LR, Willi SM, Hollis BW. Suppression and recovery of the neonatal hypothalamic-pituitary-adrenal axis after prolonged dexamethasone therapy. Journal of Pediatrics,1997,131:722-726
    20 Huang TS. Corticotropin secretagogues facilitate recovery of the hypothalamus-piuitary-adrenal axis suppressed by prolonged treatment with dexamethasone. Metabolism,1994,43:544-548
    21 Carella MJ, Srivastava LS, Gossain VV et al. hypothalamic-pituitary-adrenal function one week after a short burst of steroid therapy. Journal of Clinical Endocrinology and Metabolism,1993, 76:1188-1191
    22 Nolan LA, Kavanagh E, Lightman SL et al. Anterior pituitary cell population control:basal cell turnover and the effects of adrenalectomy and dexamethasone treatment. Journal of Neuroendocrinology,1998,10:207-215
    23 Nolan LA, Thomas CK, Levy. Enhanced anterior pituitary mitotic response to adrenalectomy after multiple glucocorticoid exposures. European Journal of Endocrinology,2003,149:153-160
    24沈自尹.肾阳虚证的定位研究.中国中西医结合杂志,1997,17(1):50-52
    25沈时谋.中医药减轻糖皮质激素副作用的研究进展.上海中医药杂志,1995,(12):38-40
    26 Hench PS. The effects of the adrenal cortical hormone 17-hydroxy-11-dehydrocorticosterone on the acute phase of rheumatic fever. Mayo Clin Proc,1949,24:277-297
    27 Schacke H, Docke WD, Asadullah K. Mechanisms involved in the side effects of glucocorticoids. Pharmacol. Ther,2002,96:23-43
    28 Schacke H, Schottelius A, Docke WD et al. Dissociation of transactivation from transrepression by a selective glucocorticoid receptor agonist leads to separation of therapeutic effects from side effects. Proc. Natl. Acad,2004,101:227-232
    29 Susin SA, Lorenzo HK, Zamzami N et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature,1999,397:441-446
    30 Kroemer G, Reed JC. Mitochondrial control of cell death. Nat. Med,2000,6:513-519
    31 Ferri KF, Jacotot E, Blanco J. Mitochondrial control of cell death induced by HIV-1-encoded proteins. Ann. N.Y. Acad,2000,926:149-64
    32 Thornberry NA, Lazebnik Y. Caspases:enemies within. Science,1998,281:1312-6
    33 Susin SA, Zamzami N, Kroemer G. Mitochondria as regulators of apoptosis:doubt no more. Biochemica et Biophysica ACTA,1998,1366:151-65
    34 Chao DT, Korsmeyer SJ. Bcl-2 family:regulators of cell death. Annual Review of Immunology, 1998,16:395-419
    35 Hiroko I, Sakae, Yukio O. Effect of sho-saikoto, a Japanese and Chinese herbal medicinal mixture, on the mitogentic activity of Lipopolysaccharide. A new pharmacological testing method. J Ethnopharmacol.1987.21:45
    36崔晓兰,贺玉琢,高英杰.中药药理研究的新思路-中药血清药理学.中国中医药科技,1997,4:239-250
    37蒙一纯,丁霞,贲长恩,等.中药血清药理学应用展望.北京中医药大学学报,1999,22:42-44
    38 Kerr JFR, Wyllie AH, Currie AR. Apoptosis:a basic biological phenomenon with wide ranging implications in tissue kinetics. Br. J. Cancer,1972,26:239-257
    39 Vaux DL, Haecker G, Sttasser A. An evolutionary perspective on apoptosis. Cell,1994,76: 777-779
    40 Huppertz B, Frank HG, Kaufmann P. The apoptosis cascade-morphological and immunohistochemical methods for its visualization. Anatomy and Embryology,1999,200:1-18
    41 Bamberger CM, Schultze HM, Chrousos GP. Molecular determinants of glucocorticoid receptor function and tissue sensitivity to glucocorticoids. Endocr. Rev,1996,17:245-261
