用户名: 密码: 验证码:
层状盐岩矿床油气储库建造及稳定性基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于西气东输工程,急需东部地区建造地下盐岩矿床储气库。由于我国盐矿床有单层厚度薄(60~100m)、软弱夹层多的地质特点,使油气储库建造的难度和复杂程度有所增大,与国外普遍利用深部盐丘建造油气储库的实践有很大的不同,同时夹层使油气储库的运行的稳定性方面有很大影响,急需层状盐岩矿床油气储库稳定性分析基础性的资料以及建造理论,对现场实践提供技术支持。
     本文以在层状盐岩矿床中以水溶建腔方式建造油气储库为背景,通过实验研究与理论分析相结合,数值分析与相似模拟相结合的方法,研究了与油气储库建造相关的盐岩溶解特性以及与含夹层储气库稳定性相关的盐岩力学特性,包括反复应力及应变率对夹层和盐岩的力学特性影响作用;对含夹层盐岩体的破坏方式进行了研究,并运用Fluent软件模拟研究了两种形状盐岩溶腔流场的运动形态及分布,对圆柱形溶腔内流场运移情况在实验室进行模拟。
     主要研究内容及结果如下:
     (1)溶解角度对岩盐溶解速率产生较大的影响,向上斜溶即-45°溶解角度下溶解速度最大。溶蚀角由-45°、-90°、0°、45°、至90°,盐岩的溶解速率逐步降低。-45°溶解角度下的溶解速率3 g /cm~2*h比90°溶蚀角的0.5g /cm2*h溶解速率高6倍。钙芒硝盐岩的溶解速率比90°溶解角度下的溶解速率低三个数量级,属于极难溶盐类。
     (2)石膏干试件的平均极值强度为12.3MPa,盐水浸泡后,在反复加卸载作用下,石膏的强度并未降低,但是,在盐溶液中浸泡之后试件变形能力增强。含盐分泥岩与自然泥岩在强度上相当,无论在清水和饱和盐水中溶浸后,实验表明在20天的浸泡时间内,其强度和弹性模量都没有明显降低。
     (3)含夹层盐岩由于两种岩体的泊松比不同,导致横向变形不一致,在层状岩体交界面附近的岩块中产生的水平方向的附加应力,该附加应力使此处由单轴应力变为三轴应力状态。其中,弹性模量较大、泊松比较小的岩块变为三向压—拉应力状态;而弹性模量小、泊松比大的岩块变为三向压应力状态。层状岩盐的破坏形式上表现为:岩盐部分产生拉伸裂纹,表现为柱状劈裂;夹层部分为压拉破坏,表现为环状由外向内的锥形剪裂。在单轴应力-应变曲线上所表现为应力反复现象。
     (4)在循环加卸载作用下,芒硝盐岩试件强度有明显降低,卸载过程的杨氏模量略高于加载过程中的杨氏模量。加卸载过程中盐岩及含夹层盐岩杨氏模量随应力水平及加卸载次数的变化很小,初期循环加卸载曲线基本呈线性并重叠,随应力水平及循环次数的提高,滞回环现象才有轻微表现,但滞回环面积非常小.
     (5)岩盐试件的强度基本不受加载应变速率的影响,弹性模量随应变速率的增高略显增大,但增幅较小。盐岩的泊松比均随加载应变速率的增大而减小,表明横向变形能力减弱。随加载应变速率的增大,试件在应力达到峰值时的应变减小,其变形模量与加载应变速率呈对数关系:E 0 = 0.2Ln(ε?)+3.2
     (6)在单层岩盐矿床内,利用定向对接连通控制水溶开采技术,建造储库溶腔。储库断面形状近似圆形或椭圆形,断面直径约40~50m(小于矿床单层厚度),水平向长度根据地质条件在500~1000m范围内。穿越夹层建造储气库优化方法的基本宗旨是,合理选择循环方式,运用混合建腔方法,实时调整中心管与中间管的位置,采用混合建腔方法。
     (7)以圆形溶腔为例进行数值模拟,分析得出储气库腔体半径小于30m建造阶段,油垫位置距注水口距离小于腔体半径(i<1)的条件下,腔壁附近流体运移平均速度随两管口间距的增大而非线性减小,两管口间距理想值可取20-30m;当油垫位置距注水口距离大于腔体半径(i≥1)时,两管口间距理想值>30m。
     (8)结合物理模拟与数值模拟结果分析,要加快腔壁盐岩的溶解及提高整个储气库建造速度,当腔体半径较小时,管柱间距不宜过大;当腔体半径超过30m后,可增大两管口距(40m以上);另外,将注水管口的垂向出水改为小口径多孔水平射流,可极大提高腔壁附近溶质的对流,加快盐岩的溶解,提高储气库建造速度。
For West-East Natural Gas Pipeline Project, it should build the underground oil and gas storage cavern in the bedded salt rock deposit in eastern China. As the salt deposits have geologic characteristic of monolayer thickness and flabbiness interlayer in China, it is difficult to build the storage cavern in the salt rock deposit. It is also different from building the storage cavern by the salt dome in the foreign countries. Meanwhile, the interlayer has great influence on the building and stability of the storage cavern. Therefore, it needs fundamental data and building theory on the stability of the storage cavern in the bedded salt rock deposit to provide technical support for the practice.
