用户名: 密码: 验证码:
低维功能氧化物纳米材料的合成与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低维金属氧化物纳米材料由于其独特的物理和化学性质,在催化、光电、气敏、磁性、电化学和生物医学等领域有着极为重要的研究价值和广泛的应用前景。探索和发展新的合成方法,获得具有特定尺寸、形貌、维度的金属氧化物纳米材料,并进一步构筑功能化的纳米结构体系,对于该类材料进入实际应用领域有着深远的影响。本论文以两类比较重要的金属氧化物材料——钒氧化物和磁性氧化铁为研究对象,进行了液相合成、表面修饰以及相关性质方面的研究,探讨了组成、结构及性能的相关性,分析了结构形成的机理。主要内容和研究结果如下:
     1.发展了绿色、环保、快捷的制备亚稳态VO2纳米带的新方法。即采用温和、低价、无毒的葡萄糖作为还原剂和结构诱导剂,成功地通过水热法制备了VO2(B)纳米带,并对相关试验参数进行了优化。研究表明当V205与葡萄糖的物质的量的比保持1:1时,可在180℃水热反应24h制得形貌均一、晶形良好的带状VO2(B)。与制备VO2(B)纳米材料的传统方法比,该法更为温和、绿色,且产物纯度高,产量大,利于放大。此外,结合相似反应条件下其他多羟基醇类的对比试验初步探讨了葡萄糖多羟基对水热条件下形成VO2(B)带状形貌的结构导向作用。
     2.在室温常压下采用简便的银镜反应首次将纳米银颗粒修饰到钒氧化物纳米管上,获得了粒径均匀,分散良好的Ag/VOx-NTs纳米复合材料。对相关试验参数进行了优化。发现当AgNO3溶液浓度保持0.1%时,Ag纳米粒子的负载效果最好。以污水中最为常见的大肠杆菌为例,将优化条件下获得的Ag/VOx-NTs应用于抑菌试验。结果表明,该复合材料对大肠杆菌具有良好的抑菌性能。另外,通过简单的溶胶-凝胶预处理并结合水热合成,成功的制备了形貌良好的Co掺杂VOx-NTs复合物。发现当Co掺入量较小时,Co原子能成功的进入VOx晶格中,掺Co后的样品仍能保持良好的管状形貌。然而,当掺Co量≥10 mmo1%时,Co原子不能完全有效地进入VOx晶格,产品中存在钴钒复合物纳米管和C0304微小碎片。上述工作丰富了VOx-NTs的功能化研究。
     3.采用简单的超声化学还原法,将6-8 nm的Pd颗粒固载在Fe304纳米空心微球上,并研究了该Pd/Fe3O4复合材料碱性条件下对甲醇的催化氧化性能。研究结果表明,该材料对甲醇氧化表现出明显的催化效果和较好的催化稳定性。为了进一步提高催化性能,对Pd/Fe3O4合成路线进行了改进,即对载体进行稀酸预处理后重新采用化学还原法构筑了Pd/Fe3O4复合材料。改进方法后得到的催化剂与相关文献和原催化剂相比,催化活性和稳定性有了很大提高。
     4.在不添加表面活性剂、高分子聚合物的情况下,首次通过混合溶剂热路线制得了颗粒均匀、粒径范围较窄、分散性较好的Fe304纳米颗粒。通过改变反应温度、反应时间、醇水比例、碱源等试验参数探讨了不同反应条件对产物纯度、形貌和产率的影响,优化了产品合成条件。同时,考察了产品在不同溶剂中的分散性能和磁性。研究表明,通过上述混合溶剂热路线合成的Fe304纳米颗粒具有弱的双亲性,在极性溶剂中有相对较好的分散性,且具有近超顺磁性,有望在生物医学领域获得进一步应用。将K2CO3碱源替换为EDA,在与上述合成路线相似的条件下,获得了分散性好、平均粒径约30-40nm左右的不规则六方Fe304纳米晶。研究证实,该纳米材料在极性溶剂中有很好的分散性,并具有软铁磁性。
Due to their unique physical and chemical properties, low-dimensional metal oxide nanomaterials show signifaicant research value and wide applications in the fields of catalysis, optoelectronics, sensing, magnetics, electrochemistry and bio-medicine, etc. Preparation of nanomaterials with well-defined size, morphology, dimensionality through novel synthetic approaches and fabrication of functional systems with nanostructures, should have crucial influence on their real applications. In this dissertation, the investigation was focused on the two kinds of important metal oxides—vandium oxides and magnetite, and valuable explorations have been carried out on new solution-based manipulated synthetic strategies, surface modification and novel properties for above functional metal oxide nanostructures along with the connection between composition, structure and properties of these nanomaterials. At the same time, the structure formation mechanism was also discussed. The main contents and results were listed as follows:
     1. We developed a green, environmental friendly and facile method for the preparation of metastable VO2. Namely, belt-like VO2 (B) nanomaterials were successfully synthesized via a hydrothermal approach using mild, low-cost and non-toxic glucose as reducing agent, and the related experimental parameters were optimized. The results revealed that the belt-like VO2 (B) nanomaterials with uniform morphology and fine crystaline could be obtained at 180℃for 24 h when the molar ratio of V2O5 and glucose was maintained at the ratio of 1:1. Compared with other methods, this route is more milder, greener. Furthermore, the as-synthesized products were very pure with high productivity. Therefore, it is particularly fit for the synthesis of VO2 (B) nanomaterials on a large scale. In addition, the structure-directing roles played by polyhydroxy groups in the formation of belt-like VO2 (B) under hydrothermal conditions were discussed basically in comparison with the control experiments of other kinds of polyhydroxy.
     2. Vanadium oxide nanotubes (VOx-NTs) modified by highly dispersed Ag nanoparticles (Ag/VOx-NTs) have been firstly synthesized via a facile silver-mirror reaction at room temperature and ambient pressure. The relevant experimental parameters were optimized. It was confirmed that the optimum concentration of AgNO3 solution to synthesize well modified Ag/VOx-NTs is about 0.1%. The Ag/VOx-NTs composite obtained from optimum conditions was used as sample in the test of antibacterial properties. Escherichia coli (E.coli), one of the most frequent species inhibiting in water, was employed as standard strains. The corresponding antibacterial tests demonstrated the as-synthesized Ag/VOx-NTs exhibited strong antibacterial activity against E.coli. Additionally, fine Co-doped vanadium oxide nanotubes were prepared successfully via a modified sol-gel process followed by hydrothermal reaction. It was found Co atoms could enter the crystalline lattice of VOx-NTs when Co doping level was relatively low, and the Co-doped VOx-NTs still preserved the nanotubular structure. However, if the Co content reach or exceed 10 mol%, only partial Co atom could enter the crystalline lattice of VOx-NTs. Small fragments appear with the doped nanotubes. The above work enriched the investigations of functional VOx-NTs.
