用户名: 密码: 验证码:
松辽盆地北部上古生界热演化史恢复
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
松辽盆地基底及周边地区广泛分布石炭-二叠系,厚度大,范围广,越来越多的资料显示松辽盆地基底上古生界具有很大的生烃潜力,恢复松辽盆地基底上古生界热演化史,对预测松辽盆地基底上古生界油气远景具有十分重要的意义。本文针对松辽盆.地基底上古生界热演化研究存在的问题,结合与盆地外围的对比研究,在恢复地层剥蚀量,结合埋藏史和区域构造演化研究的基础上,基于Ro测试数据,使用TTI和ESAY%Ro方法,重建了松辽盆地基底上古生界热演化动态过程,确定了盆地基底上古生界的热演化程度。松辽盆地基底上古生界在不同地区热演化程度存在着明显的不均一性,构造位置、埋藏深度和岩浆侵入等是影响这种不均一性的主要原因。松辽盆地基底上古生界主要经历了晚古生代和中生代两次加热过程,中生代加热强度大于晚古生代之前的加热强度,中生代的加热过程使上古生界地层中有机质进一步成熟。使用有限元法模拟了不同规模及形态岩浆侵入活动的热效应,模拟结果显示:岩浆侵入体规模影响了围岩热作用范围和持续时间,岩浆侵入体形态对岩浆侵入后50年内侵入体周围热力场的形态有明显影响。岩浆侵入对围岩中有机质成熟度有明显影响,一个50m宽的侵入岩体,在距离岩体50m处可使地温升高70℃,并引起Ro升高约0.3%。在综合松辽盆地基底上古生界分布、剥蚀量、热演化史以及岩浆侵入对有机质成熟度影响等因素的基础上,确定了油气远景预测原则,圈定出西部断陷区、东北断隆起区的绥化断陷、东南断陷区的徐家围子断陷、兰西隆起及其与庙台子断陷过渡带等为四个有利远景区。
With the country growing demand for oil and gas resources, search for replacement with the strategic significance of new exploration areas becomes more urgent. Reconstruction of basin strata of Late Paleozoic basement thermal history is deep basin resources to open up new areas for exploration the key is to identify the basin basement strata of Late Paleozoic deep basin is as effective source rocks in this growing concern by people core. Basin and its peripheral widely developed in the late Paleozoic strata, the depth varies greatly (1~7km), generally 3~5km, mainly distributed in the western rift zone, the central uplift area and the southeast uplift zone, lindian region's most thick, to 7km, followed Sanzhao area, the thickest Zhaodong to 6km, the thickest northeast uplift for the 5km, heiyupao-Daqing area thick and wide distribution. Rocks include shale, slate, phyllite and carbonate rocks like slate, rock and mineral composition and structure of very low grade metamorphism show that more and more information Basin basement Paleozoic strata have important petroleum geological significance. Basin marine strata of Late Paleozoic basement, high abundance of organic matter, organic matter typeⅡ2-Ⅲtype, high maturity (Ro> 2.0%), had Carboniferous-Permian gas reservoirs found in a number of and CO2 gas reservoirs. Exploration results have been revealed Basin bedrock weathering crust, rock fissures exist in natural gas, Zhaoshen-1 Well in the basement crust 1×104m3 of industrial air by one day, Wang-902 well, Ren-5 well in the basement rock of any drilling case of gas. Existing research shows that Basin deep bedrock weathering crust, bedrock fractures and found the upper reservoir of organic deep source gas, may be derived from the Carboniferous-Permian strata. The results show that surrounding the basin, northeast China developed the Early Devonian, Late Carboniferous-Early Permian, the Permian and Late Permian, four sets of dark rocks. Longjiang areas of the Permian field study found that dry asphalt is Carboniferous-Permian rock itself generated.
     The northern basin basement metamorphic thermal simulation results show that metamorphic certain hydrocarbon potential, the equivalent of source rocks Ro 2.0%to 3.5% range, hydrocarbon intensity 3.0×108~23.8×108 m3/km2. Rock thin section, illite crystallinity, geochemical analysis shows that today the formation of vitrinite reflectance was 2.05%~7.60%, in most parts of the slight modification that the very low-grade metamorphism, with relatively high abundance of organic matter degree, the whole basin, the average organic carbon 1.17%, Sishen-1 Well 1289.5m thick strata of organic carbon values as high as the average 1.45%.
