用户名: 密码: 验证码:
塔中隆起西部围斜区奥陶系沉积与储层特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实践证明,塔中地区奥陶系碳酸盐岩岩溶型储层是塔中地区主要勘探领域。虽发现了奥陶系中1低隆起、多期次发育的岩溶,然而,塔中地区目前奥陶系勘探程度仍较低。奥陶系油气藏以类型多、含油气井段长为特征,油气藏形态受不规则孔、缝、洞储层的控制,非均质性极强,储层是奥陶系油气富集的主控因素。
     在充分调研、掌握和消化大量已有研究成果的基础上,以现代地层学、沉积学与沉积岩石学、储层地质学、岩溶地质学、石油地质学等学科的新观点、新理论、新方法为指导,采用宏观与微观相结合,钻井、岩心、测井、地震等资料综合分析方法,紧紧围绕研究区奥陶系碳酸盐岩岩溶及油气成藏研究,取得了突破性进展,成果显著。
     通过对奥陶系碳酸盐岩储层的岩石学特征、成岩作用和沉积相特征研究,搞清储层储集空间、孔隙结构和类型,获取奥陶系碳酸盐岩储层物性参数,建立研究区碳酸盐岩储层综合识别、评价、预测技术;建立该区岩溶发育模式、发育期次、发育强度,预测岩溶、古风化壳储层的空间分布,搞清岩溶储层纵向和平面分布规律;分析成藏主控因素和油气成藏模式,指明有利勘探方向和目标。深化碳酸盐岩古岩溶地质学与油气储层关系的研究,而且可形成奥陶系岩溶预测的技术,进一步丰富碳酸盐岩储层地质学的相关理论。
It was proved that the main exploration target in mid-Tarim area should be the Ordovician carbonate karst reserviors. But the exploration level of Ordovician in mid-Tarim is low although Zhong-1 low uplift and multiple stage karsts in Ordovician have been found. The characteristic of Ordovician oil and gas reservoirs are multi types with thicker oil-bearing section. Reservoirs”shape are independent of abnormally pores fractures and cavities with heavy heterogenesis. Reservoir is the main control factor of Ordovician hydrocarbon enrichment .
     The theme was based on sufficient investigatng, mastering and digesting present information. Follow the direction of up to date opinion, theory and method of various disciplines like modern stratigraphy, sedimentology and lithology, reservoir geology, karst geology, and petroleum geology etc. Integrated analyzed well data, drill core, well log and seismic data by macroscopy and microscopy, had breakthrough development and had remarkable exploration fruitage.
     The goal of this theme is by studying the Ordovician carbonate reservoir lithological, diagenesis and sedimentary facies features, understanding the accumulate space of reservoir, pore structure and type, acquiring physical property parameters of Ordovician carbonate reservior, establishing the techniques of carbonate reservoir identifying, evaluating and predicting, establishing karst reservoir developing mode, forming stages and developing scale , predicting karst reservoir and paleo-weathering crust reservoir spatial distribution, clarifying vertical and horizontal distribution of karst reservoir, analyzing the key control factors and patterns of the reservoir-forming, pointing out the perspective area and target of exploration, to deepen the relationship between carbonate paleo-karst geology and hydrocarbon reservoirs, and to establish prediction techniques of Ordovician karst, further more to enrich the relevant theory of carbonate geology.
引文
[1] Adams J E. Rhodes M L. 1960. Dolomitization by Seepage Reflux. Am. Assoc. Petrol. Geol. Bull., 44: 1912-1920
    [2] Al-Aasm I. Origin and characterization of hydrothermal dolomite in the Western Canada Sedimentary Basin. J Geochem Explo, 2003, (78-79): 9-15
    [3] Al-Asam I S, Lonnee J, Clarke J. 2002. Multiple fluid flow events and the formation of saddle dolomite: Case studies from the Middle Devonian of the Western Canada Sedimentary Basin. Marine and Petroleum Geology, 19: 209-217
    [4] Alharhan A S,Nairn A E M.Sedimentary Basins and Petroleum Geology of the Middle East[M]. Amsterdam:Elsevier Science,1997: 1-942.
