用户名: 密码: 验证码:
基于电容感应技术的定点冰层厚度检测方法机理与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冰层厚度及其变化过程是研究冰层生消、开河冰塞、凌汛发生的基础性因素之一;海冰厚度是描述海冰状态最基本、最重要的参数;在南北极,海冰多年的冰厚变化是世界气候变化的“窗口”,是全球气候变化的指示灯;一直以来,冰层厚度都被认为是海冰或淡水冰最难监测的物理指标之一,实现定点冰层厚度的连续实时化自动监测更是冰层厚度检测技术的一道难题。
     本文在总结目前各种实际冰层厚度检测方法优缺点基础上,提出一种基于电容感应技术的定点冰层厚度及冰下水位的检测新方法。论文对电容感应技术的基本原理以及利用这一原理实现对冰层厚度定点、连续自动测量的检测方法与实现途径进行了论述。
     根据作者对国内外大量的文献资料调查结果显示,目前,国内外还没有研究人员对同面多电极电容感应传感器的电容和电场强度进行完整精确的数学推导,作者采用有限元仿真的方法对同面多电极电容感应的电场进行了仿真,详细直观地揭示了利用电容感应方式进行冰层厚度测量的机理;根据空气、冰与水具有不同的介电特性,提出了一种基于电容感应技术、通过对空气层、冰层和冰下水层电容值进行分层测量,进而实现对冰层厚度与冰下水位自动检测的新理论,新方法;为了实现分层检测的目的,作者设计、研制了独特的电容感应式冰层厚度传感器结构,为该项技术的应用实施奠定了基础;以新的电容感应式冰层厚度传感器为核心,作者融合了单片机,数字电子信息处理及移动通信技术中GSM短消息数据传输等电子信息处理技术,设计并研制成功电容感应式定点冰层厚度自动化无线实时监测系统;使用研制成功的电容式冰层厚度传感器及其检测系统在黄河内蒙河道进行了工程应用试验,获得大量的实验数据,通过对实验数据的详细分析研究,结合理论分析的结果,设计了分段平均值法和奇异普法的冰层厚度判断算法,并通过matlab编程实现,提高了冰层厚度判定的准确度,减小了误差。
     本论文的研究成果可以应用于长距离输水工程明渠输水渠道、河道、水库、湖泊的冰生消过程,极地海冰、冰川表层、冻土层、北方地区近海海岸冰层等变化的定点连续自动监测,为北方地区冬季水文自动预报、河流冰凌灾害预报、水电设施安全运行、地质环境监测、冬季道路、航空、海港安全运行、冬季水库水量检测、极地科考等提供一种新的检测理论与技术实现手段,对水文预报、防灾减灾、冬季海航、极地科考等领域具有重要的理论研究和工程实用价值。
Ice thickness and its change process is one of the basic factors for the study of ice generation and disappearance, ice jam and ice jam flood. Sea ice thickness is the most basic and important parameter to describe the state of the sea ice. In the South pole and North pole, sea ice thickness change has been an index of global climate change for many years. Ice thickness is considered to be the most difficult physical indicator of sea ice and fresh water ice to monitor for all the times. It is also a difficult problem to realize real-time automatic monitor of fixed-point ice thickness continuously.
     Summarized current practical advantages and disadvantages of ice thickness detecting method, This paper put forward a new detecting method of fixed-point ice thickness and water level under ice based on capacitive sensing technology. It is discussed that The basic principle of capacitive sensing technology and the use of this principle to realize automatic monitor of fixed-point ice thickness continuously in this paper.