     Based on building the storage cavern in the bedded salt rock deposit by the water-soluble building cavity, the paper combines the experiment with the theory analysis, the numerical analysis with the similar simulation to study the soluble property of the rock salt which is related to the building of the storage cavern and the mechanical property of the rock salt which is related to the stability of the storage cavern with interlayer, including the influence of the repeated stress and the strain rate on the interlayer and the mechanical property of the salt rock, and on the failure style of the rock salt with interlayer. Furthermore, it also uses FLUENT software to study the flow field running style of two kinds of the shape salt cavern and simulate the flow field style of the column salt cavern in the laboratory.
     The following are the main research contents and results:
     (1) The dissolved angle has great effect on the dissolution rate of the rock salt. The dissolution rate is the fastest if the inclined solution angel is -45°upwards. The dissolution rate in -45°is 3 g /cm2*h, which is 6 times faster than that in 90°(0.5g /cm2*h). The glauberite dissolution rate is three grades lower than that of 90°, which belongs to the difficult dissolution salt.
     (2) The average peak strength of gypsum dry specimens is 13.3MPa. After saturated in brine and the repeated loading and unloading, the strength of gypsum does not fall. However, the ability of deformation of the specimens after saturated in brine is enhanced. The strength of salt-mudstone is the same as that of mudstone, either dipping in water or brine. The experiment shows that strength and modulus of elasticity have no change in twenty-day dipping.
     (3) Due to the different Poisson’s ratio in the rock salt with interlayer, it results in inconsistencies of the horizontal deformation. The additional stress in the horizontal direction near the interface of rock mass makes the uniaxial stress into the triaxial state of stress. The rock mass with larger elastic modulus and smaller Poisson’s ratio becomes into the state of three-dimensional pressure-tensile stress while the rock mass with smaller elastic modulus and bigger Poisson’s ratio becomes into the state of large compressive stress. The failure style of rock salt with interlayer shows tensile cracks in the part of the rock salt, i.e. the columnar fracture; the part of the interlayer shows pressure pulling failure, i.e. cone-shaped ring from outside to inside shear rupture. It shows stress repetition on the uniaxial stress-strain curves.
     (4) Influenced by the cyclic loading, the strength of Glauber's salt is greatly reduced. The Young’s modulus in the unloading process is a little bit higher than that in the loading process. The Young’s modulus of the rock salt and the rock salt with interlayer change little with the stress levels and the loading and unloading times in the loading and unloading process. The initial cycle of loading and unloading curve is linear and overlapping. With the stress levels and the cycle times improving, the hysteresis loop can slowly show, but the hysteresis loop area is very small.
     (5) The loading strain rate has few effects on the strength of the rock salt. The elastic modulus increases slightly with the increasing strain rate, but it is comparatively smaller increase. The Poisson’s ratio of the rock salt decreases with the increasing strain rate, which indicates that the ability of the lateral deformation diminishes. With the loading strain rate increasing, the strain decreases when the stress reaches the peak. The deformation modulus has logarithmic relation with the strain rate loading: E 0 = 0.2Ln(ε?)+3.2
     (6) In the single-layer rock salt deposits, the directional control connectivity dissolution mining techniques is used to build cavern. The shape of cavern is similar to oval or quasi-circular. The diameter is about 40-50m (less than the deposit thickness of single layer) and the horizontal length ranges from 500m to 1000m according to the geological conditions. The main idea of building cavern through interlayer is that circulation way should be reasonably selected, and mixed-built cavern methods are combined to real-timely adjust the position between the central tube and the intermediate tube.
     (7) The circle melting cavity is made as an example to do numerical simulation. It is studied that when cavity radius is less than 30m and the oil pad location is nearer than the distance from the injection port cavity radius (i <1), the moving rate of the fluid flow near the wall increases with the distance between two mouth of the tube which is ideally 20 ~ 30m.When the distance between the oil pad location and the injection hole is bigger than that of the cavity radius (i≥1), the ideal distance of two mouth can more than 30m.
     (8) After the analysis of combining the physical modeling with the numerical simulation, it is known that in order to speed up the dissolution of the salt near the cavern wall or the building of the whole cavern, the distance between two mouth of the tube should not be large when the cavern radius is smaller; the distance between two mouth of the tube can be increased (>40m) when the cavern radius is more than 30m. In addition, the out water mouth can be adjusted to vertical small-caliber porous jet to greatly improve the parietal near the solute convection and speed up the dissolution rate of the rock salt and the building of the cavern.
