用户名: 密码: 验证码:
往复式压缩机振动信号特征分析及故障诊断方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
往复式压缩机是石油化工生产的关键设备,保证它的安全稳定运行是石化行业设备维护工作的重中之重。因此,开展往复式压缩机状态监测与故障诊断的研究工作有着重要的现实意义和经济价值。本文以往复式压缩机故障诊断横向课题、国家自然科学基金项目(No.50805014)及教育部科学技术研究重点项目(No.109047)为依托,以超高压聚乙烯压缩机为研究对象,从往复式压缩机振动信号特征入手,针对往复式压缩机的状态监测与故障诊断技术开展了一系列的研究工作。论文的主要工作内容如下:
     1.介绍了往复式压缩机的工作原理,分析了各主要零部件的故障形式及故障机理,研究了往复式压缩机各主要激励源所引起的响应信号特征,建立了各主要部件壳体表面振动信号的信号模型;总结出往复式压缩机振动信号所具有的两大特征:冲击性和周期性,并初步讨论了如何应用这两大特征进行往复式压缩机状态监测与故障诊断工作。
     2.分析了往复式压缩机振动信号的频域能量分布特征,提出了基于频带能量变化的响应信号特征频带判定方法;给出了一种基于梳状滤波及包络分析的频带信号特征提取方法,并将其应用到往复式压缩机的状态监测与故障诊断中。
     3.对基于EMD的降噪方法进行了研究,并根据往复式压缩机振动信号特点提出了新的降噪准则;应用包络分析方法得到降噪后信号的冲击特征,构造包络曲线的峰值特征指标作为表征压缩机工作状态的特征参数;提出结合分类敏感度评估及自然选择离散粒子群算法的最优特征子集选择方法,并应用最优特征子集构造优化支持向量机的输入向量,从而实现往复式压缩机气阀工作状态的智能识别与诊断。
     4.研究了循环自相关函数的特性,将其看作一种特殊的时频分析方法,提出了一种通过EMD降噪、重构抑制循环自相关函数中交叉干扰项的方法;提出了循环信息熵的概念,并构造了两类循环信息熵,通过基于循环熵距的最小距离分类器实现了往复式压缩机气阀工作状态的快速识别。
     5.提出了局域波时频相干算法,并将其应用于往复式压缩机缸体故障诊断中。利用双通道同步采集的缸体和气阀信号,通过循环互相关方法消除二者之间的延迟;然后应用局域波时频相干方法将缸体信号中的气阀干扰成分剔除出去,从而实现往复式压缩机缸体及其内部部件工作状态的准确监测与诊断。
     6.设计了往复式压缩机在线监测系统总体结构,确定了主要监测参数;介绍了硬件系统构成及软件系统各组成模块的功能;通过诊断实例对系统的有效性进行了验证。
For all petrochemical enterprises, it is the most considerable work to maintain the stable operation of reciprocating compressors which play a very important role in petrochemical production. Therefore, condition monitoring and fault diagnosis for reciprocating compressors are of great practical significance and economic value. Based on the engineering research project for ethylene hypercompressor, National Natural Science Foundation of China (Grant No.50805014) and the Key Project of Chinese Ministry of Education (Grant No.109047), some effective works for fault diagnosis of reciprocating compressor are carried out by using feature analysis of vibration signals. The main works of this dissertation are listed as follows:
     1. The working mechanism of reciprocating compressors is illustrated in detail. Failure modes and mechanism of the key components are summarized. Under the analysis of the characteristics of the response signals produced by certain excitation sources, vibration signal models of the key components are established. Impact response and periodicity are indicated as two key features of reciprocating compressor signal, and the application of these key features in reciprocating compressor fault diagnosis is preliminarily discussed.
     2. Frequency-domain energy distribution characteristics of reciprocating compressor vibration signals are discussed. Based on frequency-band energy variation, a criterion on the decision of response signal characteristic bands is proposed. The features of these characteristic bands can be extracted by comb filtering and envelope analysis. Application in reciprocating compressor condition monitoring verifies the validity of these methods.
     3. EMD denoise criterions based on the characteristics of reciprocating compressor vibration signals are proposed. The envelope peak factors of the denoised signal are obtained by using improved Hilbert transform method. A new optimal method based on improved NS-DPSO is applied to select the optimal feature subset, which is employed to construct eigenvectors to identify different working conditions of reciprocating compressor by using optimal multi-class SVMs. The engineering application in working condition classification of reciprocating compressor valves verifies the effectiveness of these methods.