     Thermal history of sedimentary basins reconstruction is to restore the ancient geothermal field and its time evolution. The current restoration of ancient sedimentary basin commonly used method of temperature there are two categories:the first is the use of thermal indicators to simulate a variety of ancient basin thermal history, the main palaeothermometry including organic maturity Ro, fluid inclusions, clay minerals, phosphorus ash fission track and other stone; the second is the thermal dynamics of basin evolution model to study ancient temperatures. Late Paleozoic strata in northern basin depth of large, its maximum temperature experienced by the general over the apatite fission track annealing temperature, it is difficult for the system to their apatite fission track analysis. The main research method is combined with Ro palaeothermometry heat conduction numerical simulation.
     Different tectonic units of different uplift rate of erosion can result in different regions showed different degrees of thermal evolution. Uplift rate of denudation in the small area, low levels of thermal evolution of the rock surface; in the uplift rate of denudation of the region, a high degree of thermal evolution of surface rocks. Uplift rate of denudation and erosion of small areas of uplift in areas of secondary burial in the process of thermal evolution and hydrocarbon generation with different characteristics. Thermal history of recovery, you first need to restore accurate to history, but to the history of restoration of erosion thickness is one of the important parameters, erosion process is an important part of burial history. Basal Carboniferous Basin-Permian suffered a degree of erosion, denudation in different wells varies greatly. In this study, according to the geological basin characteristics and the data collected, use the principle of material balance based on the density difference method to restore law and Ro the northern basin of the Upper Paleozoic basement denudation. The results showed that the northern basin of the Upper Paleozoic denudation has certain rules, in the center of the basin near the central uplift, and southeast rift zone Xujiaweizi depression denudation small, out denudation increased the minimum amount of erosion 91.6771m, of up to 4045.7269m, the more obvious differences.
     EASY%Ro method is the most accurate model of Ro, is more widely used methods in moderate to high maturity, when more accurate. This study is in the basin to restore the basis of the history, use Ro data, mainly using the EASY% Ro model, and supporting the use of TTI model, restoration of the Upper Paleozoic basin in the Mesozoic thermal evolution of the second degree before burial, the highest ancient temperature, and the Mesozoic Paleozoic secondary burial on the degree of thermal evolution, and finally, using finite element modeling, simulation of early Mesozoic and Cenozoic magmatic intrusion in the Late Paleozoic strata in the maturity of organic matter.
     Basin north of the Carboniferous-Permian generally higher degree of thermal evolution, the majority of vitrinite reflectance is greater than 2%, but in different regions, different structural parts of the maturity of organic matter is very different. In the basin, the current drilling data indicate that the northern basin of Carboniferous-Permian the greatest difference between the top of the depth of 4060m, the most shallow wells for Ren-7 well (537m), the deepest well as Songji-6 well (4597m), As the depth of the different degree of thermal evolution was significantly different. In addition, surrounding the basin, the Upper Paleozoic of the thermal evolution of the basin basement compared to the more obvious differences, analysis of the formation of the main reasons for this difference is the region of ancient thermal field, opposite the settlement, the difference of uplift, magmatic activity fault activity. For the Carboniferous-Permian strata and then buried before the restoration of the thermal evolution degree, use Ro data in this study, using the time-temperature index (TTI) model. The results show that the Carboniferous-Permian Ro after the second burial buried more than twice before the Ro, the role of the eastern region of the secondary burial of the Carboniferous-Permian thermal maturity of stronger than in the western region, some areas buried before the second or even lower than the thermal evolution of the overlying Mesozoic its current degree of evolution.