    [5] Allaby A, Allaby M. The Concise Oxford Dictionary of Earth Sciences[M]. Oxford Univ. Press. 1990
    [6] Alsharhan A S,St Kendali C G C.Precambrian to Jurassic rocks of Arabian Gulf and adjacent areas:Their facies,depositional setting,and hydrocarbon habitat[J].AAPG Bulletin, 1986, 70: 977-1002
    [7] Alsharhan A S.Geology and reservoir characteristics of carbonate buildup in giant Bu Hasaoil fieid.Abu Dhabi,United Arab Emirates[J].AAPG Bulletin.1987.71:1304-1318
    [8] Arthur H Saller, Nuel Henderson.1998. Distribution of Porosity and Permeability in Platform Dolomites: Insight from t he Permian of West Texas. AAPG Bullein, (82): 1528-1550
    [9] Aulstead K L, Spencer R J, Lrouse H R.1988. Fluid inclusions and isotopic evidence on dolomitization, Devonian of Western Canada. Geochimica et Cosmochimica Acta, 52: 1027-1035
    [10] Ayalon A, Longstaffe F J. 1995. Stable isotope evidence for the origin of diagenetic carbonate minerals from the Lower Jurassic Inmar Formation, southern Israel. Sedimentology 42 (1): 147–160
    [11] Azmy K, Veizer J, Misi A, et a1. 2001. Dolomitization and isotope stratigraphy of the Vazante Formation, Sao Francisco Basin, Brazil. Precambrian Research, 112: 303-329
    [12] Badiozamani K. 1973. The Dorag Dolomitization Model: Application to the Middle Ordovician of Wisconsin. Jour. Sediment. Petrol., 43: 965-984
    [13] Baker P A, Kastner M. 1981. Constraints on the formation of sedimentary dolomite. Science, 213: 214- 216
    [14] Banner J L. 1995. Applications of the trace element and isotope geochemistry of strontium to studies of carbonate diagenesis. Sedimentolgy, 45(2): 805-824
    [15] Bein A, Land L S. l983. Carbonate sedimentation and diagenesis associated with Mg-Ca-Chloride brines: The Permian San Andrus formation in the Texas Panhandle. J S P, 53: 243- 260
    [16] Brand U, Veizer J. 1980. Chemical diagenesis of a multicomponent carbonate system-1: trace elements. J. Sed.Petrol. 50: 1219–1236
    [17] Chi Guoxiang, Savard M. M. Sources of basinal and Mississippi Valley-type mineralizing brines: mixing of evaporated seawater and halite-dissolution brine[J]. Chemical Geology, 1997, 143: 121-125
    [18] Cioppa, M.T., Al-Aasm, I.S., Symons, D.T.A. and Gillen, K.P. 2003. Dating penecontemporaneous dolomitization in carbonate reservoirs: paleomagnetic, petrographic, and geochemical constraints: AAPG Bulletin, 87: 71-88
    [19] Daniel W M. Judith A M, Abu D S. 1990. Persian Gulf, Revisited: Application of Strontium Isotope to Test an Early Dolomitization Model. Geology, 18: 618-621
    [20] Davisson M L, Criss R E.Na-Ca-Cl relations in basinal fluid[J]. Geochimica et Cosmochimica Acta, l996, 60(15): 2743-2752
    [21] Davisson M L,Criss R E.Geochemistry of tectonically expelled fluids from the northern coastalranges, Rumsey hills, California, USA[J]. Geochimica et Cosmochimica Acta, 1994,58(7): 1687-1699
    [22] Deffeyes K S, Lucia F J, Weyl P K.1965. Dolomitization of recent and Plio-Pleistocene sediments by marine evaporate waters on Bonaire, Netherlands Antilles. In: Pray L C, Murray R C(Eds.), Dolomitization and Limestone Diagenesis.Spec. Publ.-SEPM vol. 13, pp. 71–88
    [23] Derry L A, Brasier M D, Corfield R M, Rozanov A Yu, Zhuravlev A Yu. 1994. Sr and C isotopes in Lower Cambrian carbonates from Siberian craton: a paleoenvironmental record during the Cambrian explosion. Earth Planet. Sci. Lett. 128: 671–681
    [24] Derry L A, Keto L S, Jacobsen S B, Knoll A H, Swett K. 1989. Sr isotopic variations of upper Proterozoic carbonates from East Greenland and Svalbard. Geochim. Cosmochim. Acta, 53: 2331–2339