     4. The properties of cyclic auto-correlation function are studied. Under the discussion of second order cyclostationary method applied in condition monitoring and fault diagnosis of reciprocating compressors, cyclic auto-correlation function is indicated to be one sort of special time-frequency distribution method. EMD denoise and reconstruction are used to reduce the cross-terms of cyclic auto-correlation function. The conception of cyclic information entropy is proposed and a minimum distance classifier based on cyclic entropy distance is used to achieve the fast classification of reciprocating compressor working conditions.
     5. The algorithm of Local Wave time-frequency coherence is proposed, which is applied in the fault diagnosis of reciprocating compressor cylinder. Firstly, double channel signals of cylinder and valve are synchronously sampled. Secondly, cyclic cross-correlation function is used to eliminate the time delay between the two signals. Thirdly, Local Wave time-frequency coherence method is utilized to remove the interference components, which produced by valve vibration, from cylinder signal. Finally, more concise and precise working condition information for cylinder and inner components can be obtained.
     6. An on-line condition monitoring and fault diagnosis system for reciprocating compressors is developed. Overall architecture of the system is designed and primary monitoring parameters are determined. Hardware structure and the functions of software modules are introduced in detail. At last, a diagnosis example is used to testify the effectiveness of the system.
引文
[1]徐敏,黄邵毅.设备故障诊断手册--机械设备状态检测和故障诊断[M].西安:西安交通大学出版社,1998.
    [2]黄文虎,夏松波,刘瑞吉等.设备故障诊断原理、技术及应用[M].北京:科学出版社,1996.
    [3]王江萍.机械设备故障诊断技术及应用[M].西安:西北工业大学出版社.2001.
    [4]李国华,张永忠.机械故障诊断[M].北京:化学工业出版社.1999.
    [5]高慎琴.化工机器[M].北京:化学工业出版社,1992.
    [6]沈庆根,郑水英.设备故障诊断[M].北京:化学工业出版社,2006.
    [7]齐伟敏.往复式压缩机热力故障判断方法[J].机电设备,2002,(5):32~34.
    [8]孙洪泉,陈军舰.4L型压缩机排气温度过高解决方法[J].石油化工设备,2007,36(增刊):89~90.
    [9]童雪云,吕碧超.往复式压缩机运动副咬死故障分析及对策[J].中国设备管理,2000,(1):45~46.
    [10]张卫民,王信义,王克勇.压缩机运行状态检测与故障诊断方法研究[J].压缩机技术,1996,4(138):41~48.
    [11]张晓东,王朝晖,唐海兵.振动法在往复式压缩机气阀故障诊断中的应用[C].2002年全国振动工程及应用学术会议论文集,2002:391~397.
    [12]O. Bardou, M. Sidahmed. Early detection of leakage in the exhaust and discharge systems of reciprocating machines by vibration analysis[J]. Mechanical System and Signal Processing,1994,8(5):551~570.
    [13]刘红星,林京.往复式压缩机气阀故障的振动诊断方法[J].压缩机技术,1996,1(135):32~37.
    [14]马莉,陈卫民.油液分析在往复式压缩机故障诊断中的应用[J].石油和化工设备,2008,(2):40~43.
    [15]黄春莺,董绍平.用多种方法对往复式压缩机进行状态监测[J].润滑与密封,2000,(2):25~27.
    [16]尤一匡,张琳,王正洪.往复压缩机在线示功监测系统研究[J].流体机械,2005,33(2):36~38.
    [17]王金东,张嘉钟,刘树林.应用神经网络识别往复式压缩机指示图[J].振动、测试与诊断,2003,23(3):217~219.
    [18]屈梁生,张海军.机械诊断中的几个基本问题[J].中国机械工程,2000,11(1):211~218.
    [19]贯士国,赵亚力.大型活塞式压缩机常见故障及处理措施[J].化工设计通讯,2003,29(3):17~21.
    [20]刘卫华.近十年来压缩机技术研究动向[J].压缩机技术,1998,150(4):33~35.
    [21]何可禹.单缸往复式气体压缩机轴承座振动的标准位移谱图[J].压缩机技术,1997,144(4):20~23.
    [22]Liu Wei-hua, Ang Hai-song. Study of Failure Diagnostic Methods and Intelligent Diagnostic System for Reciprocating Compressors[J]. International Journal of Plant Engineering and Management,2002,7(3):127~133.
    [23]刘红星,左洪福.往复机械特征频段信号的解调分解及其应用[J].振动工程学报,2000,13(2):283~290.
    [24]王朝晖,张来斌,郭存杰等.包络解调法在气阀弹簧失效故障诊断中的应用[J].石油大学学报,2005,29(2):86~88.
    [25]杨叔子,吴雅,王治藩等.时间序列分析的工程应用[M].武汉:华中理工大学出版社,1991.