    42 Richter B, Neises G, Clar C. Glucocorticoid withdrawal schemes in chronic medical disorders. Endocrinology and Metabolism Clinics of North America 2002,31:751-778
    43 Huang TS. Corticotropin secretagogues facilitate recovery of the hypothalamus-pituitary-adrenal axis suppressed by prolonged treatment with dexamethasone. Metabolism,1994,43:544-548
    44 Nolan LA, Levy A. Anterior pituitary trophic responses to dexamethasone withdrawal and repeated dexamethasone exposures. Journal of Endocrinology 2001,169:263-270
    45 Eisenberg DM, Davis RB, Ettner SL, et al. Trends in alternative medicine use in the United States,1990-1997:Results of a follow-up national survey. JAMA 1998; 280:1569
    46 Ikegami F, Sumino M, Fujii Y et al. Pharmacology and toxicology of Bupleurum root-containing Kampo medicines in clinical use. Hum Exp Toxicol,2006,25:481
    47 Galluzzi L, Maiuri MC, Vitale I, Zischka H et al. Cell death modalities:classification and pathophysiological implications. Cell Death Differ,2007,14:1237-1243
    48 Wajant H. The Fas signaling pathway:more than a paradigm. Science,2002,296:1635-1636
    49 Peter ME, Krammer PH, The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ,2003,10: 26-35
    50 Bredesen DE, Mehlen P, Rabizadeh S. Receptors that mediate cellular dependence. Cell Death Differ,2005,12:1031-1043
    51 Green D, Kroemer G. The central executioners of apoptosis:caspases or mitochondria? Trends Cell Biol,1998,8:267-271
    52 Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science,2004,305: 626-629
    53 Ghosh AK, Majumder M, Steeleey R et al. MBP-1 mediated apoptosis involves cytochrome c release from mitochondria. Oncogene,2002,21:2775-2784
    54 Dussmann H, Kogel D, Rehm M et al. Mitochondrial membrane permeabilization and superoxide production during apoptosis:a single-cell analysis. J. Biol. Chem,2003,278: 12645-12649
    55 Delivani P, Martin SJ. Mitochondrial membrane remodeling in apoptosis:an inside story. Cell Death Differ,2006,13:2007-2010
    56 Wolter KG, Hsu YT, Smith CL et al. Movement of Bax from the cytosol to mitochondria during apoptosis. J. Cell. Biol,1997,139:1281-1292
    57 Arden N, Betenbaugh MJ. Life and death in mammalian cell culture:strategies for apoptosis inhibition. Trends Biotechnol,2004,22:174-180
    58 Harris MH, Thompson CB. The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability. Cell Death Differ,2000,7:1182-1191
    59 Kluck RM, Bossy E, Green DR et al. The release of cytochrome c from mitochondria:a primary site for Bcl-2 regulation of apoptosis. Science,1997,275:1132-1136
    60 Vander Heiden MG, Chandel NS, Williamson EK et al. Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell,1997,91:627-637
    61 Yang J, Liu X, Bhalla K et al. Prevention of apoptosis by Bcl-2:release of cytochrome c from mitochondria blocked. Science,1997,275:1129-1132
    62 Lee MC, Wee GR, Kim JH. Apoptosis of skeletal muscle on steroid-induced myopathy in rats. J Nutr,2005,135:1806-1808
    63 Lepine S, Lakatos B, Courageot MP et al. Sphingosine contributes to glucocorticoid-induced apoptosis of thymocytes independently of the mitochondrial pathway. J Immunol,2004,173: 3783-3790