引文
1.西气东输管道工程配套天然气地下储气库可行性研究,西气东输工程可行性研究项目报告,
    2.管国兴,李留荣,配合“西气东输”加快岩盐开发建立地下储气库[J],中国井矿盐,2001,32(6):25~27
    3.汪维恭,国内外硫酸钠矿产及其开发利用现状[J],矿产保护与利用,1999,2:44~47
    4.王家枢,石油与国家安全[M],北京:地震出版社,2001
    5.梁卫国,盐类矿床水压致裂水溶开采的多场耦合理论及其应用[D],太原理工大学,2004
    6.王清明,关于我国盐矿水采溶洞利用问题的刍议[J],中国井矿盐,2002,33(1):17~20
    7.史震古,徐宁娟,不可忽视核电站产生的核废料之危害性[J],基建优化,1994,15(2): 13~16
    8. Chan, K.S. Munson, D.E. Bodner, S.R.Fossum, A.F. Cleavage and creep fracture of rock salt: Acta Materialia 44 Sep 1996 Elsevier Science Ltd p 3553-3565
    9. P.E. Hansen, F.D. Russell, J.F. Carter, N.L. Handin, J.-W. Mechanical behaviour of rock salt.Phenomenology and micromechanisms Senseny, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts v 29 n 4 Jul 1992 p 363-378
    10. Haupt, M. Constitutive law for rock salt based on creep and relaxation tests: Rock Mechanics and Rock Engineering v 24 n 4 Oct-Dec 1991 p 179-206
    11. Wawersik, W.R. Stone, C.M. Characterization of pressure records in inelastic rock demonstrated by hydraulic fracturing measurements in salt: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts v 26 n 6 Dec 1989 p 613-627
    12. Chan, K.S.Brodsky, N.S. Fossum, A.F. Bodner, S.R.Munson, D.E. Damage-induced nonassociated inelastic flow in rock salt: International Journal of Plasticity v 10 n 6 1994 Pergamon Press Inc p 623-642
    13.梁卫国,赵阳升,徐素国,240℃内岩盐物理力学特性的实验研究[J],岩石力学与工程学报, 2004,23 (14 ):2365-236
    14. NGV Use Expected to Rise Worldwide,Oil & Gas Journal,1996,94(51):78-92
    15. Europe Technology Trenels in Underground Gas Storage,Pipe Line & Gas Lndustry,1997,80(5):89-93
    16.杨瀛亮,硐室水溶法及其溶解规律[J],中国井矿盐,1990,(3):21-23
    17.吴刚,肖长富,邱贤德,岩盐溶解速率的研究[J],化工矿物与加工,1992,(1),20-24
    18.肖长富,阳友奎,吴刚等,岩盐溶解特性及其传质过程的研究[J],重庆大学学报(自然开学版),1993,(2),56-62
    19.陈庆林,岩盐综合溶解速度的计算及应用[J],中国井矿盐,1997,(1):13-14
    20.杨骏六,杨进春,邹玉书,岩盐水溶特性的试验研究[J],四川大学学报(工程科学版),1997,(2),76-82
    21.刘成伦,徐龙君,鲜学福等,电导法研究岩盐的溶解的动力学[J],中国井矿盐,1998,(3),19-22
    22.刘成伦,徐龙君,鲜学福,长山岩盐动溶的动力学特性[J],重庆大学学报(自然开学版),2000,(4),58-59
    23.梁卫国,盐类矿床水压致裂水溶开采的多场耦合理论及应用研究[D],太原理工大学博士论文,2004
    24.李志萍,岩盐水压致裂溶解的数值模拟[J],天津城市建设学院学报,2004,(3),4-8
    25.汤艳春,周辉,冯夏庭等,应力作用下岩盐的溶蚀模型[J],岩土力学,2008,(2),12-18
    26.汤艳春,周辉,冯夏庭等,单轴压缩条件下岩盐应力-溶解耦合效应的细观力学试验分析[J],岩石力学与工程学报, 2008,23 (2 ):83-91
    27. Udo Hunsche & H.Albrecht, Results of true triaxial tests on rock salt Engineering fracture mechanics,1990,35(4/5):867-877
    28. I.W.Farmer and M.J.Gilbert,Dependent strength reduction of rock salt ,The first Conference on the Mechanical Behavior of Salt,Trans Tech publications,1984:4-18
    29. Werner Skrotzki,An Estimate of the Brittle to ductile transition in salt, The firstConference on the Mechanical Behavior of Salt,Trans Tech publications,1984:381-38
    30. Udo Husche and Plischke,I.Stand der untersuchungen zum festigkeits-und fliessverhalten von steinsalz.Forschungsvorhaber SR 138:6-12
    31. Udo Husche,Fracture experiments on cubic rock salt samples, The first Conference on the Mechanical Behavior of Salt,Trans Tech publications,1984:169-179
    32. Hansen,F.D.,Mellegard,K.D.,and Senseny,P.E.(1984)Elasticity and strength of ten natural rock salt,The Mechanical Behavior of Salt ,Proc.1st Conf.Eds.H.R.Hardy,Jr.,and M.Langer,Trans Tech Publ.,Clausthal-Zellerfeld,1984:71-83
    33. Hunsche,U.(1989)A failure criterion for natural polycrystalline rock salt,Advances in constitutive Laws for Engineering Matericals,Proc.ICCLEM,Eds,Fan Jinghong,and S.Murkami,International Academic Publ.,1989,2(5):1043-1046
    34.周时光,阳友奎,李晓东,岩盐力学特性的刚性实验研究[J],西南工学院学报,1994,(2):42-46
    35.刘新荣,鲜学福,马建春,三轴应力状态下岩盐力学特性试验研究[J],地下空间,2004,(2):13-15
    36.吴文,徐松林,杨春和等,岩盐冲击特性试验研究[J],岩石力学与工程学报, 2004,23 (3):52-59
    37.吴文,徐松林,杨春和等,岩盐冲击过程本构关系和状态方程研究[J],岩土工程学报, 2004,23 (21 ):65-70
    38. Charter N L, Hansen F D, Senseny P E. Stress magnitudes in natural rock salt[J]. J. Geophys. Res.,1982,87(B11):9289-9300
    39. Chan K S, Bonder S R, Fossum A F, Munson D E. A constitutive model for inelastic flow and damage evolution in solids under tri-axial compression [J]. Mech. Of Math.,1992,(14): 1-14
    40. Chan K S, Brodsky N S, Fossum A F, Bonder S R, Munson D E. Damage-induced nonassociated inelastic flow in rock salt [J]. Int. J. Plasticity, 1994,(10):623-642.