    [26]王江萍,鲍泽富.往复式压缩机振动信号频谱分析与故障诊断[J].石油机械,2008,36(8):63~66.
    [27]Baillie D C, Mathew J. A comparison of autoregressive modeling techniques for fault diagnosis of rolling element bearings[J]. Mechanical System and Signal Processing, 2004,10(1):1~17.
    [28]McCormick A C, Nandi A K. Neural networks autoregressive modeling of vibration for condition monitoring of rotating shafts[C]. International Conference on neural networks,1997,2214~2218.
    [29]Y. Dote, S. J. Ovaska, Gao Xiao-zhi. Fault detection using RBFN and AR based general parameter methods[J]. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics,2001,10:77~80.
    [30]张贤达,保铮.非平稳信号分析与处理[M].北京:国防工业出版社,1998.
    [31]Newland D E. Wavelet analysis of vibration. Part 1:wavelet maps[J]. Journal of Vibration and Acoustics,1994,116(10):417~425.
    [32]董宁娟,赵洪金,高晶波.基于参数识别和小波包分析的故障特征提取[J].噪声与振动控制,2008,(5):91~94.
    [33]彭恒义,轩建平,史铁林.基于小波包分析的往复式天然气压缩机故障诊断系统[J].机床与液压,2004,(7):180~182.
    [34]马波,高金吉,江志农.自适应提升小波在往复机械故障检测中的应用[J].流体机械,2007,35(4):23~27.
    [35]金涛,匡继勇.基于小波变换的往复式压缩机故障诊断系统[J].流体机械,2000,28(2):23~26.
    [36]袁小宏,屈梁生.小波分析及其在压缩机气阀故障检测中的应用研究[J].振动工程学报,1999,12(3):410~415.
    [37]李庆,戴凌汉,李旭朋.往复式压缩机气阀故障分析与诊断[J].现代机械,2008,(4):29~30.
    [38]Huang N E, Shen Z, long S R. The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proc. Roy. Soc. Vol.454.1998.
    [39]马孝江,余泊,张志新等.一种新的时频分析方法-局域波法[J].振动工程学报,2000,13(5):219~224.
    [40]余泊.自适应时频分析方法及其在故障诊断中的应用研究[D].大连:大连理工大学.1998.
    [41]盖强.局域波时频分析的理论研究与应用[D].大连:大连理工大学.2001.
    [42]钟佑明,秦树人,汤宝平.一种振动信号新变换法的研究[J].振动工程学报,2002,15(2):231~238.
    [43]Zhang HY and Ma XJ. Wigner-Ville Distribution Based on Intrinsic Mode Functions[C]. International Conference on Radar in Beijing.2001.10:165~168.
    [44]于德介,程军圣,杨宇.基于EMD和AR模型的滚动轴承故障诊断方法[J].振动工程学报,2004,17(3):332~335.
    [45]Gai Q, Ma X J. The partial wave method for the analysis of non-stationary signals and its use in machine fault diagnosis[C]. Proceedings of the International Symposium on Test and Measurement.2001.6:1465~1468.
    [46]王珍.基于局域波分析的柴油机故障诊断方法的研究及应用[D].大连:大连理工大学.2002.
    [47]杨世锡,胡劲松,吴昭同.旋转机械振动信号基于EMD的希尔伯特变换和小波变换时频分析比较[J].中国电机工程学报,2003.23(6):102~107.
    [48]马孝江,王凤利,蔡悦.局域波时频分布在转子系统早期故障诊断中的应用研究[J].中国电机工程学报,2004.24(3):161~164.
    [49]邹岩昆.局域波分析的理论方法研究及应用[D].大连:大连理工大学.2005.
    [50]郝志华.基于局域波法和盲源分离的故障诊断方法应用研究[D].大连:大连理工大学.2005.
    [51]胡红英.局域波分解方法、特征剖析及应用研究[D].大连:大连理工大学.2006.
    [52]苗刚,马孝江,任全民.多尺度Hilbert谱熵在故障诊断中的应用[J].农业机械学报,2007,38(03):176~178.
    [53]周燕峰,马孝江,苑宇.基于信号时频熵的往复式压缩机故障诊断[J].机床与液压,2006,(10):194~196.
    [54]苑宇,马孝江.局域波时频域多重分形在故障诊断中的应用[J].振动与冲击,2007,26(05):60~63.
    [55]苑宇,马孝江.基于多分量奇异熵的往复式压缩机故障分类[J].大连理工大学学报,2007,47(2):196~200.
    [56]别锋锋,王奉涛,吕凤霞.基于局域波时频图像处理技术的压缩机故障诊断[J].农业机械学报,2007,38(09):159~162.