     In the sedimentary basin, for extrusive rock, due to its rapid cooling after the emission, its underlying sedimentary strata in the thermal evolution of organic matter affected to a lesser extent, even as the heat emitted from rocks generated hydrocarbons, in the absence appropriate storage conditions, it is difficult to save. For intrusive rocks, their formation is a relatively slow exothermic process, so its rock in the evolution of organic matter will affect, using the finite element method this magmatic intrusion of heat conduction modeling, to analysis magma intrusion on the thermal evolution of organic matter surrounding the impact. The results indicate that the intrusion of a 50m wide rock, about 100m away from the rock, within 200 years after the intrusion of magma, the temperature rising rapidly, it began its sharp decline, but the cooling rate is lower than the rate of warming, and in from the rock over 200m office, the degree of its temperature is not obvious. Magma intrusion in 4000, the rock temperature and rock temperature tend to the same temperature within the range of 5℃. With increasing distance from the rock, heating up more and more small extent, its because of the warming caused by magma intrusion temperature of the maximum time to reach more and more later. Magma intrusion on the surrounding temperature field range of about 800m, However, the more away from the mass, the smaller its temperature range, but from the beginning to heat up the temperature dropped to normal temperature gradient, the more time they experienced increasingly short, so by the surrounding magma intrusion caused the change in the maturity of organic matter, this range will be smaller. The intrusive rock 50m 50m away from their place can cause the increase of about 0.3% Ro,100m office about 0.15%,200m office about 0.02%, the effective impact of the total area of about 200m. 100m of intrusive rock at a distance of 50m Ro place can cause the increase of about 0.97%, 100m Office, about 0.4%,200m office about 0.16%,500m office about 0.05%, the effective impact of the total area of about 500m.
     Basin strata of Late Paleozoic basement is mainly affected by the oil and gas prospects of the development situation of the Late Paleozoic strata, the second degree of thermal evolution before burial, secondary burial in the process of thermal evolution of control. Meet the following conditions for oil and gas in areas with good vision:1, large thickness of the Carboniferous-Permian development zone and adjacent areas; 2, before the lower Mesozoic thermal evolution of the region, the new generation of strong thermal effect areas with higher intensity of hydrocarbon; 3, suffered minor uplift erosion, thick in the overlying Mesozoic and Cenozoic strata of the region; 4, Mesozoic and Cenozoic volcanic activity, magma intrusion and the end of hack so deep thermal heating effect strong areas. Finalized the western rift zone, northeast off the Suihua rift uplift area, southeast rift zone Xujiaweizi depression, Lanxi uplift and faulted transition zone with Miaotaizi four favorable prospecting area.
引文
[1].冯子辉、孙春林、刘伟.松辽盆地基底浅变质岩的有机地球化学特征[J].地球化学,2005,34(1):73-78.
    [2].迟元林.松辽盆地深部结构及成盆动力学与油气聚集[M].北京:石油工业出版社,2002.
    [3].陈好寿.成矿作用年代学及同位素地球化学[M].北京:地质出版社,1994.
    [4].陈增智,柳广弟,郝石生.修正的镜质体反射率剥蚀厚度恢复方法[J].沉积学报,1999,17(1):141-144.
    [5].丁海涛,王家林,许惠平,等.利用大地热流估算松辽盆地岩石圈深度[J].同济大学学报(自然科学版),2004,32(9):1149-1152.
    [6].丰国秀,陈盛吉.岩层中沥青反射率与镜质体反射率的关系[J].天然气工业,1988,45(6):20-25.
    [7].冯子辉,孙春林,刘伟,等.松辽盆地基底浅变质岩的有机地球化学特征[J].地球化学,2005,34(1):73—78.
    [8].郭胜哲.中国东北及内蒙古地槽区二叠系岩相古地理[A].中国地质科学院沈阳地质矿产研究所集刊[C].北京:地质出版社,1995,(4):19-34.
    [9].何丽娟,熊亮萍,汪集旸.莺歌海盆地构造热演化模拟研究[J].中国科学(D),2000,30(4):415-419.
    [10].黑龙江省地质矿产局.黑龙江省区域地质志[M].北京:地质出版社,1993.
    [11].胡凯,刘英俊.沉积有机质的喇曼光谱研究[J].沉积学报,1993,11(3):64-71.
    [12].焦玉国,李景坤,乔建华.伊利石结晶度指数在岩石变质程度研究中的应用[J].大庆石油地质与开发,2005,24(1):41-43.
    [13].康铁笙,王世成.地质热历史研究的裂变径迹法[M].北京:科学出版社,1991.