     According to a large number of domestic and foreign literature, recently, capacitance and electric field of the uniplanar capacitance sensor with multi-electrode are not completely mathematical derived by Researchers in our country and abroad. The author use Finite element method to simulate electric field of uniplanar capacitance sensor with multi-electrode, clearly revealed the Mechanism using capacitive sensing technology to measure Ice thickness. The Dielectric value of Air, ice, water, are different, Based on this feature, the author has put forward a detecting method that based on capacitive sensing technology, by measuring the capacitance of different layers of air ice and water under ice, can differentiate the interface of ice and water under ice automatically, established a new theoretical basis for detecting ice thickness and water under ice water. In order to achieve the purpose of Stratified detection, the author design a special structure for capacitive inducing ice thickness sensor,laid the foundation for application of this technology. Taking new capacitive induction and ice thickness sensor as core, the author combined single chip microcomputer, digital electronic information processing technology and GSM short message data transmission technology in mobile communication technology to design and successfully develop capacitive induction and ice thickness fixed automatic wireless real-time monitoring system. The Successfully developed capacitive induction and ice thickness sensor has been applied in Inner Mongolia ,and I have got a lot of experimental data. Then we detaily analysed experimental data. Combining the results of theoretic analysis, we designed the algorithm including sub-average method and Singular Franco-Prussian and programming by matlab to determine ice thickness, which improves the accuracy of ice thickness and reduce the error.
     The research result of this paper can be applied to monitor the ice and melting process in long distance water diversion project’s water channels, rivers, reservoirs, lakes, and the ice changes in the polar sea ice, glacier surface, permafrost, the north inshore coast ice in a fixed, continuous automatic way. It provides a new detection theory and technological measure for northern winter hydrological forecasting, disaster forecasting river ice slush, safe operation of hydropower facilities, geo-environment monitoring, safe operation of winter roads, aviation, harbor, reservoir water testing in winter, polar expedition and so on. The proposed of this new detection method has important theoretical and practical value for the research in these areas which are hydrological forecasting, disaster prevention and mitigation, maritime navigation in winter, polar expedition etc.
引文
[1]沈永平,梁红.全球冰川消融加剧使人类环境面临威胁[J].冰川冻土,2001,23(2):208- 210.
    [2]全球气候变暖,本世纪末海平面将上升4-6米.人民网2006.3.31. http://www.biox.cn/content/20060330/
    [3]马尔代夫打响生存保卫战.计划另购国土举国搬迁.大洋网,广州日报,2009.10.20 http://news.sohu.com/20091020
    [4] WCRP/CliC.leeandClimatenews.TheAreticClimateSystemStudy/Climate andCryosPhereProjeetNewsletter,2002.
    [5]李志军,张占海,董西路等.北极海冰生消过程关键指标的观测新技术,自然科学进展,2004.14(9):1077-1080.
    [6]卞林根,陈百炼,辛羽飞.极地气象与全球变化[J].气象,2007.3 :3-9.
    [7]茅泽育,吴剑疆,佘云童.河冰生消演变及其运动规律的研究进展[J].水利发电学报,2002,1:153-160.
    [8]王军.河冰水力学研究进展[J].水利水电技术,2004,5:111-115.
    [9]壶口凌灾损失预计逾千万.山西晚报,2009.1.21,第三版.
    [10]王流泉.南水北调中线总干渠冰期输水的设计和管理[M].南水北调与水利科技,2002,(04).
    [11]李志军,卢鹏, Devinder S S.基于海冰物理和力学参数的渤海冰工程分区[J].水科学进展,2004,15(5):598-602.
    [12]陆钦年,段忠东,欧进萍,等.河冰对桥墩作用的冰荷载计算方法(Ⅱ)—冰压力计算公式[J].自然灾害学报,2004,11(4):112-118.
    [13]杨开林,刘之平,李桂芬,等.河道冰塞的模拟[J].水利水电技术, 2002.33(10):40-47
    [14]李志军,韩明,秦建敏等.冰厚变化的现场监测现状和研究进展[J].水科学进展,2005.9:753-757.
    [15]解思梅,邹斌,王毅,等.南极海冰异常变化与全球海平面变化[J].海洋学报,1997.1:27-37.
    [16]李志军,张占海.中国2003年北极海冰调查及未来北极海冰研究战略[J].极地研究, 2004, 16(3):202-210.