    [57]别锋锋,郭正刚,张志新.往复式压缩机故障信息模糊二元树诊断方法研究[J].大连理工大学学报,2008,48(03):383~386.
    [58]林京,刘红星,屈梁生.信号包络特征识别在故障诊断中的应用[J].振动、测试与诊断,1998,18(1):34~38.
    [59]N. G. Nikolaou, I. A. Antoniadis. Demodulation of vibration signals generated by defects in rolling element bearings using complex shifted morlet wavelets[J]. Mechanical Systems and Signal Processing,2002,16(4):677~694.
    [60]梁霖,徐光华.基于自适应复平移Morlet小波的轴承包络解调分析方法[J],机械工程学报,2006,42(10):151~155.
    [61]N. G. Nikolaou, I. A. Antoniadis. Application of morphological operators as envelop extractors for impulse-type periodic signals[J]. Mechanical Systems and Signal Processing,2003,17(6):1147~1162.
    [62]J.-Y. LEE, A. K. NANDI. Extraction of impacting signals using blind deconvolution[J]. Journal of Sound and vibration,2000,232(5):945~962.
    [63]刘刚,屈梁生.提取机械信号中弱冲击成分的研究[J].机械工程学报,2002,38(6):152~155.
    [64]黄之初,张家凡.滚动轴承故障脉冲信号提取及诊断:一种盲解卷积方法[J].振动与冲击,2006,25(3):150~154.
    [65]Hongyu Yang, Joseph Mathew, Lin Ma. Fault diagnosis of rolling element bearings using basis pursuit[J]. Mechanical Systems and Signal Processing,2005, (19):341~356.
    [66]孟庆丰,范虹,王祺等.匹配追踪信号分解与往复机械故障特征提取技术研究[J].西安交通大学学报,2001,35(7):696~699.
    [67]费晓琪,孟庆丰,何正嘉.基于冲击时频原子的匹配追踪信号分解及机械故障特征提取技术[J].振动与冲击,2003,22(2):26~29.
    [68]冯志鹏,朱萍玉,刘立等.基追踪在齿轮损伤识别中的应用[J].北京科技大学学报,2008,30(1):84~89.
    [69]章立军,阳建宏,徐金梧等.形态非抽样小波及其在冲击信号特征提取中的应用[J].振动与冲击,2007,26(10):56~59.
    [70]郝如江,卢文秀,褚福磊.滚动轴承故障信号的数学形态学提取方法[J].中国电机工程学报,2008,28(26):65~70.
    [71]Lijun Zhang, Jinwu Xu, Jianhong Yang, et al. Multiscale morphology analysis and its application to fault diagnosis[J]. Mechanical Systems and Signal Processing,2008, 22(3):597~610.
    [72]段晨东,何正嘉.一种基于提升小波变换的故障特征提取方法及其应用[J].振动与冲击,2007,26(2):10~13.
    [73]李允公,刘杰,张金萍.基于实测冲击响应的转子碰摩故障特征提取方法[J].机械工程学报,2007,43(4):224~228.
    [74]黄知涛,周一宇,姜文利.循环平稳信号处理与应用[M].北京:科学出版社,2006.
    [75]姜鸣,陈进,秦恺等.一阶循环矩分析在旋转机械振动信号分析中的应用[J].振动工程学报,2001,14(04):424~428.
    [76]秦恺,陈进,姜鸣等.一种滚动轴承故障特征提取的新方法——谱相关密度[J].振动与冲击,2001,20(01):34~37.
    [77]姜鸣,陈进,秦恺.时变调幅信号的循环平稳特征[J].上海交通大学学报,2001,35(12):1798~1801.
    [78]陈进,姜鸣.高阶循环统计量理论在机械故障诊断中的应用[J].振动工程学报,2001,14(02):125~134.
    [79]姜鸣,陈进,秦恺.循环周期图在滚动轴承故障诊断中的应用[J].机械科学与技术,2002,21(01):108~110.
    [80]姜鸣,陈进.循环自相关函数的解调性能分析[J].上海交通大学学报,2002,36(06):799~802.
    [81]何俊,陈进,毕果等.谱相关函数的解调原理分析[J].机械科学与技术,2005,24(07): 771~774.
    [82]毕果,陈进,李富才等.谱相关密度分析在轴承点蚀故障诊断中的研究[J],振动工程学报,2006,19(03):388~393.
    [83]毕果,陈进,何俊等.齿轮信号特征识别的谱相关密度分析[J].上海交通大学学报,2006,40(07):1084~1088.
    [84]何俊,陈进,毕果等.循环平稳度解调频原理分析及其在齿轮故障诊断中的应用[J].上海交通大学学报,2007,41(11):1862~1866.