     3. Pd nanoparticles with average diameter of 8-10nm were successfully supported on the Fe3O4 hollow nanospheres via a facile sonochemical reduction process. The as-obtained Pd/Fe3O4 composite was used as electrocatalyst for methanol oxidation in alkaline media. The results showed that the Pd/Fe3O4 compodite exhibited noticeable electrocatalytic activity and good stability towards methanol oxidation. To further improve the electrocatalytic performance of Pd/Fe3O4 composite, a new method was provided. In this route, Fe3O4 hollow nanospheres pretreated with dilute HCl solutions were firstly employed as supports and simple chemical reduction was then introduced. The Pd/Fe3O4 catalyst synthesized in this way showed enhanced electrocatalytic activity and better stability towards methanol oxidation in comparition with relevant literatures and the Pd/Fe3O4 obtained from sonochemical reduction process.
     4. Well dispersed Fe3O4 nanoparticles with narrow size range were firstly fabricated by a solvothermal route without the present of surfactants or polymers. The influence of different experimental conditions towards the purity, morphology and yield of the FesO4 nanoparticles was investigated by changing experimental parameters, such as temperature, time, molar ratio of glycerol and water, alkaline source. The relevant experimental parameters were optimized. The dispersibility of the products in different solvents as well as the magnetic properties was also studied. The results indicated the as-obtained Fe3O4 nanoparticles held weak amphiphilic behavior, and had better dispersibility in polar solvents. In addition, the products exhibited nearly superparamagnetic properties, indicating it would have promising applications in biomedical field. While K2CO3 was replaced by EDA, highly dispersed Fe3O4 nanocrystalline (30-40nm) with irregular morphology of hexahedron was obtained under the similar conditions. The corresponding tests confirmed that this product dispersed easily in polar solvents, and possesed soft ferromagnetic properties.
引文
[1]张立德,牟季美.纳米材料和纳米结构.科学山版社.2001.
    [2].S. Iijima, Nature 1991,354:56.
    [3].J. Livage, Chem. Mater.,1991,3:578.
    [4].M. R. Ghadiri, J. R. Granja, R. A. Milligan, et al., Nature 1993,366:324.
    [5]Z.K. Tang, L.Y. Zhang, N. Wang, et al., Science,2001,292:2462.
    [6]Byron Gates, Yiying Wu, Yadong Yin, et al., J. Am. Chem. Soc.,2001,123:11500.
    [7]Z.W. Pan, Z.R. Tang, Z.L. Wang, Science,2001,291:1947.
    [8]Amitesh Maiti, Jose A. Rodriguez, Matthew Law, et al., Nano Lett.,2003,3 1025.
    [9]. R.Tenne, A. K. Zettl, Top. Appl. Phys.2001,80:81.
    [10]R.C. Claussen, B.M. Rabatic, S.I. Stupp, J. Am. Chem. Soc.,2003,125:12680.
    [11]V.Berry, A. Gole, S. Kundu,et al., J. Am. Chem. Soc.,2005,127:17600.
    [12].M. Law, J. Goldberger, P. D. Yang, Annu. Rev. Mater. Res.2004,34:83.
    [13]Y.J. Xiong, J.M. McLellan, J.y. Chen, et al., J. Am. Chem. Soc.,2005,127: 17118.
    [14].J. Goldberger, R. Fan, P.D. Yang, Acc. Chem. Res.2006,39:239.
    [15]高善民,孙树声,刘兆明,创新科技,2006,3:44.
    [16]M.-C. Daniel, Didier Astruc, Chem. Rev.,2004,104:293.
    [17]B.K. Teo, X.H. Sun, Chem. Rev.,2007,107:1454.
    [18]黄成德,化学通报,2005,8:608.
    [19]M.E. Stewart, C.R. Anderton, L.B. Thompson, et al., Chem. Rev.,2008:494.
    [20]. D. Astruc, E. Boisselier, C. Ornelas, Chem. Rev., Articles ASAP
    [21].麦立强,武汉理工大学博士论文呢,2004.
    [22].张凯峰,兰州大学博士论文,2007.
    [23].刘军枫,清华大学博士论文,2007.
    [24]. A. Lu, E.L. Salabas, F. Schuth, Angrew. Chem. Int. Ed.,2007,46:1222.
    [25].杨勇,华东师范大学硕士论文,2008.
    [26].付佳,许启明,李宁,无机盐工业,2007,39:5.
    [27]. S.G Louie, Nature,1996,384:612.
    [28]D. Bethell, D.J.Schiffrin, Nature,1996,382:581.
    [29]K.A. Litau, P.J. Szajowski, A.J. Muller, et al., J. Phys. Chem.,1993,97:1224.
    [30]Y. Kanemitsu, Appl. Phys. Lett,1992,18:2187.
    [31]Y. Masumoto, J. Lumin,1994,60:
    [32]R.N. Bhargagra, D. Gallagher, Phys. Rev. Lett,1994,15:1234.
    [33]A.I. Ekimov, A.I.L. Efroc, A.A. Onushcnenko, Solid State Commun,1985, 56:921.
    [34]R. Roussignool, D. Ricard, Phys. Rev. Lett,
    [35]X. Ai, H. Fei, Y. Yang, et al., J Lumin,1994,364:60.
    [36]Y. Wang, Acc. Chem. Res.,1991,24:133.
    [37]S. Ohtsuka, Appl. Phys. Lett,1992,25:2953.
    [38]A. Henglein, Topics in Current Chem,1988,143:155.
    [39]J.K. Leland, J. Phys. Chem.,1987,91:5076.
    [40]M.A. Chamarro, Solid State Commun,1992,10:967.
    [41]H. Miyoshi, J. Electron. Chem.,1990,295:71.
    [42]H. Zhang, X. Li, S. Li, et al., Nanostr. Mater.,1994,4:285.