    [17] Perovich, D. K., T. C. Grenfell, J. A. Richter-Menge, et al. Thin and thinner: Sea ice mass balance measurements during SHEBA[J]. Journal of Geophysical Research, 2003, 108, C3, 8050, doi:10.1029/2001JC001079.
    [18]茅泽育,吴剑疆,张磊,张瑞廷.天然河道冰塞演变发展的数值模拟[J].水科学进展, 2003,(06):36-41.
    [19]李志民,邵洪文,师兰英.基于河道冰厚变化规律及其对冰期流量影响的分析[J],黑龙江水利科技.2003.10:46-50.
    [20]刘良明,马浩录.MODIS数据在黄河凌汛监测中的应用[J].武汉大学学报信息科学版,2004.29(8) :679-681.
    [21]丁德文.工程海冰学概论[M].海洋出版社,1999,北京.
    [22]顾李华,倪晋.河冰水文研究的进展[J].安徽水利水电职业技术学院学报,2008.1:24-26.
    [23]河流冰情观测规范[M].原水利水电部.1993,北京.
    [24]Spyros Beltaos. Challenges and Opportunities in the Study of River Ice Processes, Proceedings of The 19Th IAHR International Symposium on Ice:3-4,Canada,2008.7.
    [25]A.Barker etc. Satellite Detection and Monitoring of Sea Ice Rubble Fields, Proceedings of The 19Th IAHR International Symposium on Ice: 419-430,Canada,2008.7.
    [26]Kjetil Melvold etc. Monitoring Lake Ice in Norway using Remote Sensing (MODIS,RADARSAT), Proceedings of The 19Th IAHR International Symposium on Ice: 469-470,Canada,2008.7.
    [27] Garcia E. etc. .A comparison of sea ice field observations in the Barents Sea marginal ice zone with satellite SAR data, Geoscience and Remote Sensing Symposium, IGARSS '02. 2002 IEEE International, 2002.Vol.5, 3035 -3037.
    [28]欧洲发明新型冰层传感器,传感器世界,2004.1:33-34.
    [29]李桂芬.国际冰研究与工程专业委员会及冰工程学术讨论会介[J].冰川冻土,25(增2),2003:207-209.
    [30]杨慧根.2007-2008IPY国际行动计划[M].中国极地研究中心2007.10,上海.
    [31] Lal A.M.W. and Shen H. T. ,“A Mathematical Model for River Ice Processes”,Journal of Hydraulic Engineering ,ASCE ,117 (7) ,1991.
    [32]E.P.Foltyn and H.T.Shen. St. Lawrence River Freeze-Up Forecast,Journal of Waterway,Port,Coastal and Ocean Engineering,ASCE,112(4),467-481.
    [33] Garcia E. etc. .A comparison of sea ice field observations in the Barents Sea marginal ice zone with satellite SAR data, Geoscience and Remote Sensing Symposium, IGARSS '02. 2002 IEEE International, 2002.Vol.5, 3035 -3037.
    [34]秦建敏,程鹏.冰层厚度传感器及其检测方法[J],水科学进展,2008.3:66-69.
    [35] Laxon, S., N. Peacock, and D. Smith. High interannual variability of sea ice thickness in the Arctic region[J]. Nature, 2003, 425, 947-950.
    [36]Tamura, T., K. I. Ohshima, T. Markus, et al. Estimation of Thin Ice Thickness and Detection of Fast Ice from SSM/I Data in the Antarctic Ocean[J]. Journal of Atmospheric and Oceanic Technology, 2007, 24: 1757-1772.
    [37] Sun, B., J. H. Wen, M. B. He, et al. Sea ice thickness measurement and its underside morphology analysis using radar penetration in the Arctic Ocean[J]. Science in China-D, 2003, 46(11): 1151-1160.
    [38] Haas, C. Evaluation of ship-based electromagnetic-inductive thickness measurements of summer sea-ice in the Bellingshausen and Amundsen Seas, Antarctica[J]. Cold Regions Science and Technology, 1998, 27, 1-16.