    [25] Diener A, Ebneth S, Veizer J, Buhl D. 1996. Strontium isotope stratigraphy of the Middle Devonian: brachiopods and conodonts. Geochim. Cosmochim. Acta 60: 639–652
    [26] DuppleG M, Ferry J M. Fluid flow and stable isotopic alteration in rocks at elevated temperatures with applications to metamorphism.Geochimica et Cosmochimica Acta, 1992, 59(9): 3539-3550
    [27] El-Tabakh M, Mory A, Schreiber B C, et al. 2004. Anhydrite cements after dolomitization of shallow marine Silurian carbonates of the Gascoyne Platform, Southern Carnarvon Basin, Western Australia. Sedimentary Geology, 164: 75-87
    [28] Ernst W G. Hermobarometric and fluid expulsion history of subduction zones. Journal of Geophysical Research, 1990, 95:9047-9053
    [29] Fanning K A, Byrne R H, Breland II J A, et a1. 1981. Geothermal Springs of the West Florida Continental Shelf-Evidence for Dolomitization and Radionuclide Enrichment. Earth and Planetary Sci. Letters, 52: 345-354
    [30] Feng Zengzhao, Jin Zhenkui. 1994. Types and origin of dolostones in the Lower Palaeozoic of the North China Platform.Sedimentary Geology, 93 (3- 4): 279-290
    [31] Feng Zengzhao, Zhang Yongsheng, Jin Zhenkui. 1998. Type, origin, and reservoir characteristics of dolostones of the Ordovician Majiagou Group,Ordos, North China Platform. Sedimentary Geology, 118(1-4): 127-140
    [32] Fisher J B, Roles J R. Water-rock interaction in Tertiary sandstones, San Joaquin basin, California, USA: Diagenetic controls on water composition[J]. Chemical Geology. 1990, 82: 83-101
    [33] Folk R L, Land L S. 1975. Mg/Ca ratio and salinity: two controls over crystallization of dolomite. AAPG Bull. 59, 60-68
    [34] Folk R L.1962.Spectral subdivision of limestone types.In: Ham W E.ed.Classification of Carbonate Rocks. Am. Assoc. Pet.Gco1.M em., 1: 62-84.
    [35] Frape S K, Blyth A, Blomqvist R, et al. Deep fluids in the continents: II.Crystalline rocks. In: Drever J ed. Treatiseon geochemistry 5 surface and ground water, weathering and soils. Elsevier,Amsterdam, 2004: 541-580
    [36] Fridman G M. Early diagenesis and lithification in carbonate sediments. J.Sed.Petrol., 1964, 34:777-813
    [37] Friedman G M, Sanders J E. 1967. Origin and occurrence of dolostones. In: Chilingar G V, Bissell H J, Fairbridge R W(Eds.), Carbonate Rocks, Origin, Occurrence, and Classification.Elsevier, Amsterdam, pp. 267–348
    [38] Gao G, Land L S, Elmore R D. 1995. Multiple episodes of dolomitization in the Arbuckle Group, Arbuckle Mountains, south-central Oklahoma; field, petrographic, and geochemical evidence. J. Sediment. Res., Sect. A 65(2): 321–331
    [39] Gao G, Land L S, Folk R L. 1992. Meteoric modification of early dolomite and late dolomitization by basinal fluids, upper Arbuckle Group, Slick Hills, Southwestern Oklahoma. Am. Assoc. Petrol. Geol. Bull. 76, 1649–1664
    [40] George R D. 1997. Stratigraphic patterns of deep-water dolomite, northeast Australia. Journal of Sedimentary Research, 67 (6) :1083-1096
    [41] Gerhard L C, Anderson S B, Lelever J A et a1. Geological development, origin, and energy mineral resources of williston Basin, North Dakota[J]. AAPG Bulletin,1982,66:989-1020
    [42] Gill I P, Moore C H, Aharon P. 1995. Evaporitic Mixed-Water Dolomitization on St. Croix. U.S.V.I. J. Sediment. Petrol., 65: 591- 604
    [43] Gorkhov I M, Semikhatov M A , Baskakov A V, Kutyavin E P, et al. 1995. Sr isotopecomposition in Riphean, Vendian, and lower Cambrian carbonates from Siberia. Stratigr. Geol.Correl. 3:1-28