    [43]H. Gleiter, Prog. Mater. Sci.,1989,33:223.
    [44]T.W. Odom, J.L. Huang, P. Kim, et al., Nature,391:62.
    [45]Z. Yao, H.W. Postma, L. Dekker, Nature,1999,402:273.
    [46]J. Kong, N.R. Franklin, C.M. Zhou, et al., Science,2000,287:622.
    [47]G. Collins, K. Bradley, M. Ishigami, et al., Science,2000,287:255.
    [48]T.M. Tombler, C.M. Zhou, A. Alexseyev, et al., Nature,2000,405:769.
    [49]陈玉金,哈尔滨工程大学硕士论文,2003.
    [50]J. Ge,W. Xing, X. Xue, et al., J. Phys. Chem. C,2007,111:17305.
    [51]N.L. Rosi, C.A. Mirkin, Chem. Rev.,2005,105:15471.
    [52]张淑霞,高书燕,杨恕霞等,化学通报,2008,8:601.
    [53]G. A. Somorjai, The surface science of heterogeneous catalysis. Vol. ⅩⅩⅤ.1981.
    [54]C. Milone, R. Ingoglia, G. Neri, et al., Appl. Catal., A 2001,211:251.
    [55]杨剑,中国科学技术大学博士论文,2001.
    [56]C.B. Murray, D.J. Norris, M.C. Bawendi, J. Am. Chem. Soc,1993,115:8706.
    [57]F. Dumestre, B. Chaudret, C. Amiens, et al., Angrew. Chem. Int. Ed.,2003, 42:5213.
    [58]Y.R. Ma, L.M. Qi, J.M. Ma, et al., Adv. Mater,2004,16:1023.
    [59]Y. Xie, X.W. Zheng, X.C. Jiang, et al., Inorg. Chem.,2002,41:387.
    [60]D. Routkevitch, T. Bigiooni, M. Moskovits, et al., J. Phys. Chem.,1996, 100:14037.
    [61]S. Bhattacharrya, S.K. Saha, D. Chakravorty, Appl. Phys. Lett.,2000,76:3896.
    [62]M.W. Shao, L.F. Kong, Q. Li, et al., Inorg. Chem. Commun.,2003.6:737.
    [63]Z.Y. Yang, N.A. Kotov, M. Giersig, Science,2002,297:237.
    [64]X.B. Cao, F. Yu, J. Mater. Chem,2003,13:893.
    [65]Y. Zhou, S.H. Yu, C.Y. Wang, et al., Adv. Mater,1999,11:850.
    [66]C.R. Wang, K.B. Tang, Q. Yang et al., J. Cryst. Growth,2001,226:175.
    [67]Q.W. Chen, Y.T. Qian, et al., J. Mater. Letter.,1995,22:85.
    [68]Y.T. Qian, et al., J. Mater. Chem,1993,3:203.
    [69]J.F. Liu, Q.H. Li, T.H. Wang, et al., Angrew. Chem. Int. Ed.,2004,43:5048.
    [70]K.F. Zhang, S.J. Bao, X. Liu, Mater. Res. Bull.,2006,41:1985.
    [71]R.E. Morris, S.J. Weigel, Chem. Soc. Rev,1997,26:309.
    [72]S.H. Yu, B. Liu, M.S. Mo, et al., Adv. Funct. Mater.,2003,13:639.
    [73]S.H. Yu, X.J. Cui, L.L. Li, et al., Adv. Mater.,2004,16:1636.
    [74]L.B. Lu, S.H. Yu, H.S. Qian, et al., J. Am. Chem. Soc,2005,127:2822.
    [75]J.Y. Gong, L.B. Luo, S.H. Yu, et al., J. Mater. Chem,2006,16:101.
    [76]H.S. Qian, L.B. Luo, J.Y. Gong, et al., Cryst. Growth Des.,2006,6:607.
    [77]H.S. Qian, S.H. Yu, L.B. Luo, et al., Chem. Mater.,2006,18:2102.
    [78]S.H. Yu, J. Yang, Y.S. Wu, et al., Mater. React. Bull.,1998,33:16611.
    [79]J.Q. Hu, Q.Y. Lu, B. Deng, et al., Inorg. Chem. Commun.,1999,2:569.
    [80]H.W. Liao, Y.F. Wang, X.M. Liu, et al., Chem. Mater.,2000,12:2819.
    [81]J.Q. Hu, B. Deng, W.X. Zhang, et al., Inorg. Chem.,2001,40:3130.
    [82]M.S. Mo, J.H. Zeng, X.M. Liu, et al., Adv. Mater.,2002,14:1658.
    [83]Z.P. Liu, S. Li, Y. Yang, et al., Adv. Mater.,2003,15:1946.
    [84]D.B. Wang, D.B. Yu, Y.Y. Peng, et al., Nanotech.,2003,14:748.
    [85]G.C. Xi, Y.Y. Peng, W.C. Yu, et al., Cryst. Growth Des.,2005,5:325.
    [86]Y.T. Chen, J.B. Ding, H.L. Li, Mater. Chem. Phys.,2002,78:743.
    [87]Y.D. Li, J.W. Wang, Z.X. Deng, et al., J. Am. Chem. Soc,2001,123:9904.
    [88]Y.D. Li, X.L. Li, Z.X. Deng, et al., Angew. Chem. Int. Ed.,2001,41:333.
    [89]X.L. Li, J.F. Liu, Y.D. Li, Inorg.Chem.,2003,42:921.
    [90]X. Wang, Y.D. Li, J. Am. Chem. Soc,2002,124:2880.
    [91]X. Wang, Y.D. Li, Angew. Chem. Int. Ed.,2002,41:4790.
    [92]X. Wang, X.M. Sun, D. P. Yu, et al., Adv. Mater.,2003,15:1442.
    [93]X.M. Sun, Y.D. L, Chem. J. Eur.,2003,9:2229.
    [94]C. Wang, Z.X. Deng, Y.D. Li, Inorg.Chem.,2001,40:5210.
    [95]J.F. Liu, X. Wang, Q. Peng, et al., Adv. Mater.,2005,17:764.
    [96]X. Chen, X.M. Sun, Y.D. Li, Inorg.Chem.,2002,41:4524.