    [85]周福昌,陈进,何俊等.基于小波滤波与循环平稳度分析的滚动轴承早期故障诊断方法[J].振动与冲击,2006,25(04):91~93.
    [86]李力,屈梁生.二阶循环统计量在机械故障诊断中的应用[J].西安交通大学学报,2002,36(09):943~946.
    [87]李力,屈梁生.谱相关特性在机械信号特征提取中的应用研究[J].中国机械工程,2006,17(04):334~338.
    [88]李力,廖湘辉,张圆.循环平稳度无量纲指标应用于滚动轴承状态分类[J].机械传动,2005,29(03):21~25.
    [89]杨龙兴,贾民平,许飞云等.旋转机械故障的循环平稳度诊断[J].东南大学学报(自然科学版),2003,33(04):438~441.
    [90]杨龙兴,贾民平,许飞云等.齿轮裂纹故障的循环矩诊断[J].中国机械工程,2003,14(19):1621~1623.
    [91]贾民平.周期平稳故障信号分析[J].东南大学学报(自然科学版),2006,36(03):346~350.
    [92]贾民平,杨建文.滚动轴承振动的周期平稳性分析及故障诊断[J].机械工程学报,2007,43(1):144~146.
    [93]杨建文,贾民平,许飞云.经验模式分解在循环平稳故障信号分析中的应用[J].东南大学学报(自然科学版),2006,36(01):77~80.
    [94]陈仲生,杨拥民,胡茑庆等.二阶循环平稳分析在转子早期碰摩故障识别中的应用[J].机械科学与技术,2004,23(02):221~223.
    [95]陈仲生,杨拥民,胡政等.基于循环统计量的直升机齿轮箱轴承故障早期检测[J].航空学报,2005,26(03):371~375.
    [96]陈仲生,杨拥民,胡政等.基于循环平稳时间序列的齿轮裂纹故障早期检测[J].航空动力学报,2005,20(01):154~158.
    [97]丁康,孔正国,何志达.振动调幅信号的循环平稳解调原理与应用[J].振动工程学报,2005,18(03):304~308.
    [98]丁康,孔正国,李巍华.振动调频信号的循环平稳解调原理与实现方法[J].振动与冲击,2006,25(01):5~9.
    [99]A. C. Mccormick, A. K. Nandi. Cyclostationarity in rotating machine vibrations[J]. Mechanical Systems and Signal Processing,1998,12(2):225~241.
    [100]L. Bouillaut, M. Sidahmed. Cyclostationary approach and bilinear approach:comparison, applicationg to early diagnosis for helicopter gearbox and classification method based on HOCS[J]. Mechanical Systems and Signal Processing,2001,15(5):923~943.
    [101]J. Antoni, F. Bonnardot, A. Raad, et al. Cyclostationary modelling of rotating machine vibration signals[J]. Mechanical Systems and Signal Processing,2004,18:1285-1314.
    [102]C. Capdessus, M. Sidahmed, J. L. Lacoume. Cyclostationary processes:application in gear faults early diagnosis[J]. Mechanical Systems and Signal Processing,2000,14(3): 371-385.
    [103]Amani Raad, Jerome Antoni, Menad Sidahmed. Indicators of cyclostationarity:Theory and application to gear fault monitoring[J]. Mechanical Systems and Signal Processing, 2008,22(3):574~587.
    [104]肖云魁,曹亚娟,吴晓等.用循环谱理论分析柴油机曲轴轴承加速振动信号[J].振动、测试与诊断,2008,28(02):117~121.
    [105]J. Antoni, J. Daniere, F. Guillet. Effective vibration analysis of IC engines using cylcostationarity. Part Ⅰ-A methodlody for condition monitoring[J]. Journal of Sound and Vibration,2002,257(5):815~837.
    [106]J. Antoni, J.Daniere, F. Guillet. Effective vibration analysis of IC engines using cylcostationarity. Part Ⅱ - New results on the reconstruction of the cylinder pressure[J]. Journal of Sound and Vibration,2002,257(5):839~856.
    [107]R. Zouari, J. Antoni, J. L. Ille, etal. Cyclostationary Modelling of Reciprocating Compressors and Application to Valve Fault Detection[J]. International Journal of Acoustics and Vibration,2007,12(3):115~124.
    [108]王迪生,杨乐之.活塞式压缩机结构[M].北京:机械工业出版社,1990.
    [109]苗刚.往复活塞式压缩机关键部件的故障诊断方法研究及应用[D].大连:大连理工大学.2006.
    [110]Stephen ML. Increasing the Reliability of Reciprocating Compressors on Hydrogen Services[J/OL]. http://www. dresser-rand.com/e-tech/recip. asp.