    [39] Rothrock, D.A., Y. Yu, and G.A. Maykut. Thinning of the Arctic Sea-Ice Cover[J]. Geophysical Research Letters, 1999, 26(23), 3469-3472.
    [40] Strass, V. H. Measuring sea ice draft and coverage with moored upward looking sonars[J]. Deep-Sea Research I, 1998, 45: 795-818.
    [41]Norbert E etc. Measuring the thickness of clear freshwater ice using geometric optics and a spectrometer. Cold Regions Science and Technology. 2005.Vol.43, Issue 3, 177-186.
    [42]Lu Peng, Li Zhijun etc. Sea ice thickness and concentration in Arctic obtaining from remote sensing images. Chinese Journal of Polar Science, 2004, 15(2):91-97.
    [43]崔华义.利用非线性声学测量冰厚的方法研究[J].海洋技术, 2005,Vol.24, No.3:58-60
    [44]Ziad A. Hussein.etc. Remote sensing of sea ice thickness by a combined spatial and frequency domain interferometer: formulations, instrument design, and development Proc.SPIE, 2005. 5978.
    [45]郭井学,孙波,田钢.南极普里滋湾海冰厚度的电磁感应探测方法研究[J].地球物理学报,2008,3,51(2):596-602.
    [46]张占海,中国第2次北极考察报告.2003年,北京.
    [47] Langlois, A.; Barber, D.G.; Shafai, L. Observations of geophysical and dielectric properties and ground penetrating radar signatures for discrimination of snow, sea ice and freshwater ice thickness. Cold Regions Science and Technology, v 57, n 1, June 2009 : 29-38.
    [48]倪汉根,徐福生,金生.水库冰盖厚度及弧门自开启原因的研究[J].水利学报,1998,(12):1-6.
    [49]雷瑞波,李志军,秦建敏,等.定点冰厚观测新技术研究[J].水科学进展,2009.3:287.
    [50]秦建敏,沈冰.基于冰和水导电特性的新型冰层厚度传感器[J].传感器技术, 2004, 23(9): 55-58.
    [51]丛沛桐,马振兴,刘祥君.黄河冰凌地电预警技术初探[J].天津师范大学学报(自然科学版), 2007,(02):23-27.
    [52]崔静.中国机器人首次在高纬度海域开展冰下调查. http://news.xinhuanet.com/ tech/2008-09/09/content_9866498.htm.
    [53]张宝森,郜国明.宁蒙河段冰凌监测技术实验研究.郑州,黄河水利科学研究院,2009,9.
    [54]Cheng Yanfeng et al.Development of an Ice Thickness Monitoring Apparatus Based on a Magnetostrictive Displacement Sensor, Proceedings of The 19Th IAHR International Symposium on Ice: 675-686,Canada,2008.7.
    [55]刘秋勇.输电线路覆冰GPRS/CDMA在线监测预警系统,深圳市宏电技术股份有限公司http://www.gongkong.com/webpage/solutions/200802/.
    [56]邵瑰玮.输电线路覆冰监测系统应用现状及效果[J].电力设备,2008.Vol.9,No.6:13-15
    [57]李志军,张占海,李广伟,等.接触式自动测量冰、雪厚度变化过程的方法.中国,X〔P〕,ZL03111668.2005.
    [58]电容式触摸感应器和电路的研制.蔡祖欣.上海交通大学硕士论文.2008.
    [59]开电场传感技术的面纱.星星电子网.http//www.c-cnc.com/dz/news.
    [60]Baxter,Larry K.“Capacitive Sensors”IEEE Press, Piscataway N.J, 1997.
    [61]Bonse, M.H.W., C. Mul and J.W. Spronck,“Finite-element modelling as a tool for designing capacive position sensors”Sensors and Actuators, A46-A47, 1995.
    [62]Heerens, Willem Chr.,“Application of capacitance techniques in sensordesign”J .Phys. E:Sci. Instrum.19,1986.