    [14].李储华,纪友亮,张世奇,等.应用宇宙成因核素10Be和26Al估算剥蚀面的暴露时间及剥蚀速率和剥蚀厚度[J].石油大学学报(自然科学版),2004,28(1):1-5.
    [15].黎广荣.松辽盆地早白垩世岩石圈热结构模型研究[D].吉林:吉林大学地球科学学院,2007.
    [16].李景坤,宋兰斌,刘伟.松辽盆地北部石炭-二叠系古镜质体反射率恢复[J].大庆石 油地质与开发,2007,26(3):32-38.
    [17].李伟.恢复地层剥蚀厚度方法综述[J].中国海上油气(地质),1996,10(3):167-171.
    [18].廖卓庭,万传彪.大庆中央拗陷区早二叠世腕足动物群的发现及其地层意义[J].地质学报,2002,76(1):50-54.
    [19].林瑞泰.热传导理论与方法[M].天津:天津大学出版社,1992.
    [20].刘斌.利用流体包裹体计算地层剥蚀厚度——以东海盆地3个凹陷为例[J].石油实验地质,2002,24(2):172-176:180.
    [21].刘德汉,周中毅,贾蓉芬.碳酸盐岩生油岩中沥青变质程度和沥青热变实验[J].地球化学,1982,3:237-243.
    [22].刘景彦,林畅松,喻岳钰,等.用声波测井资料计算剥蚀量的方法改进[J].石油实验地质,2000,22(4):302-306.
    [23].刘晓艳,杜鸿烈,陈章明.松辽盆地边缘石炭-二叠系地表石油显示及其地质意义[J].地球化学,2001,30(4):390-394
    [24].刘佑荣,唐辉明.岩体力学[M].北京:中国地质大学出版社,2005.
    [25].卢双舫,刘新颖,王振平,王跃文.松辽盆地深层剥蚀量探讨及其意义[J].大庆石油地质与开发,2005,24(1):20-22.
    [26].牟中海,唐勇,崔炳富,等.塔西南地区地层剥蚀厚度恢复研究[J].石油学报,2002,23(1):40-44.
    [27].穆治国.激光显微探针40Ar/39Ar同位素定年[J].地学前缘,2003,10(2):301-307.
    [28].邱楠生,金奎励.利用激光诱导荧光确定新煤阶参数的方法[J].科学通报,1992,37(22):2072-2075.
    [29].邱楠生,胡圣标,何丽娟.沉积盆地热体制研究的理论与应用[M].北京:石油工业出版社,2004.
    [30].任战利,萧德铭,迟元林.松辽盆地古地温恢复[J].大庆石油地质与开发,2001,20(1):40-41-55.
    [31].邵学钟,张家茹,殷秀华,等.油气勘探与地壳深部构造研究[J].石油勘探与开发,1999,26(2):11-14.
    [32].石广仁.油气盆地数值模拟方法[M].北京:石油工业出版社,1999.
    [33].孙永革,傅家谟,刘德汉,等.火山活动对沉积有机质演化的影响及其油气地质意义——以辽河盆地东部凹陷为例[J].科学通报,1995,40(11):1019-1022.
    [34].谭绿贵,周涛发,袁峰.40Ar/39Ar同位素体系及其在地学上的应用[J].合肥工业大学学报(自然科学版),2004,27(12):1509-1513.
    [35].佟彦明,宋立军,曾少军.利用镜质体反射率恢复地层剥蚀厚度的新方法[J].古地理学报,2005,7(3),417-424.
    [36].屠传经,沈珞婵,吴子静.热传导[M].北京:高等教育出版社,1992.
    [37].万明浩,秦顺亭,起凤梧,等.岩石物理性质及其在石油勘探中的应用[M].北京:地质出版社,1994.
    [38].王成善,李祥辉.沉积盆地分析原理与方法[M].北京:高等教育出版社,2003.
    [39].汪缉安,熊亮萍,杨淑贞.地热与石油[M].北京:科学出版社,1985.
    [40].王清海,许文良.松辽盆地形成与演化的深部作用过程--中生代火山岩探针[J].吉林大学学报(地球科学版),2003,33(1):37-42.
    [41].王兴光,王颖.松辽盆地南部北带基底岩浆岩SHRIMP锆石U-Pb年龄及其地质意义.地质科技情报,2007,26(1):23—27.