    41. Fossum A F, Brodsky N S, Chan K S, Munson D E. Experimental evaluation of a constitutive model for inelastic flow and damage evolution in solids subjected to triaxial compression [J]. Int. J. Rock Mech.Min.Sci. Geom.Abst., 1993,30:1341-1344.
    42. Chan K S, Munson D E, Fossum A F, Bonder S R. Inelastic flow behavior of argillaceous salt[J]. Int.J.Damage Mech., 1996,(5):293-314.
    43. Chan K S, Bonder S R, Fossum A F, Munson D E. A damage mechanics treatment of creep failure in rock salt[J]. Int. J. Damage Mech., 1996,(6):121-152.
    44. P. Weidinger, A. Hampel, W. Blum, U. Hunsche. Creep behavior of natural rock salt and its description with the composite model. Materials Science & Engineering A234-236,1997: 646~648
    45. M. Haupt. A Constitutive Law for Rock Salt Based on Creep and Relaxation Tests. Rock Mechanics and Rock Engineering, 1991,(24):179~206、
    46. N. D. Cristescu. A General Constitutive Equation for Transient and Stationary Creep of Rock Salt. In. J. Rock. Min. Sci. & Geomech. Abstr. 1993,30(7):125~140
    47. Jishan Jin and N. D. Cristescu. An elastic/visco-plastic model for transient creep of rock salt. International Journal of Plasticity, 1998,(14):85~107,
    48.刘绘新,张鹏,盖峰,四川地区岩盐蠕变规律研究[J],岩石力学与工程学报, 2002,21 (9 ):1290-1294
    49.刘江,杨春和,吴文等,盐岩蠕变特性和本构关系研究[J],岩土力学,2006,27(8):1267-1271
    50.陈锋,李银平,杨春和等,云应盐矿盐岩蠕变特性试验研究[J],岩石力学与工程学报, 20064,25 (Sup1):3022-3027
    51.陈卫忠,王者超,伍国军等,盐岩非线性蠕变损伤本构模型及其工程应用[J],岩石力学与工程学报, 2007,26(3):467-472
    52.杨春和,陈锋,曾义金,盐岩蠕变损伤关系研究[J],岩石力学与工程学报, 2002,21 (11 ):1602-1604
    53.王贵君,一种盐岩流变损伤模型[J],岩土力学,2003,24(Sup):81-84
    54.杨春和,白世伟,吴益民,应力水平及加载路径对盐岩时效的影响[J],岩石力学与工程学报, 2000,19 (3 ):270-274
    55.杨春和,高小平,吴文,盐岩时效特性实验研究与理论分析[J],辽宁工程技术大学学报,2004,23(6):764-766
    56.高小平,杨春和,吴文等,盐岩蠕变特性温度效应的实验研究[J],岩石力学与工程学报, 2005,24(12 ):2054-2059
    57.邱贤德,岩盐的蠕变损伤破坏分析[J],重庆大学学报,2003,26(5):106-109
    58.邱贤德,姜永东,张兰,岩盐流变特性与卸荷损伤本构关系研究[J],中国井矿盐,2003,34(4):21-24
    59. Munson,D.and Wawersik,W.(1993)Constitutive modeling of salt behavior-state of the technology.Proc 7th Int.Conger. on Rock Mechanics.Ed.W.Wittke.Balkema,Rotterdam,3,1797-1810[Ch.2]
    60. Vogler,S.,and Blum,W.(1993)Micromechanical modeling of creep in term of the composite model.Proc.4TH Int.Conf.On Creep and Francture of Engineering Materials and Struchtures,Eds.B.Wilshire and R.W.Evans.The Institute of Materials,London,67-79.[Ch.2,3]
    61. Lux,K.H.,and Heusermann,S.(1983)Creep tests on rock salt with changing load as a basis for the verification of theoretical material laws.Proc.6th Int. Symp on Salt.Eds,B.C. Schreiber and H.L.Harner.The Salt Inistitute,Alexandria,USA,Vol.1,417-435.[Ch.2]
    62. Hample,A.,Hunsche,U.,Weidinger,P.,and Blum,W.(1996)Description of the creep of rock salt with the composite model-Ⅱ.Steady-State creep.Mechanical Behavior of Salt.Proc. 4th Conf.Eds.Michel Aubertin & Hardy.Trans Tech Publ.Clausthal-Zellerfeld(Ch.2,3)
    63. A.Pouya et al,A micro-macro model for polyerystalline halite,Proc.3th Conf.Eds,Hardy & M.Langer.Trans Tech Publ.Clausthal-Zellerfeld,1993,129-141
    64. Hunsche U. et al,the influence of testural parameters and mineralogical composition on the creep behaviour of rock salt,Proc. 3th Conf.Eds.P.Hardy & M.Langer,Trans Tech Publ.Clausthal-Zellerfeld,1993,144-151
    65. Peter H.,Wanten et al,Deformation of NaCl single crystals at 0.27Tm≤T≤0.44Tm,Mechanical Behavior of Salt .Proc. Proc. 3th Conf.Eds.P.Hardy & M.Langer,Trans Tech Publ.Clausthal-Zellerfeld,1993,117-128
    66. John C Stormont.Evaluation of Salt Permeability Tests[R].Research Project Report, SMRI Feb. 2001
    67. James p.evans.Permeabiblity of Fault-related Rocks and Implication for Hydraulic Structure of Fault Zones[J].Journal of Structural Gology Vo.l19 No.11 P1393~1404