    [44] Hanor J S. Physical and chemical controls on the composition of waters in sedimentary basins[J]. Marine and Petroleum Geology, 1994, 11(1): 31-45
    [45] Hanshow B B, Back W. Deike R G. 1971. A Geochemical Hypothesis for Dolomitization by Groundwater. Econ. Geol., 66: 710-724
    [46] Heydari E. 2003. Meteoric versus burial control on porosity evolution of the Smackover Formation. AAPG Bulletin, 87(11): 1779-1797
    [47] Hickman S, Sibson R.Introduction to special section: mechanical involvement of fluids in faulting. Journal of Geophysical Research B, 1995, 100(7): 12831-12840
    [48] Hsu K J, Schneider J. 1973. Progress Report on Dolomitization-Hydrology of Abu Dhabi Sabkhas, Arabian Gulf, The Persian Gulf. New York: Springer, 409-422
    [49] Hsu K J, Siegenthaler C. 1969. Preliminary experiments on hydrodynamic movement induced by evaporation and their bearing on the dolomite problem. Sedimentology, 12, 448-453
    [50] Huang Sijing, Shi He, Shen Licheng, et al. 2005. Global correlation for strontium isotope curve in the Late Cretaceous of Tibet and dating marine sediments. Science in China (Series D), 48(2): 199-209
    [51] Humphrey J D, Quinn T M. 1989. Coastal Mixing Zone Dolomite, Forward Modeling, and Massive Dolomitization of PlatformMargin Carbonates. J. Sediment. Petrol., 59: 438-454
    [52] Illing L V, Taylor J C M. 1993. Penecontemporaneous dolomitization in Sabkha Faishakh, Qatar - evidence from changes in the chemistry of the interstitial brines. J. Sediment. Petrol. 63 (6): 1042–1048.
    [53] Illing L V, Wells A J, Taylor J C M. 1965. Penecontemporaneous dolomite in the Persian Gulf. In: Pray L C, Murray R C. (Eds.), Dolomitization and Limestone Diagenesis. Spec.Publ.-Soc. Econ. Paleont. Mineral. vol. 13, pp. 89-111.
    [54] James N P.In.Sediment Diagenesis, Ed. By Parker and Sellwood, Reidel Publishing Comp, 1983, 289-348
    [55] Jin Z, Zhang L, Yang L, et al A preliminary study of mantle- derived fluids and their effects on oil/gas generation in sedimentary basins. Journal of Petroleum Science & Engineering, 2004,41(1~3): 45-56
    [56] Kaidalow W I,Zagora K.Uber palaiozoische Riffkomplexe im Ostteil der Russischen Tafel und ihre Erdound Erdgasfuhrung[J]. Zeitschriit Angewandte Geologie, 1978,24: 465 468.
    [57] Kappler P, Zeeh S. Relationship between fluid flow and faulting in the Alpine realm (Austria, Germany, Italy). Sedimen Geol, 2000,131: 147-162
    [58] Ketcham R A,Donelick R A,Carlson W D.Variability of apatite fission-track annealing kinetics III:Extrapolation to geological time scales[J].American Mineralogist.1999,9:1 235-1255
    [59] Ketcham, R.A., Donelick, R.A., and Donelick, M.B. 2000. AFTSolve: A program for multi-kinetic modeling of apatite fission-track data. Geological Materials Research, 2(1): 1-32
    [60] Korte C, Kozur H W, Bruckschen P, Veizer J.2003. Strontium isotope evolution of Late Permian and Triassic seawater. Geochimica et Cosmochimica Acta, 67: 47-62
    [61] Kuznetov V G . Hydrocarbon occurrences in Permian strata of the commonwealth of independent states[A].Scholle PA, Peryt T M, Ulmer Scholle D S. The Permian of Northern Pangea, 2, Sedimentary Basins and Economic Resources[M]. 1995: 273-291
    [62] Lambert L, Durlet C, Loreau J P, et al. Burial dissolution of micrite in Middle East carbonate reservoirs(Jurassic-Cretaceous): keys for recognition and timing. Marine and Petroleum Geology, 2006, 23: 79-92
    [63] Land L S and Hoops G K. Sodium in carbonate sediments and rocks: a possible index to the salinity of diagenetic solution.J. Sed. Petrol.,1973, 43: 614-617.