    [42].王毅,金之钧.沉积盆地中恢复地层剥蚀量的新方法[J].地球科学进展,1999,14(5):482-486.
    [43].王颖,张福勤,张大伟,等.松辽盆地南部变闪长岩SHRIMP锆石U-Pb年龄及其地质意义[J].科学通报,2006,51(15):1811-1816.
    [44].吴福元,孙德有,李惠民,等.松辽盆地基底岩石的锆石U-Pb年龄[J].科学通报,2000,45(6):656-660.
    [45].吴乾蕃,谢毅真.松辽盆地大地热流[J].地震地质,1985,7(2):59-64.
    [46].吴乾蕃.松辽盆地地热场[J].地震研究,1991,14(1):31-40.
    [47].邢顺洤,姜洪启.松辽盆地陆相砂岩储集层性质与成岩作用[M].哈尔滨:黑龙江科学技术出版社,1993.
    [48].伊恩·勒奇.盆地分析的定量方法(第一卷)[M].魏增璞,译.北京:石油工业出版社,1996.
    [49].伊恩·勒奇.盆地分析的定量方法(第二卷)[M].蔡希源,译.北京:石油工业出版社,2001.
    [50].杨宝俊.在地学断面域内用地震学方法研究大陆地壳—以中国满洲里-绥芬河地学断面为例[M].北京:地质出版社,1999.
    [51].杨宝俊,张梅生,王璞珺,等.中国油气区地质—地球物理解析[M].北京:科学出 版社,2003.
    [52].杨春,罗霞,李剑,等.松辽盆地北部基底浅变质岩热模拟实验及其气态产物地球化学特征[J].中国科学D辑:地球科学,2007,37(SⅡ):118-124.
    [53].杨光,薛林福,刘振彪,等.松辽盆地深部地震剖面解释与深部地质研究[J].石油与天然气地质,2001,22(4):326-330.
    [54].余昌铭.热传导及其数值分析[M].北京:清华大学出版社,1981.
    [55].余和中.松辽盆地及周边地区石炭纪-二叠纪岩相古地理[J].沉积与特提斯地质,2001,21(4):70-83.
    [56].余和中,蔡希源,韩守华,等.松辽盆地石炭-二叠系分布与构造特征[J].大地构造与成矿学,2003,27(3):277—281.
    [57].张继军、毕先梅.成岩极低级变质作用及油气勘探意义[J].地学前缘(中国地质大学,北京),1999,6(2):251-257.
    [58].章凤奇.松辽盆地北部早白垩世火山事件与地球动力学[D].浙江:浙江大学理学院地球科学系,2007.
    [59].章凤奇,陈汉林,董传万,等.松辽盆地北部存在前寒武纪基底的证据[J].中国地质,2008,35(3):421-428.
    [60].张洪济.热传导[M].北京:高等教育出版社,1992.
    [61].张兴洲,周建波,迟效国,等.东北地区晚古生代构造-沉积特征与油气资源[J].吉林大学学报(地球科学版),2008,38(5):719-725.
    [62]. Allen P A, Allen J R. Basin Analysis:Principles & Applications[M]. London:Blackwell Scientific Publications,1990.
    [63]. Barker C E. Bone Y, Lewan M D. Fluid inclusion and vitrinite-reflectance geothermometry compared to heat-flow models of maximum paleotemperature next to dikes, western onshore Gippsland Basin, Austrilia. International Journal of Coal Geology,1998,37(1-2):73-111.
    [64]. Barker C E, Elders W A. Vitrinite reflectancegeothermometry and apparent heating duration in the Cerro Prieto geothermal field[J]. Geothermics,1981,10(3/4):207-223.
    [65]. Bishop R S.Calculated compaction of thick abnormally pressured shales[J].AAPG Bulletin,1979,63(6)::918-933.
    [66]. Buntebarth G, Middleton M. Lecture notesin in earth sciences. Vol.15, Paleogeothermics[M].1986.
    [67]. Burnham A K, Sweeney J J. A chemical kinetic model of vitrinit maturation and reflectance[J]. Geochim. et Cosmochim. Acta,1989,53(10):2649-2657.