    68. Hunsche U.(1994) Uniaxial and triaxial creep and failure test on rock:experiment technique and interpretation[A].In:Cristescu Sed Visco-Plastic Behavior of Geomaterial[C].Verlag:Springer,1994
    69. Otto S,Till P.Hartmut K.Development of Damage and Permeability in Defroming Rock Salt Engineering Geophy,2001,61,163~180
    70.吴文,侯正猛,杨春和,盐岩的渗透性研究[J],岩土工程学报,2005,27(7):746-749
    71. Dale T.Hutrado L.D. WIPP air-ontake shaft disturbed-rock zone study[A],The mechanical behavior of salt,Proceeding of the 4th conference[C].Chausthal-Zellerfeld,1996,525-535
    72. HOU Zheng-meng,Mechanical and hydraulic behavior of rock salt in excavation disturbed zone around underground facilities[J],Int J Rock Mech And Mining Sci,2003,40:725-738
    73. Berest P. et al,A salt cavern abandonment test[J], Int J Rock Mech And Mining Sci,2001,38:343-355
    74.刘新荣,许江,姜德义等,岩盐溶腔围岩地应力场有限元分析-计算模型与分析方法[J],化工矿物与加工,2000,(1):11-14
    75.刘新荣,姜德义,许江等,岩盐溶腔围岩应力分布规律的有限元分析[J],重庆大学学报,2003,26(2):39-41
    76.刘新荣,姜德义,谭晓慧,岩盐溶腔覆岩沉降和变形规律的研究[J],化工矿物与加工,1999,(7):21-25
    77.姜德义,任松,刘新荣等,岩盐溶腔顶板稳定性突变理论分析[J],岩土力学,2005,26(7):1009-1103
    78.姜德义,任松,刘新荣等,岩盐溶腔稳定性控制研究[J],中国井矿盐,2005,36(3):16-19
    79.任松,姜德义,刘新荣等,用3D-Sigma分析岩盐溶腔围岩地应力场[J],地下空间,2003,23(4):414-416
    80.于海龙,谭学术,鲜学福等,岩盐溶腔稳定性模拟试验研究[J],矿山压力与顶板管理,1995,(3):156-159
    81.陶连金,姜德义,岩盐溶腔稳定性的非线性大变形分析[J],北京工业大学学报,2001,27(1):64-67
    82. Lux K H.Gebirsmechanischer Entwurf und Felderfahrungen im Salzkavernenbau[M].Studdgart:Ferdinand Enke Verlag,1984
    83. Edward L.Hoffman.Effects of Cavern Spacing on the Performance and Stability of Gas-Filled Storage Caverns,SAND92-2545,Sandia National Laboratories,Albuquerque,NM,1993
    84. Edward L.Hoffman,Brian L.Ehgarther,Using three dimensional structural simulation to study the interaction of multiple excavations in salt,SAND97-1017C,Sandia National Laboratories,Albuquerque,NM,1998
    85. Michael S.Bruno,Maurice B.Dussealut.Geomechanical analysis of pressure limites for gas storage ressrvirs[J],International journal of rock mechanics and mining sceiences,1998.
    86. P.Berest,J.Bergues,B.Brouard. Review of static and dynamic compressilbility issues relating to deep underground salt caverns[J].International journal of rock mechanics and mining sceniences,36(1999),1031-1094
    87. Kerry L.Devries ,Improved modeling increases salt cavern storage working gas[J],Gas storage,2003,33-38
    88. Krista S.Walton.Natural gas storage cycles:Influence of nonisothermal effects and heavy alkanes.Springer Science Business Media,LLC 2006,12:227-235
    89. Kerry L.Devries,Kirby D.Mellegard,Gary D.Callahan,etc,Cavern roof stability for natural gas storage in bedded salt[M],2005
    90. Gang Han,Mike Bruno.Gas Storage and Operations in single Bedded Salt Caverns:Stability Analyses.SPE(Society of Petroleum Engineers)Gas Technology Symposium held in Calgary,Alberta,Canada,15-17 May 2006:Spe99520
    91. S.R.Sobolik,B.L.Ehgartner.Effects of cavern shapes on cavern and well intergrity for the strategic petroleum reserve.The Mechanical Behavior of Salt-Understanding of THMC Processes in Salt(2007):353-361
    92.班凡生,耿晶,高树生等,岩盐储气库水溶建腔的基本原理及影响因素研究[J],天然气地球科学,2006,17(2):261-266
    93.班凡生,高树生,单文文等,岩盐储气库水溶建腔排量和管柱提升优化研究[J],石油天然气学报,2005,27(2):411-413
    94.班凡生,朱维耀,单文文等,岩盐储气库水溶建施工参数优化[J],天然气工业,2005,25((12):108-110
    95.赵志成,朱维耀,单文文等,岩盐储气库水溶建腔数学模型研究[J]天然气工业,2004,24(9):126-129
    96.班凡生,高树生,单文文,岩盐品位对岩盐储气库水溶建腔的影响[J],2006,26(4):115-118
    97. Saberian A. Cavity development in a three layer bedded salt model,Solution Mining Research Institute file 77-0003-SMRI,1977
    98. Saberian A. Cavity development in a five layer bedded salt model,Solution Mining Research Institute file 77-0003-SMRI,1977
    99.班凡生.盐穴储气库水溶建腔优化设计研究[D].廊坊:中国科学院渗流流体力学研究所,2008.