    [111]M. Elhaj, F. Gu, A.D. Ball, et al. Numerical simulation and experimental study of a two-stage reciprocating compressor for condition monitoring[J]. Mechanical Systems and Signal Processing,2008, (22):374~389.
    [112]H. Steinruck, R. Aigner, G. Machu. Transversal waves in a reciprocating compressor[J]. Acta Mechanica,2008,201:231~247.
    [113]W.索德尔.压缩机气阀设计与力学原理[M].王迪生译.西安:西安交通大学出版社,1986.
    [114]陈光雄,周仲荣.基于小波变换的摩擦噪声激励源的研究[J].机械工程学报,2003,39(2):23~27.
    [115]陈光雄,周仲荣.基于小波变换的摩擦噪声模态耦合机理研究[J].摩擦学学报,2003,23(6):524~528.
    [116]何平,张卫民,程红亮.压缩机故障信号的机理分析[J].机械研究与应用,2005,15(2):5~7.
    [117]石玉祥,韩军,张梅军.缸压振动信号的研究[J].振动、测试与诊断,1995,15(4):20~25.
    [118]罗德扬.时域同步平均原理与应用[J].振动、测试与诊断,1999,19(3):202~207.
    [119]李志勇,危韧勇,张涛.基于Morlet组合小波的梳状滤波与包络检波方法[J].中南大学学报(自然科学版),2006,37(2):336~339.
    [120]朱晓光,韩庆瑶,陶洛文等.信号包络在DSP系统中的实现[J].华北电力大学学报,2004,31(2):91~94.
    [121]汪璇,曹万强.Hilbert变换及其基本性质分析[J].湖北大学学报(自然科学版),2008,30(1):53~55.
    [122]王济,胡晓编著.MATLAB在振动信号处理中的应用[M].北京:水利水电出版社.2006.
    [123]刘丽梅,孙玉荣,李莉.中值滤波技术发展研究[J].云南师范大学学报,2004,24(1):23~27.
    [124]Huang NE, Wu M-L, Qu W, et al. Applications of Hilbert-Huang transform to non-stationary financial time series analysis[J]. APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY,2003,361 (19):245~268
    [125]Wu Zhaohua, Huang Norden E. A study of the characteristics of white noise using the empirical mode decomposition method[C]. Royal Society of London Proceedings Series A,2003,460(2046):1597-1611.
    [126]Flandrin P, Rilling G, Goncalves P. Empirical mode decomposition as a filter bank[J]. Signal Processing Lett., IEEE,2004,11(2):112-114.
    [127]胡劲松,杨世锡,吴昭同等.基于经验模态分解的旋转机械振动信号滤波技术研究[J].振动、测试与诊断,2003,23(2):96~98.
    [128]李才良,王洪刚,马吉胜等.柴油机声信号处理中的一种新方法[J].内燃机学报,2001,19(5):469~472.
    [129]唐旭晟,欧宗瑛,苏铁明等.人脸识别中基于互信息的特征优选[J].大连理工大学学报,2008,48(1):84~88.
    [130]曹建军,张培林,张英堂等.发动机缸盖振动信号特征提取与优化选择算法[J].机械科学与技术.2008,27(9):1199~1206.
    [131]杜卓明,冯静.改进遗传算法和支持向量机的特征选择算法[J].计算机工程与应用,2009,45(29):28~30.
    [132]胡洁.高维数据特征降维研究综述[J].计算机应用研究.2008,25(9):2601~2606.
    [133]王新峰,邱静,刘冠军.基于离散粒子群优化算法的直升机减速器齿轮故障特征选择[J].航空动力学报,2005,20(6):969~972.
    [134]毛勇,周晓波,夏铮等.特征选择算法研究综述[J].模式识别与人工智能,2007,20(2):211~218.
    [135]Kennedy J, Eberhart R. Particle swarm optimization[C]. Proceedings of the 4th IEEE International Conference on Neural Networks,1995:1942~1948.
    [136]龚纯,王正林.精通MATLAB最优化计算[M].北京:电子工业出版社,2009.
    [137]Kennedy J, Eberhart R C. A discrete binary version of the particle swarm algorithm [C], Proc. Conf. on Systems, Man, and Cybernetics, IEEE Press,1997,5:4104-4108.
    [138]李虹,熊诗波.基于混合粒子群优化算法的故障特征选择[J].系统仿真学报,2008,20(15):4041~4044.
    [139]王小平,曹立明.遗传算法--理论、应用与软件实现[M].西安:西安交通大学出版社,2002.
    [140]王新峰.机电系统BIT特征层降虚警技术研究[D].长沙:国防科学技术大学.2005.