    [63]贺庆之,贺静.单一平面电容传感器原理与应用[J].工业仪表与自动化装呈,2001(5):62-63.
    [64]张君,许锦峰,姚恩涛,等.测量围护结构含水率的同面散射场式电容传感器的设计[J].计测技术,2008,28(1):7-11.
    [65]杨柳,杨明皓,刘嫣红.利用边缘电场的电容式谷物水份传感器的研究.中国农业大学学报,2007,12 :58-61.
    [66]向莉,董永贵.同面散射场电容传感器的电极结构与敏感特性[J].清华大学学报,2004, 44(11):1471-1474.
    [67]董恩生,董永贵,吕文尔,等.同面多电极电容传感器的仿真与实验研究[J].机械工程学报,2006(2):1-6.
    [68]刘少刚,孟庆鑫,罗跃生,等.任意结构形状的电容传感器原理和数学模型[J].北京林业大学学报,2008,30(4):17-21.
    [69]谢东,李昌禧.同面散射场电容式砂含水量传感器的研究[J].传感技术学报,2008,12(12):2000-2004.
    [70]施阁,李青,孙延伟,等.基于边缘电场的电容式土壤含水量监测仪[J].农机化研究.2009,11,86-89.
    [71]用于围护结构含水率层析的同面散射场式电容传感器的设计[J].孙辰,姚恩涛,董静怡,徐君.工业仪表与自动化装置.2009,4,38-41.
    [72]贾殿龙,李晶皎,陈俊.基于电场成像的液位测量系统的设计与实现[J].计算机工程与设计,2006,6:2157-2159.
    [73]何燕冬,杨龙,彭涛.电容式触摸感应技术中的电容物理学[J].电子产品世界,2009.8:17-18.
    [74]陈强,陶海鹏,王志明.接近觉传感器的研究现状和发展趋势[J].甘肃科技纵横,2009.6:35-36.
    [75]Kaijen Hsiao,Paul Nangaroni,Manfred Hubert,Ashutosh Sax-enu,Andrew Y Ng.Reaction Grasping Using Optical ProximitySensors.2009 IEEE International Conference on Robotics and Au-tomation.2009:2098-2105.
    [76]Sean Walker,Kevin Loewke,Michael Fischer,Carlo Liu,andJ.Kenneth Salisbury.An OpticalFiber Proximity Sensor for HapticExploration{[D];[R]}.2007 IEEE International Conference on Robotics and Automation.2007:473-478.
    [77]陈季丹,刘子玉.电介质物理学[M].北京,机械工业出版社,1982.113-115.
    [78] Mao, Ling-Feng. Effects of dielectric constant mismatch on capacitance-voltage curve.IETE Journal of Research, v 55, n 5, p 218-221, September-October 2009.
    [79]马文蔚(东南大学等七所工科院校).物理学(中册),高等教育出版社,1999.11.
    [80](德)W.瓦格纳,A.克鲁泽.水和蒸汽的性质.北京,科学出版社,2003:32-33.
    [81]宁德亮.新型电容传感器测量流动湿蒸汽湿度的研究[D].哈尔滨工程大学博士学位论文,2006.
    [82]李赞.平面电容式屋面渗漏检测仪的研制[D].郑州大学硕士学位论文,2005.
    [83]陈驰一,李康.Maxwell理论的电磁对偶性[J].浙江大学学报(理学版),2001,28 (1):27-34.
    [84]王蔷,李国定,龚克.电磁场理论基础[M].北京,清华大学出版社,2001.123-125.
    [85]金建铭.电磁场有限元方法.西安电子科技大学出版社,1998,16-21.
    [86] Yamazaki, Katsumi. Adaptive finite element meshing at each iterative calculation for electromagnetic field analysis of rotating machines. Electrical Engineering in Japan (English translation of Denki Gakkai Ronbunshi), v 164, n 3, p 78-91, August 2008.