    100.Michael S.Bruno,Maurice B.Dusseault.geomechanical analysis of pressure limits forthin bedded salt caverns.Solution Mining Research Institute,Spring 2002 Technical Meeting,Banff,Alberta,Canada,April 29-30
    101.Michael Bruno,Luis Dorfmann,Gang Han,etc.3D Geomechanical Analysis of Multiple Caverns in Bedded Salt.Solution Mining Research Institute,Fall 2005 Technical Meeting,Nancy,France,October 1-5.
    102.王清明,盐类矿床水溶开采[M].北京:化学工业出版社,2003.62-84
    103.王方强,盐湖矿床开采[M].北京:化学工业出版社,1983.206-218.
    104.徐素国,梁卫国,赵阳升.钙芒硝岩盐水溶特性的实验研究[J],辽宁工程技术大学学报,2005,24(1):5-7
    105.徐素国,梁卫国,赵阳升.钙芒硝岩盐溶解特性的实验研究[J].太原理工大学学报,2005,36(3):253-255
    106.齐欢.数学模型方法[M].武汉:华中理工大学出版社,1994,137-138
    107.盐矿开采基本知识编写组.盐矿开采基本知识.北京:轻工业出版社,1977.51-57
    108.王洪道,窦鸿身,颜京松等.中国湖泊资源.北京:科学出版社,1989
    109.赵顺柳,杨俊六.关于地下岩盐溶腔利用的特性研究[J].西南民族学院学报(自然科学版),2003,29(1):65-68
    110.杨进.岩盐溶腔-极有前途的特殊固体废物最终处置场所[J].武汉化工学院学报,1994,16(3):40-44
    111.徐素国.岩盐矿床油气储库建造的基础研究[D].太原理工大学硕士论文,2004.
    112.冯夏庭,丁梧秀.应力—水流—化学耦合下岩石破裂全过程的细观力学试验[J].岩石力学与工程学报,2005,24(9):1465-1473
    113.汤连生,王思敬.岩石水化学损伤的机理及量化方法探讨[J].岩石力学与工程学报,2002,21(3):314-319
    114.汤连生,王思敬.水-岩化学作用对岩体变形破坏力学效应研究进展[J].地球科学进展,1999,14(5):433-439
    115.Ladani L.J., Dasgupta A.. A meso-scale damage evolution model for cyclic fatigue of viscoplastic materials. International Journal of Fatigue, 2009,31:703-711
    116.席道瑛,薛彦伟,宛新林.循环载荷下饱和砂岩的疲劳损伤[J].物探化探计算技术,2004,26(3):193-198
    117.冯夏庭,丁梧秀.应力—水流—化学耦合下岩石破裂全过程的细观力学试验[J].岩石力学与工程学报,2005,24(9):1465-1473
    118.汤连生,王思敬.岩石水化学损伤的机理及量化方法探讨[J].岩石力学与工程学报,2002,21(3):314-319
    119.乔丽萍,刘建,冯夏庭.砂岩水物理化学损伤机制研究[J].岩石力学与工程学报,2007,26(10):2117-2124
    120.杨春和,冒海军,王学潮等.板岩遇水软化的微观结构及力学特性研究[J].岩土力学,2006,27(12):2090-2097
    121.陈钢林,周仁德.水对受力岩石变形破坏宏观力学效应的实验研究[J].地球物理学报,1991,34(3):335-341
    122.周翠英,邓毅梅,谭祥韶等.饱水软岩力学性质软化的试验研究与应用[J].岩石力学与工程学报,2005,24(1):33-38
    123.周翠英,谭祥韶,邓毅梅等.特殊软岩软化的微观机制研究[J].岩石力学与工程学报,2005,24(3):394-400
    124.Yao Q., Zhang F.,Ding X., Zhang L., Jiang G.. Experimental research on instability mechanism of silty mudstone roofs under action of water and its application. Procedia Earth and Planetary Science, 2009, 1: 402-408
    125.朱珍德,邢福东,等.地下水对泥板岩强度软化的损伤力学分析[J].岩石力学与工程学报,2004,23(增2):4739-4743
    126.李俊平,余志雄,周创兵等.水力耦合下岩石的声发射特征试验研究[J].岩石力学与工程学报,2006,25(3):492-498
    127.Bresser J.H.P., Urai J.L. and Olgaard D.L.. Effect of water on the strength and microstructure of Carrara marble axially compressed at high temperature. Journal of Structure Geology, 2005,27:265-281
    128.Zhu Wenlu, Wong Teng-fong. Shear-enhanced compaction in sandstone under nominally dry and water-saturated conditions. Int. J. Rock Mech. & Min. Sci. 1997, 34: 3-4 paper No.364
    129.Liang Weiguo, Yang Chunhe, Zhao Yangsheng, Dusseault Maurice and Liu Jiang. Experimental Investigation of Mechanical Properties of Bedded Salt Rock. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(3): 400-411
    130.梁卫国.盐类矿床控制水溶开采理论及应用[M].北京:科学出版社, 2007.