    [97]Q. Peng, Y.J. Dong, Y.D. Li, Angew. Chem. Int. Ed.,2003,42:3027.
    [98]X.M. Sun, Y.D. L, Angew. Chem. Int. Ed.,2004,43:3827.
    [99]X. Wang, Y.D. Li, Angew. Chem. Int. Ed.,2003,42:3497.
    [100]X.Wang, J. Zhuang, Q. Peng, et al., Nature,2005,437:121.
    [101]Y. Xie, Y.T. Qian, W.Z. Wang, et al., Science,1996,272:1926.
    [102]Y.D. Li, Y.T. Qian, H.W. Liao, et al., Science,1998,281:246.
    [103]GC. Xi, S.J. Yu, R. Zhang, et al., J. Phys. Chem. B,2005,109:13200.
    [104]Y.C. Ying, Y.L. Gu, Z.F. Li, et al., J. Solid. State. Chem.,2004,177:4163.
    [105]GZ. Shen, D. Chen, K.B. Tang, et al., Chem. Phys. Letter.,2003,375:177.
    [106]Y.L. Gu, L.Y. Chen, Y.T. Qian, J. Am. Ceram. Soc,2004,87:1810.
    [107]M.H. Cao, C.W. Hu, E.B. Wang, et al., J. Am. Chem. Soc,2003,125:11196.
    [108]J. Wang, Q.W. Chen, C. Zeng, et al., Adv. Mater.,2004,16:137.
    [109]H.L. Niu, Q.W. Chen, H.F. Zhu, et al., J. Mater. Chem.,2003,13:1803.
    [110]A. Henglein, Pure Appl. Chem.,1984,56:1215.
    [111]G.T. Brow, J.R. Daffwent, J. Phys. Chem.,1984,88:4995.
    [112]M. Anpo, T. Shima, S. Kodama, et al., J. Phys. Chem.,1987,91:4305
    [113]王彦妮,张志棍,崔作林,催化学报,1995,16:304.
    [114]M. Law, H. Kind, B. Messer, et al., Angew.Chem.Int.Ed.,2002,41:2405.
    [115]A. Maiti, J.A. Rodriguez, M. Law, et al., Nano. Lett.,2003,3:1025.
    [116]R.F. Service, Science,1996,271:920.
    [117]J.F. Liu, X. Wang, Q. Peng, et al., Sens. Actuators B,2006,115:481.
    [118]C. Macilwain, Nature,2001,405:730.
    [119]Shimizhu, Katsura JP,62260716.
    [120]C.S. Ju, M.G. Lee, S.S. Honn, Hwahak Konahak,1997,35:655.
    [121]Adv. Funct. Mater.,2008,18:1.
    [122]D.E. Sosnovik, M. Nahrendorf, R.Weissleder, Cireulation,2007,115:2076.
    [123]S.A.Wiekline, A.M.Neubauer, P.M.Winter, et al., J. Magn. Meson. Imaging, 2007,25:667.
    [124]C.L.Chiang, C.S.Sung, T.F.Wu, et al., J Chromatogr B,2005,822:54.
    [125]B. Zebli, A.S. Susha, G..B. Sukhorukov, et al., Langmuir,2005,21:426.
    [126]N. Kohler, C. Sun, J. Wang, et al., Langmuir,2005,21:8858.
    [127]L.O. Cinteza, Y. Ohulehanskyy, Y. Sahoo, MolPhann,2006,3:415.
    [128]M. Babincova, P. Sourivong, D. Leszezynska, Med HyPotheses,2000,55:459.
    [129]S. Wada, K. Tazawa, I. Furuta, et al., Oral Dis,2003,9:218.
    [130]M. Johannsen, B. Thiesen, U. Gneveckow, et al., Prostate,2006,66:97.
    [131]倪海燕,张冬生,杜益群,南京医科大学学报(自然科学版),2006,26:271.
    [132]A.J. Dahl, B.L.S. Maddux, J.E. Hutchison, Chem. Rev.,2007,107:2228.
    [133]F.Beteille,J.Livage, J. Sol-Gel. Sci.Technol.,1998,13:915.
    [134]J. Liu, J. Cai, Y.C. Son, et al., J. Phys. Chem. B,2002,106:9761.
    [135]J.G. Yu, J.C. Yu, W. Ho, et al., J. Am. Chem. Soc,2004,126:3422.
    [136]L.Z. Zhang, J.C. Yu, M. Mo, et al., J. Am. Chem. Soc,2004,126:8116.
    [137]R.Q. Song, A.W. Xu, B. Deng, et al., J. Phys. Chem. B,2005,109:22758.
    [138]Y. Yu, R.H. Wang, Q. Chen, et al., J. Phys. Chem. B,2005,109:23312.
    [139]Y. Yu, R.H. Wang, Q. Chen, et al., J. Phys. Chem. B,2006,110:13415.
    [140]G.C. Li, S.P. Pang, Z.B. Wang, et al., Eur. J. Inorg. Chem.,2005,2060.
    [141]G.C. Li, L. Jiang, S. Pang, et al., J. Phys. Chem. B,2006,110:24472.
    [142]J. Yu, S. Liu, B. Cheng, et al., Mater. Chem. Phys.,2006,95:206.
    [143]G.C. Li, S.P Pang, L. Jiang, J. Phys. Chem. B,2006,110:9383.
    [144]GC. Li, K. Chao, H.R. Peng, et al., Inorg. Chem.,2007,46:5787.
    [145]P.M. Ajayan, Q. Stephan, P. Redlich, et al., Nature,1995,375:564.
    [146]M.E. Spahr, P. Stoschitzki-Bitterli, R. Nesper, et al., J. Electrochem. Soc,1999, 146:2780.
    [147]M. Niederberger, H.J. Muhr, F. Krumeich, et al., Chem. Mater.,2000,12:1995.
    [148]G.T. Chandrappa, N. Steunou, S. Cassaignon, et al., J. Sol-Gel Sci. Tech.,2003, 26:593.
    [149]D. Sun, C.W. Kwon, G. Baure, et al., Adv. Funct. Mater.,2004,14:1197.
    [150]Y. Wang, K. Takahashi, H. Shang, et al., J. Phys. Chem. B,2005,109:3085.
    [151]J.M. Reinoso, H.-J. Muhr, F. Krumeich, et al., Helv. Chim. Acta.,2000, 83:1724.