    [64] Land L S, Macpherson G L. Origin of saline formation waters, Cenozoic section, Gulf of Mexico sedimentary basin[J]. AAPG Bull.1992, 76(9): 1344-1362
    [65] Land L S, Milliken K L. Feldspar diagenesis in the Frio Formation, Brazoria County, Texas gulf coast[J]. Geology, 1981, 9, 314-318
    [66] Land L S. 1973. Holocene meteoric dolomitization of Pleistocene limestones, North Jamaica. Sedimentology, 20, 411-424.
    [67] Land L S. 1985. The Origin of Massive Dolomite. J. Geo1. Educ.,33: 112-125
    [68] Land L S. 1991. Dolomitization of the Hope Gate Formation North Jamaica. by seawater: reassessment of mixing zone dolomite. In: Taylor H P, O’Neil J R, Kaplan I R(Eds.), StableIsotope Geochemistry: A Tribute to Samuel Epstein. Geochem. Soc. Spec. Publ. vol. 3, pp. 121-133.
    [69] Larsen R, Chilinger G V. Diagenesis in sediments and sedimentary rocks,2. Elsevier, Amsterdam Oxford New York,1983
    [70] Larsen R, Chilinger G V.Development in sedimentology 25 A: Diagenesis in sediments and sedimentary rocks, Elsevier, Amsterdam Oxford New York, 1979
    [71] Lee Y I, Friedman G M.1998. Deep-Burial Dolomitization in the Ordovician Ellenberger Group Carbonates, West Texas and Southeastern New Mexico-Reply. J. Sediment. Petrol., 58: 910-913
    [72] Longman M W. Carbonate diagenesis as a control on Stratigraphic Traps (with Examples from the Williston Basin)[M].AAPG Education conference,1981: 1-159.
    [73] Longman M W. Carbonate diagenetic textures from nearsurface diagenetic environment:AAPG Bull, 1980, 64:461-487.
    [74] Machel H G, Burton E A. 1991. Burial-diagenetic sabkha-like gypsum and anhydrite nodules. Chem. Geo1., 90: 211-231
    [75] Machel H G, Mountjoy E W. 1986. Chemistry and environments of dolomitization-A reappraisa1. Earth Science Reviews, 23: l75- 222
    [76] Machel H G. 2004. Concepts and models of dolomitization: Acritical reappraisal[C]∥CJR Braithwaite, Rizzi G, Darke G, eds. The Geometry and Petrogenesis of Dolomite Hydrocarbon Reservoirs.Geological Society (London) Special Publication, 235: 7-63
    [77] Majid A H,Veizer J.Deposition and chemical diagenesis of Tertiary carbonates,Kirkuk oil field.Iraq[J].AAPG Bulletin, 1986, 70: 898-913
    [78] McArthur J M, Howarth R J , Bailey T R. 2001. Strontium isotope stratigraphy: Lowess version 3 , best fit to the marine Sr-isotope curve for 0-509 Ma and accompanying look up table for deriving numerical age. J. Geol.,109: 155– 170
    [79] Melezhik V A, Roberts D, Fallick A E, et al. Geochemical p reservation potential of high-grade calcite marble versus dolomite marble: Imp lication for isotope chemostratigraphy. Chemical Geology, 2005, 216: 203-224
    [80] Melim L A, Westphal H, Swart P K, et al. 2002. Questioning carbonate diagenetic paradigms: Evidence from the Neogene of the Bahamas. Marine Geology, 185: 27-5
    [81] Moore C H,Druckman Y.Burial diagenesis and porosity evolution,Upper Jurassic Smackover,Arkansas and Louisiana[J].AAPG Bulletin, 1981, 65: 597-628.