    64 Marchetti MC, DiMarco B, Cifone G et al. Dexamethasoneinduced apoptosis of thymocytes: role of glucocorticoid receptor-associated Src kinase and caspase-8 activation. Blood,2003,101: 585-593
    65 Tonomura N, Laughlin KM, Grimm L et al. Glucocorticoid-induced apoptosis of thymocytes: requirement of proteasomedependent mitochondrial activity. J Immunol,2003,170:2469-2478
    66 Laane E, Panaretakis T, Pokrovskaja K et al. Dexamethasoneinduced apoptosis in acute lymphoblastic leukemia involves differential regulation of Bcl-2 family members. Haematologica,2007,92:1460-1469
    67 Conradie MM, Wet H, Kotze DD et al. Vanadate prevents glucocorticoid-induced apoptosis of osteoblasts in vitro and osteocytes in vivo. J Endocrinol,2007,195:229-240
    68 Davis MC, McColl KS, Zhong F et al. Dexamethasone-induced inositol 1,4,5-trisphosphate receptor elevation in murine lymphoma cells is not required for dexamethasone-mediated calcium elevation and apoptosis. J Biol Chem,2008,176:253-269
    69 Tonomura N, McLaughlin K, Grimm L et al. Glucocorticoid-induced apoptosis of thymocytes: requirement of proteasome-dependent mitochondrial activity. J Immunol,2003,170:2469-2478
    70 Miyashita T, Nagao K, Krajewski S et al. Investigation of glucocorticoidinduced apoptotic pathway:processing of caspase-6 but not caspase-3. Cell Death Differ,1998,5:107-115
    71 Benson RS, Dive C, Watson AJ. Comparative effects of Bcl-2 overexpression and ZVAD.FMK treatment on dexamethasone and VP16-induced apoptosis in CEM cells. Cell Death Differ,1998, 5:432-439
    72 Vander H, Watson MG, Grimm L et al. Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell,1997,91:627-637
    73 Crompton, M. The mitochondrial permeability transition pore and its role in cell death. Biochem J,1999,341:233-249
    74 Vander H, Watson MG, Grimm L et al. Bcl-2 proteins:regulators of apoptosis or of mitochondrial homeostasis? Nat Cell Biol,1999,14:209-216
    1 Buttgereit F, Buttgereit GR. A new hypothesis of modular glucocorticoid actions-Steroid treatment of rheumatic diseases revisited. Arthritis Rheum,2008,41:761-766
    2 Karl M, Lamberts SW, Detera SD et al. Familial glucocorticoid resistance caused by a splice site deletion in the human glucocorticoid receptor gene. J Clin Endocrinol Metab,1993,76:683-689
    3 Youssef PP, Haynes DR, Triantafillou S et al. Effects of pulse methylprednisolone on inflammatory mediators in peripheral blood, synovial fluid and synovial membrane in rheumatoid arthritis. Arthritis Rheum,2007,40:1400-1407
    4 Bamberger CM, Bamberger AM, Castro M et al. Glucocorticoid receptor beta a potential endogenous inhibitor of glucoorticoid action in human. J Clin Invest,2005,95:2435-2438
    5 Encio IJ, Detera SD. The genomic structure of the human-glucocorticoid receptor. J Biol Chem, 1991,266:7182-7188
    6 Andrea M, Charlotte H, Cheryl S. watson Antibodies to the estrogen receptor-α modulate rapid prolactin release from rat pituitary tumor cells through plasma membrane estrogen receptors. FASEB J Jan,2000,14:157-161
    7 Youssef PP, Cormack J, Evill CA et al. Neutrophil trafficking into inflamed joints in patients with rheumatoid arthritis and effects of methylprednisolone. Arthritis Rheum,2006,39:216-221
    8 Onate SA, Tsai SY, Tsai MJ et al. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science,2005,270:1354