    [152]L. Krusin-Elbaum, D. M. Newns, H. Zeng, et al., Nature,2004,431:672.
    [153]M.E. Saleta, H.E. Troiani, S. Ribeiro Guevara, J. Magn. Magn. Mater.,2008, 320:e268.
    [154]M.E. Saleta, J. Curiale, H. E. Troiani, et al., Physica B,2007,398:333.
    [155]L.Q. Mai, W. Chen, Q. Xu, et al., Chem. Phys. Lett.,2003,382:307.
    [156]L.F. Jiao, H.T. Yuan, Y.J. Wang, et al., Electrochem.Commun.,2005,7:431.
    [157]L.F. Jiao, H.T. Yuan, Y.C. Si, et al., Electrochem. Commuri.,2006,8:1041.
    [158]A. Bee, R. Massart, S. Neveu, J. Magn. Magn. Mater.,1995,149:6.
    [159]A.L. Willis, N.J. Turro, S. O'Brien, Chem. Mater.,2005,17:5970.
    [160]S. Si, A. Kotal, T.K. Mandal, et al., Chem. Mater,2004,16:3489.
    [161]Y.D. Li, H. Deng, X.L. Li, et al., Angew. Chem. Int. Ed.,2005,44:2782.
    [162]S.H. Sun, H. Zeng, J. Am. Chem. Soc,2002,124:8204.
    [163]N.R. Jana, Y.F. Chen, X.G. Peng, Chem. Mater.2004,16:3931.
    [164]L. Zhang, S.Z. Qiao, Y.G Jin, et al., Adv. Funct. Mater.,2008,18:1.
    [165]H.S. Lee, W.C. Lee, T. Furubayashi, J. Appl. Phys.,1999,85:5231.
    [166]R. Fan, X.H. Chen, Z. Gui, et al., Mater. Res. Bull.,2001,36:479.
    [167]J. Xu, H.B. Yang, W.Y. Fu, J. Magn. Magn. Mater,2007,309:307.
    [168]R. Vijarakumar, Y. Koltypin, I. Felner, et al., Mater. Sci. Eng. A,2000, 286A:101.
    [169]D. Chen, S. Ni, Z.H. Chen, China Particuology,2007,5:357.
    [170]J. Kim, J.E. Lee, J. Lee, et al., J. Am. Chem. Soc,2006,128:688.
    [171]Y.H. Deng, D.W. Qi, C.H. Deng, et al., J. Am. Chem. Soc.,2008,130:28.
    [172]C. Wang, H. Daimon, S.H. Sun, Nano Lett.,2009,9:1493.
    [173]C.J. Xu, B.D. Wang, S.H. Sun, J. Am. Chem. Soc.,2009,131:4216.
    [174]X.C. Shen, X.Z. Fang, Y.H. Zhou, et al. Chem. Lett.,2004,33:1468.
    [175]J. Bao, W. Chen, T.T. Liu, et al., Acs. Nano,2007,1:293.
    [176]A. K. Gupta, S. Wells, IEEE Trans. Nanobiosci.,2004,3:66
    [177]L.J. Zhang, Y.W. Xu, H.l. Yao,et al., Chem. Eur. J.2009,15:10158.
    [178]L.Y. Wang, J. Bao, L. Wang, et al., Chem. Eur. J.2006,12:6341.
    [179]X.-H. Li, D.-H Zhang, J.-S. Chen, J. Am. Chem. Soc.2006,128:8382.
    [180]Z. Huang, F. Tang, J. Colloid Interface Sci.2005,281:432.
    [181]X. Chen, Z. Zhang, X. Li, et al., Chem. Phys. Lett.2006,422:294
    [182]L.P. Zhu, H.M. Xiao, W.D. Zhang, et al., Cryst. Growth Des.,2008,8:957.
    [183]D.E. Zhang, Z.W. Tong, S.Z. Li, et al., Mater. Lett.,2008,62:4053.
    [184]H.Y. Bi, X.Q. Wang, H.B. Li, et al., Solid. State. Commun.,2009,149:2115.
    [1]C.M. Lieber, Solid State Commun,1998,107:607.
    [2]A.P.Alivisatos, Science,1996,271:933.
    [3]Y. Wang, Z. Zhang,Y. Zhu, et al., ACS Nano,2008,2:1942.
    [4]Y.-P. Ma, W.Xue, Z.-C. Wang, et al., J. Phys. Chem. A,2008,112:3731.
    [5]G. Sudant, E. Baudrin. B. Dunn, et al., J. Electrochem. Soc.,2004,151:A666.
    [6]G.T. Kim, J. Muster, V. Krstic, et al., Appl. Phys. Lett.,2000,76:1875.
    [7]J. Muster, G.T. Kim, V. Krstic, et al., Adv. Mater.,2000,12:420.
    [8]P. Liu, S.H. Lee, H.M. Cheong, et al., J. Electrochem. Soc.,2002,49:H76.
    [9]A. Azens, G. Gustavsson, R. Karmhag, et al., Solid State Ion,2003,165:1.
    [10]F.M. Morin, Phys. Rev. Lett.,1959,3:34.
    [11]D. Hagrman, J. Zubieta, C.J. Warren, et al., J. Solid State Chem.,1998,138:178.
    [12]K.F. Zhang, X. Liu, Z.X. Su, et al., Mater. Lett.,2007,61:2644.
    [13]C. Leroux, G. Nihoul, G. Van Tendeloo, Phys. Rev. B,1998,57:5111.
    [14]W. Li, J.R. Dahn, D.S. Wainwright, Science,1994,264:1115.
    [15]C. Tsang, A. Manthiram, J. Electrochem. Soc.,1997,144:520.
    [16]W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Science,2002,295:2425.
    [17]X.Y. Chen, X. Wang, Z.H. Wang, et al., Nanotechnology,2004,15:1685.
    [18]G. Armstrong, J. Canales, A.R. Armstrong, et al., J Power Sources,2008, 178:723.
    [19]J.F. Liu, Q.H. Li, T.H. Wang, et al., Angew. Chem. Int. Ed.,2004,43:5048.
    [20]K.F. Zhang, S.J. Bao, X. Liu, et al., Mater. Res. Bull.,2006,41:1985.
    [21]F. Sediri, N. Gharbi, Mater. Lett.,2009,63:15.