    [87] Takei, A. Yoshimura, S.; Kanayama, H. Large-scale parallel finite element analyses of high frequency electromagnetic field in commuter trains. CMES - Computer Modeling in Engineering and Sciences, v 31, n 1, p 13-23, 2008.
    [88] Ilic, Milan M. Ilic, Andjelija Z; Notaro?, Branislav M. Continuously inhomogeneous higher order finite elements for 3-D electromagnetic analysis. IEEE Transactions on Antennas and Propagation, v 57, n 9, p 2798-2803, 2009.
    [89]Yin-ke Dou,Xiao-Min Chang,Jian-Min Qin. The study of a capacitance sensor and its system used in measuring ice thickness, sedimentation and water level of a reservoir. 2009 International Forum on Information Technology and Applications .: 616-619, 2009.5,ChengDu,China.
    [90]Perme T. Layout and Physical Design Guidelines for Capacitive Sensing[R]. Microchip Technology Inc. 2007.
    [91]Perme T.Software Handling for Capacitive Sensing[R]. Microchip Technology Inc. 2007.
    [92]Curtis K, Perme T. Capacitive Multibutton Configurations[R]. Microchip Technology Inc. 2007.
    [93]窦银科,常晓敏,秦建敏.电容式河道”断面”检测传感器及其系统的研究[J].太原理工大学学报,2010,1:69-71. [94庞兆芳.大学物理学习指导[M].天津,天津大学出版社,1994.
    [95]郑民伟.非平行板电容器电容和电场的一种计算[M].大学物理,2001,(2).
    [96]边晓娜,刘静,赵立志.电容传感器的电路设计.仪表技术与传感器.2008,6:104-105,112
    [97]Yinke Dou,XiaoMin Chang,JianMin Qin.The research and application of the electric capacitor detecting sea ice thickness and its detecting system.2009 IEEE Circuits and Systems International Conference on Testing and Diagnosis 2009.5,ChengDu,China.
    [98]Teraoka, Yoshikazu , Saito, Akio; Okawa, Seiji .Ice crystal growth in supercooled solution. International Journal of Refrigeration, v 25, n 2, March 2002, : 218-225.
    [99]Yang S X , Yang W Q. A portable stray - immune capacitance meter[J].Review of Scientific Instruments,2002,73:1958-1961.
    [100] Converter IC for Capacitive Signal CAV424. Analog Microelectronics GmbH.
    [101]秦建敏,希玉珠,韩明,等.基压差式水位传感器的冰层厚度自动监测系统.水文.2006,26(2):68一70.
    [102]王野,谭靖.海冰厚度测量方法及仪器的研究.大连海事大学学报.2006,32:113-120.
    [103]王世良.论(绝对)电容率的新定义.第十届绝缘材料与绝缘技术学术交流会论文集.118-120.
    [104] (日)日野太郎著.电气材料的物理基础[M].王力衡,王友功,译.西安:西安交通大学出版社,1988.
    [105]闻瑞梅,王在忠.高纯水的制备及其工艺[M].北京,科学出版社,1999 :262-269.
    [106]卢祟考.周明军,高分子湿敏材料功能设计[J].传感器世界,2001,20(3):21-25.
    [107](日)大石不二夫著.高分子材料实用技术.顾雪蓉译.江苏科学技术出版社,1985:96-57.
    [108] VARADARAJAN M G,LEE K J ,BHATTACHARYA S K, et al. Studies on design ,fabrication and reliability assessment of embedded passives on a high-density interconnect (HDI)organic substrate using a sequential build-up process[C]. IEEE 2006Proc of HDP’06. Shanghai ,China ,2006 :1210.
    [109]蒙文舜,杨运经.电容传感器的原理及应用,现代电子技术,2003,(7):49-52.
    [110]孟立儿,郑宾.传感器原理及技术[M].兵器工业出版社,2000,(2).