    [82] Moore C H. 2001.Carbonate reservoirs: porosity evolution and diagenesis in a sequence stratigraphic framework. Developments in Sedimentology, 55: 1-423
    [83] Mountjoy E, Qing H, McNutt R. Sr isotopic composition of Devonian dolomites, Western Canada Sedimentary Basin: Significance as sources of dolomitizing fluids. Applied Geochem istry,1992, 7: 57-75
    [84] Naeser, C. W. 1979a. Fission-track dating and geological annealing of fission tracks. In: Jager, E. and Hunziker, J. C. (Eds), Lectures in Isotope Geology. Springer-Verlag, pp. 154-69.
    [85] Naeser, C. W. 1979b. Thermal history of sedimentary basins: Fission-track dating of subsurface rocks. In: Scholle, P. A., and Schluger, P. R. (Eds), Aspects of Diagenesis. Soc. Econ. Paleontol. Mineral. Spec. Pub. 26, pp. 109-12.
    [86] Naeser, C. W. and Faul, H. (1969). Fission track annealing in apatite and sphene. J. Geophys. Res. 74, 705-10.
    [87] Naeser, C. W., Zimmermann, R. A. and Cebula, G. T. 1981. Fission-track dating of apatite and zircon: an inter-laboratory comparison. Nucl. Tracks 5, 65-72.
    [88] Naeser, N. D. and Naeser, C. W. 1984. Fission-track dating. In: Mahaney, W. C. (Ed.), Quaternary Dating Methods. Developments in Paleontology and Stratigraphy 7. Elsevier, pp. 87-100.
    [89] Naeser, N. D., Naeser, C. W. and McCulloh, T. H. 1989. The application of fission-track dating to the depositional and thermal history of rocks in sedimentary basins. In: Naeser, N. D. and McCulloh, T. H. (Eds), Thermal History of Sedimentary Basins. Springer-Verlag, pp. 157-80.
    [90] Patterson R J, Kinsman D J J. 1982. Formation and Diagenetic Dolomite in Coastal Sabkha along the Arabian(Persian)Gulf. Am. Assoc. Petro1. Geol. Bull., 66: 28-43
    [91] Qing Hairou, Bosence D W J, et al. 2001. Dolomitization by penesaline sea water in Early Jurassic peritidal platform carbonates, Gibraltar,Western Mediterranean. Sedimentology, 48: 153-163
    [92] Ray J S, Veizer J, Davis W J. 2003. C, O, Sr and Pb isotope systematics of carbonate sequencesof the Vindhyan Supergroup, India: age, diagenesis, correlations and implications for global events. Precambrian Research, 121: 103-140
    [93] Reinhardt E G, CavazzaW, Patterson R T, et al. 2000. Differential diagenesis of sedimentary components and the imp lication for strontium isotope analysis of carbonate rocks. Chemical Geolology, 164: 331-343
    [94] Riding R.Structure and composition of organic reefs and carbonate mud mounds:concepts and categories.Earth-Science Reviews.2002, 58(1-2): 163-231
    [95] Sailer A H. 1984. Petrologic and Geochemical Constraints on the Origin of Subsurface Dolomite, Enewetak Atoll: An Example of Dolomitization by Normal Seawater. Geology, 12: 217- 220
    [96] Scambelluri M, Philippot P. Deep fluids in subduction zones.Lithos, 2001, 55: 213—227
    [97] Scambelluri M. Subduction of water into the mantle: History of Alpine peridotite. Geology. 1995, 23: 459-463
    [98] Sears S O,Lucia F J.Dolomitization of northern Michigan Niagara reefs by brine refluxion and freshwater/seawater mixing.Zenger D H.Dunham J B,Ethington R L. Concepts and Models of Dolomitization[M]. SEPM Special Publication, 1980, 28: 215-235
    [99] Sherman G D, Kanehiro Y, Fujimoto C K. 1947. Dolomitization in Semiarid Hawaiian Soils, Pacific Science, 1: 38-44
    [100] Shukla V, Baker P A.1988.Sedimentology and geochemistry of dolostones. Sepm Society Publication for Sedimentary (November), 1-266
    [101] Snyder W S,Spinosa C,Davydov V I,et a1.Petroleum geology of the southern pre-Uralian foredeep with reference to the northeastern Pre-Caspian Basin[J].International Geology Review ,1994,36: 452-472.