    [141]雷亚国,何正嘉,訾艳阳等.基于特征评估和神经网络的机械故障诊断模型[J].西安交通大学学报,2006,40(5):558~562.
    [142]Yang B S, Han T, An J L. ART-KOHONEN neural network for fault diagnosis of rotating machinery[J]. Mechanical Systems and Signal Processing,2004,18(3):645~657.
    [143]钟珞.模式识别[M].武汉:武汉大学出版社,2006.
    [144]Vapnik V N.统计学习理论的本质[M].张学工译.北京:清华大学出版社,2000.
    [145]Vapnik V N. An overview of statistical learning theory[J]. IEEE Trans Neural Networks, 1999,10(5):988~999.
    [146]Qiao Hu, Zhengjia He, Zhousuo Zhang, et al. Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble[J]. Mechanical Systems and Signal Processing,2007,21 (2):688~705.
    [147]张周锁,李凌均,何正嘉.基于支持向量机的机械故障诊断方法研究[J].西安交通大学学报,2002,36(12):1303~1306.
    [148]何沿江,齐明侠,罗红梅.基于ICA和SVM的滚动轴承声发射故障诊断技术[J].振动与冲击,2008,27(3):150~153.
    [149]Achmad Widodo, Bo-Suk Yang. Wavelet support vector machine for induction machine fault diagnosis based on transient current signal[J]. Expert Systems with Applications, 2008,35(1-2):307~316.
    [150]Ren Quanmin, Ma Xiaojiang, Miao Gang. Application of support vector machine in reciprocating compressor valve fault detection[C]. Lecture Note in Computer Science, 2005,3611:81~84.
    [151]Kressel U. Pairwise classification and support vector machines[J]. Cambridge, Massachusetts:MIT Press,1999,255~268.
    [152]何学文.基于支持向量机的故障智能诊断理论与方法研究[D].长沙:中南大学.2004.
    [153]罗瑜.支持向量机在机器学习中的应用研究[D].昆明:西南交通大学.2007.
    [154]Vapnik V N, Chapelle O. Bounds on error expectation for support vector machines. Neural Computation,2000,12(9):2013~2036.
    [155]李力等编著.机械信号处理及其应用[M].武汉:华中科技大学出版社,2007.
    [156]杨建文.周期平稳类机械故障信号分析方法研究[D].南京:东南大学.2006.
    [157]李强,王太勇,胥永刚等.EMD-循环域解调方法在故障诊断中的应用[J].振动与冲击.2006,25(4):34~37.
    [158]赵荣珍,张优云.转子系统振动信号的小波分析原理与应用研究[J].振动、测试与诊断,2004,24(3):179~183.
    [159]王奉涛,马孝江,邹岩崑等.基于小波包分解的频带局部能量特征提取方法[J].农业机械!学报,2004,35(5):177-180.
    [160]陈非,黄树红,张燕平等.基于信息熵距的旋转机械振动故障诊断方法[J].振动、测试与诊断,2008,28(1):9~13.
    [161]何正友,蔡玉梅,钱清泉.小波熵理论及其在电力系统故障检测中的应用研究[J].中国电机工程学报,2005,25(5):38~43.
    [162]Jian-Da Wu, Chiu-Hong Liu. An expert system for fault diagnosis in internal combustion engines using wavelet packet transform and neural network[J]. Expert Systems with Applications,2009,36(3):4278~4286.
    [163]谢平.故障诊断中信息熵特征提取及融合方法研究[D].秦皇岛:燕山大学.2006.
    [164]任靖,李春平.最小距离分类器的改进算法——加权最小距离分类器[J].计算机应用,2005,25(5):992~994.
    [165]张强编著.随机信号分析的工程应用[M].北京:国防工业出版社.2009.
    [166]梁兴雨,舒歌群.基于相干功率谱分析的复杂柴油机噪声源识别[J].内燃机学报,2006,24(4):344~350.
    [167]张婷,连平.用相干函数消除系统反共振对燃气流冲击载荷识别结果的影响[J].振动与冲击,2008,27(12):157~159.
    [168]张建胜,武岳,沈世钊.不同脉动风相干函数对高层建筑风振响应的影响[J].振动工程学报,2009,22(2):117~122.
    [169]梁兴雨,舒歌群,王刚志等.基于偏相干函数分析的曲轴箱表面振动和曲轴三维振动研究[J].汽车工程,2006,28(3):271~275.
    [170]韩峰.时域相干函数的研究[J].振动、测试与诊断,2002,22(3):225~229.
    [171]韩峰,麻硕士,崔红梅等.基于偏时域相干分析的频谱混叠信号分离方法[J].噪声与振动控制,2007,(6):22~25.