    [68]. Cannan J. Time-temprature relation in oil genesis[J]. AAPG Bulletin,1974, 58:2516-2521.
    [69]. Carlson W D. Mechanisms and kinetics of aptite fission track annealing[J].1990, American Mineralogist,75:1120-1139.
    [70]. Corrigan J. Inversion of apatite fission track data for thermal history information[J]. Journal of Geo logical Research,1991,96 (B6):10347-10360.
    [71]. Dow W G. Kerogen studies and geological interpretations [J]. Journal of Geochemical Exploration,1977,7(1):79-99.
    [72]. Epstein A G, Epstein J B, Harris C D. Conodont colour alteration-an index to organic metamorphism[M]. Washington, DC:United State Government Printing Office,2008.
    [73]. Farley K A. Helium diffusion from apatite:general behavior as illustrated by Durango fluorapatite[J]. Journal of Geophysical Research,2000,105:2903-2914.
    [74]. Fleischer R L, Price P B, Walker R M. Effects of temperature, pressture and ionization of formation and stability of fission track in minerals and glasses[J]. J. Geophys. Res., 1965,70:1497-1502.
    [75]. Fjeldskaar W, Helset H M, Johansen W H, et al. Thermalmodelling of magmatic intrusions in the Gjallar Ridge,Norwegian Sea:implications for vitrinite reflectance and hydrocarbonmaturation[J]. BasinResearch,2008,20,143-159.
    [76]. Fleischer R L, Price P B, Walker R M. Solid state track detectors applications to nuclear science and geophysics [J]. Ann. Rev. Nucl. Sci.,1965,15:1-28.
    [77]. Gretener P E. Geothermics--using temperature in hydrocarbon exploration[J]. AAPG Education Course Note Series,1981,17:170.
    [78]. Galushkin Yu. I. Thermal effects of igneous intrusions on maturity of organic matter:A possible mechanism of intrusion[J]. Organic Geochemistry,1997,26(11-12):645-658.
    [79]. George S C. Effect of igneous intrusion on the organic geochemistry fo a siltstone and an oil shale in the Midland Valley of Scotland[J]. Organic Geochemistry,1992, 18(5):705-723.
    [80]. Gudish T M, Kendall C G ST, Lerche J, et al. Basin evolution using burial history calculation-an overview[J]. AAPG Bulletin,1985,69(1):92-105.
    [81]. Gurba L W, Weber C R. Effects of igneous intrusions on coalbed methane potential, Gunnedah Basin, Austrilia. International Journal of Coal Geology,2001, 46(2-4):113-131.
    [82]. Hellinger S J, Sclater J G. Some comments on two-layer extension models for the evolution of sedimentary basins[J]. J. Geophys. Res,1983,88:8251-8269.
    [83]. Henry P H. Analysis of sonic well logs applied to erosion estimates in the Bighorn Basin, Wyomin[J]. AAPG Bulletin,1996,80:630-647.
    [84]. Hood D, Gutjahr C C M. Organic metamorphism and the generation of petroleum[J]. AAPG Bulletin,1975,59:986-996.
    [85]. Hu Sheng Biao, He Lijuan, Wang Jiyang. Heat flow in the continental area of China:a new dataset[J]. Earth and Planetary Science Letters,2000a,179(2):407-419.
    [86]. Japsen P, Greent P F, Nielsen E S, ea al. Mesozoic-Cenozoic exhumation events in the eastern North Sea Basin:a multi-disciplinary study based on palaeothermal, palaeoburial, stratigraphic and seismic data[J]. Basin Research,2007,19(4):451-490
    [87]. Jin Kuili, Qiu Nansheng. Application of laser-induced fluorescence of coal extracts for determining rank[J]. Org Geochem,1993,20(6):687-694.
    [88]. Karweil J. Die Metamorphose der kohlen vom standpunkt der physikaischen chemie[J]. Z. Deut Geol. Ges.,1956,107:132.
    [89]. Katz B J, Phelfer R N, Schunk D J. Interpreation of Discontinuous Vitrinite Reflectance Profiles[J]. AAPG Bulletin,1988,72(8):926-931.
    [90]. Laslett G M, Green P F, Duddy I R, et al. Thermal annealing of fission tracks in apatite 2. a quantitative analysis[J]. Chemical Geology,1987,65:1—13.