    [22]X.H. Liu, G.Y. Xie, C. Huang, et al., Mater. Lett.,2008,62:1878.
    [23]W. Chen, J.F. Peng, L.Q. Mai, et al., Chem. Lett.,2004,33:1366.
    [24]X.L. Li, X.J. Chen, X.Y. Chen, et al., J. Cryst. Growth,2007,309:43.
    [25]F. Sediri, F. Touati, N. Gharbi, Mat Sci Eng B-Solid,2006,129:251.
    [26]X.H. Liu, GY. Xie, C. Huang, et al., Chem. Lett.,2007,36:1366.
    [27]L.J. Mao, C.Y. Liu, Solid State Commun.,2008,146:403.
    [28]G.C. Li, K. Chao, C.Q. Zhang, et al., Inorg. Chem.,2009,48:1168.
    [29]G. Silversmit, D. Depla, H. Poelman, et al., J. Electron. Spectrosc. Relat. Phenom.,2004,135:167.
    [30]X.M. Sun, Y.D. Li, Angew. Chem. Int. Ed.,2004,43:597.
    [31]C.N.R. Rao, A. Govindaraj, F.L. Deepak, et al., Appl. Phys. Lett.,2001,78:1853.
    [32]S.H. Yang, S.H. Wang, K.K. Fung, Pure Appl. Chem.,2000,72:119.
    [33]W.Z. Wang, Y.J. Zhu, G.H. Wang, Chem Commun,2001,5:727.
    [34]H. Wang, Y.K. Liu, C.L. Zheng, et al., J. Mater. Chem.,2001,11:1752.
    [35]H. Znad, J. Markos, V. Bales, Process Biochem.,2004,39:1341.
    [1]M.E. Spahr, P. Bitterli, R. Nesper, M. Muller, F. Krumeich, H.U. Nissen, Angew. Chem. Int. Ed.37(1998) 1263.
    [2]W. Chen, Q. Xu, Y.S. Hu, L.Q. Mai, Q.Y. Zhu, J. Mater. Chem.12 (2002) 1926.
    [3]J.F. Liu, X. Wang, Q. Peng, et al., Adv. Mater.,2005,17:764.
    [4]G.C. Li, S.P Pang, L. Jiang, J. Phys. Chem. B,2006,110:9383.
    [5]N. Magg, J.B. Giorgi, M.M. Frank, B. Immaraporn, T. Schroeder, M. Baumer, H.-J. Freund, J. Am. Chem. Soc.2004,126:3616.
    [6]K. Takahashi, S.J. Limmer, Y. Wang, G. Cao, J. Phys. Chem. B.2004,108:9795.
    [7]J.F. Liu, Q.H. Li, T.H. Wang, et al., Angew. Chem. Int. Ed.,2004,43:5048.
    [8]K.F. Zhang, S.J. Bao, X. Liu, et al., Mater. Res. Bull.,2006,41:1985.
    [9]X.Y. Chen, X. Wang, Z.H. Wang, et al., Nanotechnology,2004,15:1685.
    [10]G. Armstrong, J. Canales, A.R. Armstrong, et al., J Power Sources,2008, 178:723.
    [11]M.E. Spahr, P. Stoschitzki-Bitterli, R. Nesper, et al., J. Electrochem. Soc.,1999, 146:2780.
    [12]F. Krumeich, H.-J. Muhr, M. Niederberger, et al., J. Am. Chem. Soc.1999, 121:8324.
    [13]M. Niederberger, H.-J. Muhr, F. Krumeich, et al., Chem. Mater.2000,12:1995.
    [14]H.-J. Muhr, F. Krumeich, U.P. Schonholzer, et al., Adv. Mater.,2000,12:231.
    [15]X. Chen, X.M. Sun, Y.D. Li, Inorg. Chem.2002,41:4524.
    [16]GT. Chandrappa, N. Steunou, S. Cassaignon, et al., J. Sol-Gel Sci. Tech.,2003, 26:593.
    [17]M.E. Spahr, P. Bitterli, R. Nesper, et al., Angew. Chem. Int. Ed.,1998,37:1263.
    [18]R. Nesper, H.-J. Muhr, Chimia,1998,52:571.
    [19]M. Worle, J. de Onate, H.-J. Muhr, et al., Chimia,1999,53:336.
    [20]F. Krumeich, H.-J. Muhr, M. Niederberger, et al., Z. Anorg, Allg. Chem.2000, 626:2208.
    [21]J.M. Reinoso, H.-J. Muhr, F. Krumeich, et al., Helv. Chim. Acta.,2000,83:1724.
    [22]L. Krusin-Elbaum, D. M. Newns, H. Zeng, et al., Nature,2004,431:672.
    [23]L.Q. Mai, W. Chen, Q. Xu, J.F. Peng, Q.Y. Zhu, Chem. Phys. Lett.,2003, 382:307.
    [24]V. Lavayen, C. O Dwyer, G. Cardenas, et al., Mater. Res. Bull.,2007,42:674.
    [25]K.F. Zhang, D.J. Guo, J. Li, et al., J. Power Sources,2006,162:1077.
    [26]M. Bosetti, A. Masse, E. Tobin, et al., Bio materials,2002,23:887.
    [27]H.J. Jiang, K.S. Moon, Y. Li, et al., Chem. Mater.,2006,18:2969.
    [28]C.Y. Li, Y.Z. Wan, J. Wang, et al., Carbon,1998,36:61.
    [29]S.T. Zhang, R.W. Fu, D.C. Wu, et al., Carbon,2004,43:3209.
    [30]D.J. Guo, H.L. Li, Carbon,2005,43:1259.
    [31]A.A. Isse, S. Gottardello, C. Maccato, et al., Electrochem. Commun.,2006, 8:1707.
    [32]X. Y. Wang, Y. M. Du, J. H. Yang, et al., Polymer.,2006,47:6738.
    [33]Y. Hu, Y.M. Du, J.H. Yang, et al., Polymer.,2007,48:3098.
    [34]J. McFarland, J. Am. Med. Assoc.,1907,14:1176.
    [35]L.F. Jiao, H.T. Yuan, Y.C. Si, et al., Electrochem. Commun.,2006,8:1041.
    [36]J.F. Liu, X. Wang, Q. Peng, et al., Sens. Actuators B,2006,115:481.