    9 Sackey FN, Watson CS, Gametchu B. Cell cycle regulation of membrane glucocorticoid receptor in CCRF-CEM human ALL cells:correlation to apoptosis. Am J Physiol Endocrinol Metab, 1997,273:571-583
    10 Gametchu B, Watson CS, Wu S. Use of receptor antibodies to demonstrate membrane glucocorticoid receptor in cells from human leukemic patients. FASEB J,1993,1283-1243
    11 Morand E. Corticosteroids in the treatment of rheumatologic diseases. Curr Opin Rheumatol, 2007,9:20-23
    12 Gametchu B. Glucocorticoid receptor-like antigen in lymphoma cell membranes:correlation to cell lysis. Science,1997,236:456-459
    13 Lems WF, Gerrits MI, Jacobs JWG et al. Change in (markers of) bone metabolism during high dose corticosteroid pulse treatment in patients with rheumatoid arthritis. Ann Rheum Dis,2006, 55:288-290
    14 Ristimaki A, Narko K, Hla T et al. Down-regulation of cytokine induced cyco-oxygenase-2 transcript isoforms by dexamethasone:eviduce for post-transcriptional regulation. Biochem J, 2006,12:318-325
    15 Eklund KK, Humphries DE, Xia Z et al. Glucocorticoids inhibit the cytokine-induce proliferation of mast cells, the high affinity IgE receptor-mediated expression-of TNF-alpha, and the IL-10 induce expression of chymases. J Immunol,2007,158:4373-4376
    16 Ernesto C, Andrea G. Glucocorticoid-Induced Osteoporosis:Summary of a Workshop. J Clin Endocrinol Metab,2001,86:5681-5685
    17 Marchetti D, Nguyen TV, Gametchu B et al. Flow Cytometric Analysis of Glucocorticoid Receptor Using Monoclonal Antibody and Fluoresceinated Ligand. Probes Cancer Res,1989,49: 863-869
    18 Wingenfeld K, Heim C, Schmidt I et al. HPA Axis Reactivity and Lymphocyte Sensitivity in Fibromyalgia Syndrome and Chronic Pelvic Pain. Psychosom Med,2008,70,65-72
    19 Stefania B, Anna B, Monica N. Chronic glucocorticoid treatment alters spontaneous pulsatile parathyroid hormone secretory dynamics in human subjects. Eur J Endocrinol,2005,152: 199-205
    20 Canalis E, Andrea G. Glucocorticoid-induced Osteoporosis:Summary of a Workshop.J Clin Endocrinol Metab,2001,86:5681-5685
    21沈时谋.中医药减轻糖皮质激素副作用的研究进展.上海中医药杂志,1995,12:38-40
    22王君,仝小林,王道坤.中药防治肾上腺皮质激素副作用的实验研究概况.甘肃中医学院学报,1999,16:36-37
    23陈俭.激素治疗中对其副反应的辨证施护.辽宁中医杂志,2000,27:43-44
    24查良伦,沈自尹,施凤英等.补肾中药拮抗皮质激素所致副反应的实验观察.上海中医药杂志,1990,2:1-3
    25郝四城,毕平.女贞子对大鼠垂体促肾上腺皮质激素细胞的影响.天津师大学报,1997,17:49-52
    26吴铁,崔燎.淫羊藿对抗肾上腺皮质激素不良反应的实验研究.中国中药杂志,2006,21:748-751
    27蔡定芳,沈时谋.仙灵脾减轻外源性糖皮质激素抑制神经内分泌免疫作用的临床与实验研究.中国中西医结合杂志,2005,18:4-7
    28赵连根,高淑娟.几类补益药对机体防御机能作用的比较研究.中医杂志,1990,4:52-53
    29王君,仝小林,王道坤.中药防治肾上腺皮质激素副作用的实验研究概况.甘肃中医学院学报,1999,16:36
    30何胜尧,张秋霞.中药对小儿糖皮质激素副反应的预防作用.吉林中医药,2007,19:10-11
    31武维屏.激素依赖性哮喘的中医治疗浅述.北京中医药大学学报,1997,20:58-59
    32张春凤,肖永臣,张坤杰等.停用激素反跳的肾病综合征中医辨治:随诊李莹教授心得.吉林中医药,1999,19:37-39
    33崔红生,武维屏.中医药治疗激素依赖型哮喘研究概念.中医杂志,1999:40:118-120
    34李荣辉,彭征屏,魏佑莲等.调激宁冲剂配合激素治疗小儿原发性肾病综合征临床观察. 中国中西医结合杂志,2003,20:104-106
    35马素英.马氏骨片丸治疗激素性股骨头坏死1323例.中国骨伤,1993,6:33-34
    36马林,符长海,张文宪.中药治疗面部激素皮炎135例.黑龙江中医药,1998,10:2-4
    37徐伟君.中药治疗面部激素性皮炎70例.中国中医药科技,1998,5:258-259
    38徐江峰,马武开.耳穴辅助撤停激素32例临床观察.辽宁中医杂志,1999,26:423-424
    39 Reichardt HM, Kaestner KH, Tuckermann J et al. DNA binding of the glucocorticoid receptor is not essential for satrival. Cel,1998,93:531-541