    [172]贾继德,陈剑,汪时武.基于Morlet小波分析的汽车声源识别[J].农业机械学报,2008,39(7):590~591.
    [173]Lachaux JP, Lutz A, Rudrauf D, et al. Estimating the time-course of coherence between single-trial brain signals:an introduction to wavelet coherence[J]. Neurophysiol Clin,2002,32:157-174.
    [174]吴捷,张宁,杨卓等.小波相干分析及其在听觉与震动刺激事件相关诱发脑电处理中的应用[J].生物物理学报,2007,23(6):482~486.
    [175]张辉,郑崇勋.诱发电位的多通道时频相干提取算法[J].生物物理学报.2003,19(3):303~307.
    [176]闻兵工,冯伍法,刘伟.基于光谱曲线整体相似性测度的匹配分类[J].测绘科学技术学报,2009,26(2):128~131.
    [177]边肇祺,模式识别[M].北京:清华大学出版社,2000.
    [178]丁晶,王文圣,赵永龙.以互信息为基础的广义相关系数[J].四川大学学报,2002,34(3):1~5.
    [179]张佃中.小波互信息及其在心电分析中的应用[J].数据采集与处理,2009,24(3):391~395.
    [180]Fertner A, Sjolund A. Comparison of various time delay estimation method by computer simulation[J]. IEEE Trans on ASSP,1986,34(5):1329~1330.
    [181]Hannan E J, Thomson P J. Time delay estimation[J]. Journal of Time Series Analysis, 1998,9(1):21-33.
    [182]邱天爽,王宏禹.几种基本时间延迟估计方法及其相互关系[J].大连理工大学学报,1996,36(4):493~498.
    [183]崔玮玮,曹志刚,魏建强.声源定位中的时延估计技术[J].数据采集与处理,2007,22(1):90~99.
    [184]Knapp C H, Carter G C. The generalized correlation method for estimation of time delay[J]. IEEE Transactions on Acoustics, Speech and Signal Processing,1976,24(4): 320-327.
    [185]RUI Y, FLORENCIO D. Time delay estimation in the presence of correlated noise and reverberation[C]. IEEE International Conference on Acoustics, Speech and Signal Processing,2004,2(2):133~136.
    [186]路炜,文玉梅.供水管道泄漏定位中基于互谱的时延估计[J].仪器仪表学报,2007,28(3):504~509.
    [187]Zhao Zhen, Hou Ziqiang. The generalized phase spectrum method for time delay estimation[C]. ICASSP'84,1984,46(2):1-4.
    [188]王昭,陈钟,赵俊渭等.空中运动目标时变时延估计方法的仿真研究[J].系统仿真学报,2002,14(8):1049~1052.
    [189]Chan Y T, Riley JM F, Plant J B. Modeling of the delay and its application to estimation and signal detection[J]. IEEE Trans on ASSP,1981,29(3):577~581.
    [190]ZHANG Y, WANG C M, COLINS L M. Adaptive time delay estimation method with signal selectivity[C]. Acoustics, Speech and Signal Processing Proceedings,2002, (2): 1477~1480.
    [191]SO H C, CHING P C. Comparative study of five LMS-based adaptive time delay estimators[J]. IEEE Proc-Radar, Sonar Navig,2001,148(1):9~15.
    [192]郭莹,邱天爽,张艳丽等.脉冲噪声环境下基于分数低阶循环相关的自适应时延估计方法[J].通信学报,2007,28(3):8~14.
    [193]郭士民,吕明.循环互相关时延估计算法在合作目标测距中的应用[J].中国雷达,2006,(2):24~28.
    [194]易岷,魏平,肖先赐.基于信号循环平稳性的多径时延估计[J].信号处理,2003,19(增刊):355~358.
    [195]杨家兴,王晓春.一种强抗干扰能力的时延估计新算法[J].信息工程学院学报,1994,13(1):17~24.
    [196]陈华风.浅谈往复式压缩机常用填料密封环工作原理[J/OL].贺尔碧格有限公司技术文档.
    [197]时文刚.往复机械的振动信号处理及故障诊断方法研究[D].哈尔滨:哈尔滨工业大学.2003.
    [198]周燕峰.基于时频谱熵的往复式压缩机故障诊断及应用[D].大连:大连理工大学.2006.
    [199]李俊.往复式压缩机状态监测系统的研究[D].武汉:华中科技大学.2004.
    [200]唐静.往复式压缩机组的实时监测诊断系统[D].沈阳:沈阳工业大学.2006.
    [201]陈云,江志农,高金吉.基于LabVIEW的大型往复式氢气压缩机组在线监测系统开发[J],北京化工大学学报.2003,30(2):63~65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700