    131.梁卫国,杨春和,赵阳升.层状盐岩储气库物理力学特性与极限运行压力[J].岩石力学与工程学报, 2008, 27(1): 22-27
    132.梁卫国,徐素国,赵阳升.钙芒硝盐岩溶解渗透力学特性研究[J].岩石力学与工程学报,2006,25(5):951-955
    133.Forest S,Pradel F,Sab K. Asymptotic analysis of heterogeneousCosserat media[J]. International Journal of Solids and Structures, 2001,38(26/27):4 585-4 608
    134.Dawson E M,Cundall P A. Cosserat plasticity for modeling layered rock[A]. In:Proceedings of the ISRM Regional Conference on Fractured and Jointed Rock Masses[C]. Berkeley ,California : Lawrence Berkeley Laboratory,1992. 269–276.
    135.Guz I A,Soutis C. A 3D stability theory applied to layered rocks undergoing finite deformations in biaxial compression[J]. European Journal of Mechanics(A/Solids),2001,20(1):139–153.
    136.Forest S,Barbe F,Cailletaud G. Cosserat modelling of size effects in the mechanical behaviour of polycrystals and multi-phase materials[J]. International Journal of Solids and Structures,2000,37(46/47):7 105-7 126
    137.Bai T,Pollard D D. Fracture spacing in layered rocks:a new explanation based on the stress transition[J]. Journal of Structural Geology,2000,22(1):43–57
    138.Iordache M M,Willamb K. Localized failure analysis in elastoplastic Cosserat continua[J].Computer Methods in Applied Mechanics and Engineering,1998,151:559–586
    139.Treagus S H. Viscous anisotropy of two-phase composites,and applications to rocks and structures[J]. Tectonophysics , 2003,372(3/4):121-133
    140.Mandal N,Cha杨春和,李银平.互层岩体的Cosserat介质扩展本构模型[J].岩石力学与工程学报,2005,24(23):4226-4232.
    141.kraborty C,Samanta S K. An analysis of anisotropy of rocks containing shape fabrics of rigid inclusions[J]. Journal of Structural Geology,2000,22(6):831–839
    142.李银平,刘江,杨春和.泥岩夹层对盐岩变形和破损特性的影响分析[J].岩石力学与工程学报,2006,25(12):2461-2466.
    143.李银平,杨春和.层状盐岩体的三维Cosserat介质扩展本构模型[J].岩土力学,2006,27(4):509-513
    144.张顶立,王悦汉,曲天智.夹层对层状岩体稳定性的影响分析[J].岩石力学与工程学报,2000,19(2):140-144
    145.刘卡丁,张玉军.层状岩体剪切破坏方面的影响因素[J].岩石力学与工程学报,2002,21(3);335-339.
    146.鲜学福,谭学术.层状岩体破坏机制[M].重庆:重庆大学出版社, 1989.
    147.陈平.结晶矿物学[M].北京:化学工业出版社,2006年
    148.万玲,彭向和,杨春和,郭开元.泥岩蠕变行为的实验研究及其描述[J].岩土力学,2005,26(6):1267-1271
    149.许宝田,阎长虹,许宏发.三轴试验泥岩应力-应变特性分析[J].岩土工程学报,2004,26(6):863-865
    150.翟英达,石兴,刘吉新.泥岩蠕变性质的研究[J].山西矿业学院学报,1995,13(3):279-284
    151.Munson D E,Dawson P R.Salt constitutive modeling using mechanism maps[A].The Mechanical Behavior of Salt of the First Conferenc[C].Germany:Trans.Tech.Publications,1984,717-737.