    [91]. Law B E, Nuccio V F, Barker C E. Kinky vitrinite reflectance well profiles[J]. AAPG Bulletin,1989,73(8):721-730.
    [92]. Lerche I, Yarzab R F, Kendall C G ST. Determination of paleoheat flux from vitrinite reflectance data[J]. AAPG Bulletin,1984,68(11):1704-1717.
    [93]. Lerche I. Inversion of multiple thermal indicators:Quantitative methods of determining paleoheat flux and geological parameters. I. Theoretical development for paleoheat flux[J]. Mathematical Geology,1988,20(1):1-36.
    [94]. Lucazeau F, Le Douaran S. Numerical model of sediment thermal history comparison between the Gulf of Lion and the Viking Graben[A]. Thermal Phenomena in Sedimentary Basins[C], Paris:Editions Technip,1984,211-218,
    [95]. Rupke L H, Schmalholz S M, Schmid D W, et al. Automated thermotectonostratigraphic basin reconstruction:Viking Graben case study[J]. AAPG Bulletin,2008,92(3):309-326.
    [96]. Makhous M, Galushkin Yu. I. Burial history and thermal evolution of the northern and eastern Saharan basins[J]. AAPG Bulletin,2003,87(10):1623-1651.
    [97]. Mckenzie D. Some remarks on the development of sedimentary basins[J]. Earth and Planetary Sci. Letters,1978,40:25-32.
    [98]. Merrihue C, Turner G. Potassium-argon dating by activation with fast neutrons[J]. J. Geophys. Res.,1966,71:2852-2857.
    [99]. Metchell J. G.. The argon-40/argon-39 method for potassium argon age determination[J]. Geochin Cosmochim Acta,1968,32:781-790.
    [100]. Middleton M F, Falvey D A. Maturation modeling in Otway Basin, Australia[J]. AAPG Bulletin,1983,67(2):275-279.
    [101]. Price L C. Geologic time as a parameter in organic metamorphism and vitrinite reflectance as an ablute paloegeothermometer[J]. J. of Petroluem Geology,1983, 6(1):5-38.
    [102]. Royden L, Keen C E. Rifting processes and thermal evolution of the continental margin of eastern Canada determined from subsidence curves[J]. Earth Planet Sci Lett, 1980,51:343-361.
    [103]. Sleep N H, Snell N S. Thermal contraction and flexure of midcontinent and Atlantic marginal basins[J]. Geophys J. Roy Astrom. Soc,1976,45:125-154.
    [104]. Sweeney J J, Burnham A K. Evaluation of a simple model of vitrinite reflectance based on chemical kinetic[J]. AAPG Bulletin,1990,74:1559-1570.
    [105]. Tissot B P, Pelet R, Ungerer P. Thermal History of Sedimentary Basins, Maturation Indices, and Kinetics of Oil and Gas Generation[J]. AAPG Bulletin,1987, 71(12):1445-1466.
    [106]. Underdown R, Redfern J. Petroleum generation and migration in the Ghadames Basin, north Africa:A two-dimensional basin-modeling study[J]. AAPG Bulletin,2008, 92(1):53-76.
    [107]. Von Herzen R P, Helwig J A. Geothermal heat flux determined from cost wells on the Atlantic continental margin[A]. Thermal Phenomena in Sedimentary Basins[C]. Paris:Editions Technip,1984,219-220.
    [108]. Wang J Y, Qiu N S. Thermal regime of Sedimentary Basin[J]. Petroleum Science, 1998, 1(1):1-6.
    [109]. Waples D W. Time and temperature in petroleum formation:Application of Lopatin's method to petroleum exploration[J]. AAPG Bulletin,1980,64(8):916-926.
    [110]. Wernicke B. Low-angle normal faults in the basin and Range province[J]. Nature, 1981,291:645-648.
    [111]. Wernicke B. Uniform-sense normal simple shear of the continental lithosphere[J]. Can. J. Earth. Sci.,1985,22:108-125.
    [112]. Wolf R, Farley K, Kass D. Sensitivity analysis of the apatite (U-Th)/He thermochronometer[J]. Chemical Geology,1998,148:105-114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700