    [102] Stanton R J.1967.Factors controlling shape and internal facies distribution of organic carbonate buildups. Bul1. Am. Assoc.Pet.Geo1., 51: 2462-2467.
    [103] SteinM, StarinskyA, Agnon A, et al. 2000. The impact of brine-rock interaction during marine evaporite formation on the isotopic Sr record in the oceans: Evidence from Mt. Sedom, Israel.Geochimica et Cosmochimica Acta, 64: 2039-2053
    [104] Stober I,Bucher, K. Deep- fluids: Neptune meets Pluto. Hydrogeology Journal, 2005, 13(1): 112~115
    [105] Sun S Q. 1994. A reappraisal of dolomite abundance and occurrence in the Phanerozoic. J. Sediment. Res. Sect. 64(2): 396-404
    [106] Sun S Q. 1995. Dolomite reservoirs: porosity evolution and reservoir characteristics. AAPG Bulletin, 79 (2): 186-240
    [107] Swennen R, Vandeginste V, Ellam R. 2003. Genesis of zebra dolomites (Cathedral Formation: Canadian Cordillera Fold and Thrust Belt, British Columbia). Journal of Geochemical Exploration, 78 /79: 571-577
    [108] Swirydczuk K,Rapoport B I,Lesnichy V F,et a1.Yuzhno Khilchuyu Field,Timan-Pechora Basin,Russia[A]. HALBOUTY M T. Giant Oil and Gas Fields of the Decade 1990-1999[M]. AAPG Memoir, 2003, 78: 251-274.
    [109] Tucker M, Wright V P.1990. Carbonate sedimentology[M]. Oxford: Blackwell Scientific Publications, 482
    [110] Vahrenkamp V C, Swart P K. 1994. Late Cenozoic dolomites of the Bahamas: metastable analogues for the genesis of ancient platform dolomites. In: Purser B, Tucker M, Zenger D(Eds.), Dolomites - A Volume in Honor of Dolomieu. Spec. Publ.-Int. Assoc. Sedimentol. vol. 21, pp. 133-153
    [111] Veizer J, AlaD, Azmy K, et al. 1999. 87Sr/86Sr,δ13C andδ18O evolution of Phanerozoic seawater. Chemical Geology, 161: 59-88
    [112] Warren J. 2000. Dolomite: Occurrence, Evolution and Economically Important Associations. Earth-Science Review, 52: 1-81
    [113] Whitaker F F, Smart P L, Vahrenkamp V C, Nicholson H, Wogelius R A. 1994. Dolomitization by near-normal seawater?Field evidence from the Bahamas. In: Purser B, Tucker M, Zenger D(Eds.), Dolomites-A Volume in Honor of Dolomieu. Spec. Publ.-Int. Assoc. Sedimentol. vol. 21. Blackwell Scientific Publications, Cambridge, pp. 111–132.
    [114] Wilson J L. 1975. Carbonate Facies in Geologic History. New York: Springer Verlag, 471
    [115] Wilson T P, Long D T. Geochemistry and isotope chemistry of Michigan Basin brines: Devonianformations[J]. Applied Geochemistry.1993, 8: 81-100
    [116] Wojcik K M, Goldstein R H, Walton A W. 1994. History of diagenetic fluids in a distant foreland area, Middle and Upper Pennsylvanian, Cherokee Basin, Kansas, USA - Fluid inclusion evidence. Geochim. Cosmochim. Acta 58 (3): 1175–1191
    [117] Zdzislaw,Migaszewski著;圣继福译. 1990.白云岩成因详述.国外矿床地质, (1): l-8
    [118] Zenger D H, Dunham J B, Ethington R L. Concepts and models of dolomitization. SEPMSpec. Publ., 1980, 16(28): 1-320
    [119]毕思文.1996.地球科学流体系统科学统一理论[J].地学前缘,3(3-4):1~8.