    [37]A. Oya, M. Kimura, I. Sugo, et al., J. Mater. Sci.,1993,28:4731.
    [38]A. Dobley, K. Ngala, S. Yang, et al., Chem. Mater.,2001,13:4382.
    [39]B. Azambre, M.J. Hudson, Mater. Lett.,2003,57:3005.
    [40]S. Nordlinder, L. Nyholm, T. Gustafsson, et al., Chem. Mater.,2006,18:495.
    [41]L.F. Jiao, H.T. Yuan, Y.J. Wang, et al., Electrochem.Commun.,2005,7:431.
    [42]M.E. Saleta, H.E. Troiani, S. Ribeiro Guevara, J. Magn. Magn. Mater.,2008, 320:e268.
    [43]M.E. Saleta, J. Curiale, H. E. Troiani, et al., Physica B,2007,398:333.
    [44]F. Li, X.H. Wang, C.L. Shao, Mater. Lett.,2007,61:1328.
    [45]C.J. Cui, G.M. Wu, J. Shen, Electrochimica Acta,2010,55:2536.
    [46]E.V. Aguiar, L. O.O. Costa, M.A. Fraga, Catalysis Today,2009,142:207.
    [47]N.J. Shi, C.L. Wang, Y. Li, et al., Shandong Ceram.,2000,23:7.
    [48]W. Li, J.Q. Qi, Y.L. Wang, et al., Mater. Lett.,2002,57:1.
    [49]Q. Li, J.Q. Qi, Y.L. Wang, et al., J. Eur. Ceram. Soc.,2001,21:2217.
    [50]D. Guo, Y.L. Wang, C.W. Nan, Sens. Actuators. A,2002,102:93.
    [51]G.Z. Zang, X.J. Yi, J. Du, et al., Mater. Lett.,2010, in press.
    [52]V. Mahdavi, M.H. Peyrovi, M. Islami, Appl. Catal. A,2005,281:259.
    [53]V. Mahdavi, M.H. Peyrovi, Catal. Commun.,2006,7:542.
    [54]Changpeng Li, Jinfeng Wang, Wenbin Su, Physica B,2001,307:1.
    [55]X.G. Zhang, S. Ohara, H. Okawa, Solid State Ionics,2001,139:145.
    [56]L. Gu, B. Wang, H.Z. Ma, J. Hazard. Mater.,2006,137:842.
    [57]H.Y. Du, C.X. Liu, J.Y. Sun, et al., Powder Technol.,2008,185:291.
    [58]G. Silversmit, D. Depla, H. Poelman, et al., J. Electron. Spectrosc. Relat. Phenom.,2004,135:167.
    [59]A.A. Khassin, T.M. Yurieva, V.V. Kaichev, et al., J. Mol. Catal. A:Chem.,2001, 175:189.
    [1]赵国方,江苏化工,1994,1:1.
    [2]陆天虹,孙公权,电源技术,1998,4:1 82.
    [3]衣宝廉,燃料电池,北京:北京化学工业出版社,2000,1-2.
    [4]孙艳,苏伟,周理,燃料电池,北京:化学工业出版社,2005,1-2.
    [5]A.V. Tripkovic, K.D. Popovic, B.N. Grgur, et al., Electrochim. Acta,2002, 47:3707.
    [6]R. Manoharan, J. Prabhuram, J Power Sources,2001,96:22.
    [7]H.Y. Eileen, K. Scott, R.W. Reeve, J Electoanal Chem,2003,547:17.
    [8]E.H. Yu, K. Scott, Electrochem Commun,2004,6:361.
    [9]夏朝阳,黄爱宾,汪洋等,电池,2004,34:227.
    [10]C. Bianchini, P.K. Shen, Chem. Rev.2009,109:4183.
    [11]M. Watanabe, S. Motoo, J. Electroanal. Chem.,1975,60:259.
    [12]] K.W. Park, J.H.Choi, B.K. Kwon, et al., J Phys Chem B,2002,106:869.
    [13]C.W. Xu, P.K. Shen, X.H. Ji, Electrochem Commun,2005,7:1305.
    [14]C.W. Xu, R. Zeng, P.K. Shen, et al., Electrochim Acta,2005,51:1031.
    [15]T. Iwasita, F.C. Nart, J. Electroanal. Chem.,1991,317:291.
    [16]B. Beden, C. Lay, A. Bewick, et al., J. Electroanal. Chem.,1981,121:343.
    [17]J. Bernbhole, J.A. Horsley, L.L. Murroll, et al., J. Phys. Chem. B,1987,91:1526.
    [18]V. Bambagioni, C. Bianchini, A. Marchionni, et al., J. Power Sources 2009,190: 241.
    [19]C.W. Xu, L. Cheng, P. K. Shen, et al., Electrochem. Commun.2007,9:997.
    [20]F.P. Hu, Z.Y.Wang, Y.L. Li, J. Power Sources,2008,177:61.
    [21]D.S. Yuan, C.W. Xu, Y.L. Liu, et al., Electrochem. Commun.,2007,9:2473.
    [22]K.F. Zhang, D.J. Guo, J. Li, et al., J. Power Sources,2006,162:1077.
    [23]M.W. Xu, G.Y. Gao, W.J. Zhou, et al., J. Power Sources 2008,175:217.
    [24]F.L. Cheng, H. Wang, Z.H. Sun, et al., Electrochem. Commun.,2008,10:798.
    [25]J. Zhang, M.Huang, H. Ma, et al., Electrochem. Commun.,2007,9:1298.
    [26]K.S. Kumar, P. Haridoss, S.K. Seshadri, Surf. Coat. Technol.,2008,202:1764.
    [27]F.P. Hu, G.F. Cui, Z.D. Wei, et al., Electrochem. Commun.,2008,10:1303.
    [28]V. Bambagioni, C. Bianchini, J. Filippi, ChemSusChem,2009,2:99.
    [29]曾蓉,沈培康,燃料电池研究进展,第56届国际电化学学会年会回顾,电池,2006,36:24.
    [30]J. Prabhuram, R. Manoharan, J. Appl. electrochem.,1998,28:935.
    [31]P.K. Shen, C. Xu, Electrochem. Commun.,2006,8:184.
    [32]C.W. Xu, Z.Q. Tian, P.K. Shen, Electrochim. Acta,2008,53:2610.