    [111] Mahgerefleh Haroun,Gerazounis Styllianous.Design and development of a capacitance transducer for airborne particulates[C]//2005 AIChE Annual Meeting and Fall Showcase.Cincinnat,OH,USA,2005:2974-2982.
    [112] Ogawa S,Watanabe K.A switched-capacitor interfacer for high-accuracy,high—speed ratiometric signal processing of differential capacitance transducers[C]//IEEE Instrumentation and Measurement Technology Conference.Budapest.200l:1302-1307.
    [113] Olthuis W.Kooi B J,Bomer J G.Load to capacitance transfer using different spring elements in capacitive transducers[J].Sensors and Actuators A:Physical.2000.85:256-261.
    [114]阎石.数字电子技术基础,第四版.北京,高等教育出版社,1998:348-355.
    [115]电容传感器测量电路的研究与应用.白国花.中北大学硕士论文.2005.
    [116] Elgamel H E A. A simple and efficient technique for the simulation of capacitive pressure transducers[J].Sensors and Actuators A ,1999 ,77:183-186.
    [117] Puers R. Capacitive sensors:when and how to use them[J].Sensors and Actuators A,1993,37-38:93-105.
    [118]余生能,孙士平.基于V/T变换的电容传感器新型电容测量电路[J].中国测试技术,2005(9):42-43.
    [119]王涛,石林锁,陈新社,等.多谐振荡器在湿度测量中的应用[J].传感器技术.2003,22(9):66-68.
    [120]石林锁,张振仁,尚玉沛.基于多谐振荡器的湿度测量方法研究.国外电子测量技术.2001,4:4-5.
    [121]张洪润.传感器应用电路200例[M].北京:北京航空航天大学出版社, 2006:35.
    [122] Thomas L.Floyd David Buchla,《模拟电子技术基础》,高等教育出版社,2001.
    [123]刘君华,申忠如,郭富田.现代测试技术与系统集成[M].北京:电子工业出版社,2005: 9-15,38-90.
    [124]黄以铭.电子测试与实验技术.北京:人民邮电出版社,1988.
    [125]何立民.MCS-51系列.单片机应用系统设计.北京,北京航空学院出版社,1994:314-321.
    [126] Boukala, M.C. Ioualalen, M. GSM/GPRS performance evaluation. Proceedings of the 2005 International Conference on Communications in Computing, CIC'05, p 127-134, 2005,Proceedings of the 2005 International Conference on Communications in Computing, CIC'05.
    [127]秦建敏,沈冰.基于GSM短信息数据传输技术实现对地下水水位的数字化连续自动检测, 2004年全国水力学基础研究学术研讨会论文集,2004.11,武汉.
    [128]李科杰.新编传感器技术手册[M].北京,国防工业出版社,2002.
    [129](美)叶中行,王蓉华,徐晓岭,译.概率统计[M].人民邮电出版社.2007.3:369-373.
    [130] G.Blasquez,C.Douziech,P.Pons,Analysis characterization and optimization of temperature coefficient parameters in capacitive pressure sensors,Sensors and Actuators A 93(2001):44-47.
    [131]刘诗斌,高德远,李树国,传感器温度补偿的调试规律研究,化工自动化及仪表,2000.27(1):51-53.
    [132]窦银科,常晓敏,秦建敏.冰层厚度变点判断方法探讨[J].太原理工大学学报,2009.1:1271-1273.
    [133]窦银科,常晓敏,秦建敏.电阻率冰层厚度传感器在南极海冰考察中的应用[J].太原理工大学学报,2006.4,:23-26.
    [134]许恒迎,夏荣,李忠华.基于非线性最小-乘拟合的容性、阻性电流信号分解法.哈尔滨理工大学学报,2006,(1):120-123.
    [135]丁振良.误差理论与数据处理.哈尔滨,哈尔滨工业大学出版社,2002;88-89.
    [136]齐子元,米东,徐章隧,陈志伟.奇异谱分析在机械设备故障诊断中的应用[J].噪声与振动控制.200802(1):82-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700