    152.任中俊,彭向和,万玲,杨春和.三轴加载下盐岩蠕变损伤特性的研究[J].应用力学学报,2008,25(2):212-217
    153.李银平,蒋卫东,刘江,陈剑文,杨春和.湖北云应盐矿深部层状盐岩直剪试验研究[J].岩石力学与工程学报,2007,26(9):1767-1772
    154.梁卫国,徐素国,赵阳升等.盐岩蠕变特性的实验研究[J].岩石力学与工程学报,2006, 25(7): 1386-1390
    155.高小平,杨春和,吴文.岩盐时效特性实验研究[J].岩土工程学报,2005,27(5):558-561
    156.徐素国,郤保平,梁卫国等.钙芒硝盐岩力学特性的研究[J].地下空间与工程学报,2005,1(7):1125-1128
    157.刘新荣,余海龙,姜德义等.岩盐顶板复合岩石力学性质试验研究[J].重庆建筑大学学报,2004,26(3):32-35
    158.梁卫国,赵阳升.岩盐力学特性的试验研究[J].岩石力学与工程学报,2004, 23 (3): 391-394
    159.梁卫国,徐素国,赵阳升.损伤岩盐高温再结晶剪切特性实验研究[J].岩石力学与工程学报, 2004, 23 (20) :3413-3417
    160.许江,鲜学福,王鸿等.循环加、卸载条件下岩石类材料变形特性的实验研究[J].岩石力学与工程学报,2006,25(增1):3040-3045
    161.许江,杨秀贵,王鸿等.周期性载荷作用下岩石滞回曲线的演化规律[J].西南交通大学学报,2005,40(6):754-758
    162.席道瑛,薛彦伟,宛新林.循环载荷下饱和砂岩的疲劳损伤[J].物探化探计算技术,2004,26(3):193-198
    163.尤明庆,苏承东.大理岩试样循环加载强化作用的试验研究[J].固体力学学报,2008,29(1):66-71
    164.苏承东,杨圣奇.循环加卸载下岩样变形与强度特征试验[J].河海大学学报(自然科学版),2006,34(6):667-671
    165.徐建光,张平,李宁.循环载荷作用下断续裂隙岩体的变形特性[J].岩土工程学报,2008,30(6):802-806
    166.余贤斌,谢强,李心一等.岩石直接拉伸与压缩变形的循环加载实验与双模量本构模型[J].岩土工程学报,2005,27(9):988-993
    167.Bagde M.N. Petros V.. Fatigue properties of intact sandstone samples subjected to dynamic uniaxial cyclical loading, International Journal of Rock Mechanics & Mining Sciences, 2005,42:237-250
    168.王光纶,尹显俊.岩体结构面三维循环加载本构关系[J].清华大学学报(自然科学版),2005,45(9):1193-1197
    169.Ladani L.J., Dasgupta A.. A meso-scale damage evolution model for cyclic fatigue of viscoplastic materials. International Journal of Fatigue, 2009,31:703-711
    170.Yun S.J., Palazotto A.. Plastic deformation under cyclic loading using two-back stress hardening models, International Journal of Fatigue, 2008,30:473-482
    171.Chow T.M., Meglis I.L. and Young R.P.. Progressive microcrack development in tests on Lac du Bonnet Granite-II. Ultrasonic tomographic imaging. International Journal of Rock Mechanics and Mining Sciences, 1995, 32(8):751-761
    172.Choi S.R., Nemeth N.N., Gyekenyesi J.P.. Slow crack growth of brittle materials with exponential crack velocity under cyclic fatigue loading. International Journal of Fatigue, 2006,28:164-172
    173.Navarro A., Giraldez J.M., Vallellano C.. A constitutive model for elastoplastic deformation under variable amplitude multiaxial cyclic loading, International Journal of Fatigue, 2005,27:838-846
    174.周辉、潘鹏志、冯夏庭.循环载荷作用下岩石单轴压缩破坏过程的平面弹塑性细胞自动机模型[J].岩石力学与工程学报,2006,25(增2):3623-3628
    175.Dubey R.K. and Gairola V.K.. Influence of structural anisotropy on the uniaxial compressive strength of pre-fatigued rocksalt from Himachal Pradesh, India. International Journal of Rock Mechanics and Mining Sciences, 2000, 37:993-999
    176.Sang Ho Cho, Yuji Ogata, Katsuhiko Kaneko. Strain-rate dependency of the dynamictensile strength of rock, International Journal of Rock Mechanics & Mining Sciences, 2003, 40: 763-777
    177.Yilmaz Mahmutoglu. The effects of strain rate and saturation on a micro-cracked marble, Engineering Geology, 2006(82): 137-144
    178.Qi Chengzhi, Wang Mingyang, Qian Qihu. Strain rate effects on the strength and fragmentation size of rocks, Internation al Journal of Impact Engineering, DOI: 10.1016/j.ijimpeng.2009.04.008
    179.李战鲁,王启智.加载速率对岩石动态断裂韧度影响的实验研究[J].岩土工程学报,2006,28(12):2116-2120
    180.廖红建,蒲武川,殷建华.软岩的应变速率效应研究[J].岩石力学与工程学报,2005,24(18):3218-3223
    181.杨仕教,曾晟,王和龙.加载速率对石灰岩力学效应的试验研究[J].岩土工程学报,2005,27(7):786-788
    182.万志军,李学华,刘长友.加载速率对岩石声发射活动的影响[J].辽宁工程技术大学学报(自然科学版),2001,20(4):469-471
    183.周国辉,诸武扬,周富信.温度和加载速率影响位错发射的分子动力学模拟[J].固体力学学报,1999,20(4):310-314
    184.谢和平,鞠杨,黎立云,彭瑞东.岩体变形破坏过程的能量机制[J].岩石力学与工程学报,2008,27(9):1729-1740
    185.李刚,陈正汉,谢云,祝文化.高应变率条件下三峡工程花岗岩动力特性的试验研究[J].岩土力学,2007,28(9):1833-1840
    186.J.A.Hudson, J.P.Harrison著,冯夏庭、李小春、焦玉勇、李宁、王元汉等译,工程岩石力学(上卷:原理导论)[M].北京:科学出版社,2009年1月
    187.王亚男,陈树江,董希淳.位错理论及其应用[M].北京:冶金工业出版社,2007
    188.李之光编著。相似与模化(理论与应用)[M].北京:国防工业初步社,1982
    189.贾光华译,lunet技术基础与应用实例[M].北京:清华大学出版社,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700