    [33]G. Orozco, M.C. Perez, A. Rincon, et al., J. Electroanal. Chem.,2000,495:71.
    [34]T. Shobba, S.M. Mayanna, C.A. Sequeira, J Power Sources,2002,108:261.
    [35]S.H. Joo, S.J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, R. Ryoo, Nature,2001, 169:412.
    [36]Z.L. Liu, X.Y. Liang, X.D. Su, J.Y. Lee, J. Phys. Chem. B 8234 (2004) 108.
    [37]张凯锋,兰州大学博士论文,2007。
    [38]C.W. Xu, P.K. Shen, Y.L. Liu, J. Power Sources,2007,164:527.
    [39]A. Lu, E.L. Salabas, F. Schuth, Angrew. Chem. Int. Ed.2007,46:1222.
    [40]C. Wang, H. Daimon, S.H. Sun. Nano Lett.,2009,9:1493.
    [41]J. Bao, W. Chen, T.T. Liu, Y.L. Zhu, P.Y. Jin, L.Y. Wang, J.F. Liu, Y.G. Wei, Y.D. Li, ACS Nano,2007,293:1.
    [42]N.R. Jana, C. Earhart, J.Y. Ying, Chem. Mater.,2007,5074:19.
    [43]S.J. Guo, S.J. Dong, E.K. Wang, Chem. Eur. J.2009,2416:15.
    [44]D. Guin, B. Baruwati, S.V. Manorama, Org. Lett.2007,1419:9.
    [45]R.Y. Hong, T.T. Pan, Y.P. Han, et al., J. Magn. Magn. Mater.,2007,310:37.
    [46]R. Manohara, J.B. Goodenough, J. Mater. Chem.,1992,875:2.
    [47]Y.Y. Mu, H. Liang, J. Hu, L. Jiang, L.J. Wan, J Phys Chem B,2005,22212:109.
    [48]H.Q. Li, G.Q. Sun, Q. Jiang, M.Y. Zhu, S.G. Sun, Q. Xin, J. Power Sources,2007, 641:172.
    [49]J. Prabhuram, R. Manoharan, J. Appl. Electrochem.,1998,28:935.
    [50]K. Nishimura, K. Kunimatsu, M. Enyo, J. Electroanal. Chem.,1989,260:167.
    [51]S. Hobbs, A.C.C. Tseung, Nature,1969,222:556.
    [52]K.W. Park, K.S. Ahn, Y.C. Nah, et al., J. Phys. Chem. B,2003,107:4352.
    [53]C.P. Wilde, M. Zhang, Electrochim. Acta,1994,39:347.
    [54]K. Honda, M. Yoshimura, T.N. Rao, et al., J. Electroanal. Chem.,2001,514:35.
    [55]H. Wang, T. Loffler, H. Baltruschat, J. Appl. Electrochem.,2001,31:759.
    [1]H. Zeng, J. Li, J.P. Liu, et at., Nature,2002,420:395.
    [2]金鑫,姜继森,材料科学与工程,2002,20:445.
    [3]R.M. Cornell, U. Schwertmann, The iron oxides:structure, properties, reactions, occurrence and uses. New York:VCH,1996,28.
    [4]汪信,刘孝恒.纳米材料化学,北京:化学工业出版社,2006.
    [5]R.Y. Hong, T.T. Pan, Y.P. Han, et al., J Magn Magn Mater,2007,310:37.
    [6]T. John, R. Dirk, J Magn Magn Mater; 2007,309:31.
    [7]P.C. Fannin, C.N. Marin, I. Malaescu, et al., Condensed Matter,2007,388:87.
    [8]J. Arkadiusz, S. Andrzej, J Magn Magn Mater,2006,4:12.
    [9]Y. Haik, et al., J Magn Magn Mater,1999,194:254.
    [10]T. Rheinlander, R. Kotitz, W. Weitschies, et al., Magn Electr,2000,10:179.
    [11]M.A. Riley, A.D. Walmsley, J.D. Speight, et al., Mater Sci Techn,2000,18:1.
    [12]E.E. Carpenter, J Magn Magn Mater,2001,225:17.
    [13]O.A. Misael, H.T. Chen, D.E. Armin, Condensed Matter,2007,311:306.
    [14]K. Aurich, et al., J Magn Magn Mater,2006,11:154.
    [15]蒋秉植,杨健美,化学进展,1997,9:69.
    [16]唐波,葛介超,王春先等,化学进展,2002,21:707.
    [17]C.Y. Wang, G.M. Zhu, Z.Y. Chen, et al., Mater Res Bull,2002,37:2525.
    [18]L. Gunther, Phys World,1990, (3):28
    [19]陈捷,薛博,白姝,天津大学学报,2001,34:103.
    [20]Y.D. Li, H. Deng, X.L. Li, et al., Angew. Chem. Int. Ed.,2005,44:2782.
    [21]Y. Xie, Y.T. Qian, W.Z. Wang, et al., Science,1996,272:1926.
    [22]K. Eugenii, I. Willner, Angew. Chem. Int. Ed.,2004,43:6042.
    [23]X. Michalet, F.F. Pinaud, L.A. Bentolila, et al., Science,2005,307:538.
    [24]J.M. Nam, C.S. Thaxton, C.A. Mirkin, Science 2003,301:1884.
    [25]L.X.Tiefenauer, G. Kuehne, R.Y. Andres, Bioconjugate Chem.,1993,4:347.
    [26]S.Kim, Y.T. Lim, E.G.Soltesz, et al., Nat. Biotechnol.2004,22:93.
    [27]A.G. Yan, X.H. Liu, G.Z. Qiu, et al., J. Alloys Compd.,2008,458:487.
    [28]R.Y. Hong, T.T. Pan, Y.P. Han, et al., J. Magn. Magn. Mater.,2007,310:37.
    [29]X.Y.Chen, Z.J.Zhang, X.X.Li,et al., Chem. Phys. Lett.,2006,422:294.
    [30]程翔,贺全国,楚广等,广东化工,2008,35:5.
    [31]李国栋.当代磁学[M].合肥:中国科学技术大学出版社,1999.
    [32]A.Venkataraman, V.A.Hiremath, S.K.Date, et al., Bull. Mater. Sci.,2001,24:617.
    [33]M.P. Morales, S. Veintemillas-Verdaguer, M.I. Montero, et al., Chem. Mater., 1999,11:3058.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700