    40 Naghy M, Johnson BH, Chen H et al. The pathway of leukemic cell death caused by glucocorticoid receptor fragment 465. Exp Cell Res,2001,270:166-175
    41 Sato M, Matsuki Y, Ogmrm T et al. Inhibition of glucocorticoid-induced apoptosis by the expression of antisense gene of mitochondrial ATPase sub-unit. FEBS Lett,2000,478:34-38
    42 Chanhan D, Hideshima T, Rosen S et al. Apaf-1/cytochrome c-independent and SMAC dependent induction of apoptosis in multiple myeloma. J Biol Chem,2001,276:24453-24456
    43 Marchetti MC, Di Marco B, Cifone G et al. Dexamethasoneinduced apoptosis of thymocytes: role of glucoeorticoid receptor-associated Sre kinase and caspase-8 activation. Blood,2003,101: 589-593
    44 Fukuzuka K, Edwards CK 3rd, Clare Salzler M, et al. Glucocorticoid-induced, caspase-dependent organ apoptosis early after burn injury. Am J Physiol Regul Integr Comp Physiol,2000,278:R1 005-R1 018
    45 Kim KD, Choe YK, Choe IS, et al. Inhibition of ghcocorticoid-mediated, caspase-independent dendritic cell death by CD40 activation. J Leukoc Biol,2001,69:426-434
    46 Kobzdej M, Matuszyk J, Ziolo E et al.Changes in glucocorticoid-induced apoptosis and in expression of Bel-2 protein duringlong-tenm culture ofthymic lymphoma. Arch Immunol Ther Exp,2000,48:43-46
    47 Zhang L, Insel PA. Bcl-2 protects lymphoma cells from apoptosis but not growth arrest promoted by cAMP and dexamethasone. Am J Physiol Cel Physiol,2001,281:642-647
    48 Huang ST, Cidlowski JA. Phosphorylation status modulates Bcl-2 function during glucoeorticoid-induced apoptosis in T lymphocytes. FASEB J,2002,16:825-832
    49 Hulkko SM, Wakui H, Zilliacus. The pro-apoptotic protein death-associated protein 3 (DAP3) interacts with the glucoeorticoid receptor and afects the receptor function. J Biochem,2000,349: 885-893
    50 Hulkko SM, Zilliacus J. Functional interaction between the pro-apoptotic DAP3 and the glucocorticoid receptor. J Biochem Biophys Res Commun,2002,295:749-755
    51 Kullmann M, Schneikert J, Moll J et al. RAP46 is a negative regulator of glucoeorticoid receptor action and hormone-induced apoptosis. J Biol Chem,1998,273:14620-14625
    52 Medh RD, Wang A, Zhou F et al. Constitutive expression of ectopic c-myc delays ghcocorticoid-evoked apoptosis of human leukemic CEM-C7 cells. Oncogene,2001,20: 4629-4639
    53 Hegardt C, Andersson G, Oredsson SM. Diferent roles of spermine in ghcocorticoid-and Fas-induced apoptosis. Exp Cell Res,2001,266:333-341
    54 Dallaporta B, Pablo M, Maisse C et al. Proteasome activation as a critical event of thymoeyte apoptosis. Cell Death differ,2000,7:368-373
    55 Choi Yl, Jeon SH, Jang J et al. Notchl confers a resistance to ghcocorticoid-induced apoptosis on developing thymocytes by down-regulating SRG3 expression. Proc Nad Acad,2001,98: 10267-10272
    56 Han S, Choi H, Ko MG et al. Peripheral T cells become sensitive to glucoeorticoid-an d stress-induced apoptosis in transgenic mice overexpressing SRG3. J Immunol,2001,167: 805-810
    57 Choi SH, Kim SW, Choi DH et al. Polyamine-depletion induces p27Kipl and enhances dexamethasone-induced Glarrest and apoptosis in human T lymphoblastic leukemia cells. IJeuk Res,2000.24:119-127

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700