    [120]蔡春芳,梅博文,李伟.塔里木盆地油田水水文地球化学[J].地球化学.1996,25(6):314-32
    [121]蔡春芳,梅博文,马亭等.塔里木盆地流体-岩石相互作用研究[M].北京:地质出版社.1997
    [122]蔡春芳.塔中古生界油田水的成因和混合的证据[J].地球化学,2000,29(5): 504-511
    [123]蔡立国,钱一雄,刘光祥,等.塔河油田及邻区地层水成因探讨[J].石油实验地质,2002,24(1): 54-61
    [124]蔡希源.塔里木盆地大中型油气田成控因素与展布规律.石油与天然气地质,2007,28(6): 693-702
    [125]苌衡,龚奇,欧阳睿,等.塔中地区火成岩特征及其石油地质意义[J].石油勘探,2003,42(1): 49-53
    [126]陈更生,曾伟,杨雨,杨天泉,王兴志.2005.川东北部飞仙关组白云石化成因探讨.天然气工业,25(4): 40-41
    [127]陈汉林,贾承造. 1997.塔里木盆地地质热事件研究.科学通报,42.(10): 1096-1099
    [128]陈景山,王振宇等.塔中地区碳酸盐岩储层评价与有利储集空间预测.成都西南石油大学,2000
    [129]陈强路,钱一雄,马红强,等.塔里木盆地塔河油田奥陶系碳酸盐岩成岩作用与孔隙演化[J].石油试验地质,2003,25(6):729-734
    [130]陈文彬,杨平,张予杰,等. 2006.南羌塘盆地扎仁古油藏白云岩储层特征及成因研究.沉积与特提斯地质, 26 (2):42-46
    [131]陈永权,周新源,赵葵东,等. 2008.塔里木盆地塔中1井藻纹层白云岩与竹叶状白云岩成因.地质学报,82(6):826-834
    [132]樊生利,童崇光.四川二叠系碳酸盐岩裂缝系统成因模式探讨[J].石油实验地质, 1995, 17(4): 343-347
    [133]范嘉松.古代生物礁研究中的若干问题,兼论我国西南地区二叠西生物礁的类型.石油与天然气地质,1988,9(1): 46-55
    [134]范嘉松.世界碳酸盐岩油气田的储层特征及其成藏的主要控制因素.地学前缘,2005,12(2): 23-30
    [135]方少仙,董兆雄,侯方浩.1999.层状自云岩储层特征与成因.北京:地质出版社,1-115
    [136]冯增昭,鲍志东,吴茂炳,金振奎,时晓章.2005.塔里木地区寒武纪和奥陶纪岩相古地理.北京:地质出版社,46-47
    [137]冯增昭.1994.沉积岩石学.北京:石油工业出版社,324-338
    [138]高波,陶明信,王万春,等.深部热流体对油气成藏的影响.矿物岩石地球化学通报, 2001, 20(1): 30-34
    [139]高长林叶德燎张玉箴刘光祥.塔里木中新生代盆地扩张和盆地俯冲与地幔柱.石油实验地质,2003,25(6): 661-669
    [140]高梅生,郑荣才,文华国,等.2007.川东北下三叠统飞仙关组白云岩成因-来自岩石结构的证据.成都理工大学学报(自然科学版),34(3): 297-304
    [141]高玉巧,刘力.岩浆侵入活动对砂岩的改造作用研究简介.地质科技情报, 2003, 22 (2):13~16
    [142]龚铭邵鸿良.塔里木盆地断裂世代初探[J].石油实验地质,1995,17(2):105~113.
    [143]顾家裕,张兴阳,罗平,等.塔里木盆地奥陶系台地边缘生物礁、滩发育特征.石油与天然气地质, 2005, 26(3): 277-283.
    [144]顾家裕,贾进华,方辉.塔里木盆地储层特征与高孔隙度、高渗透率储层成因.科学通报,2002, 47(增刊):9-15
    [145]顾家裕,朱筱敏,贾进华.2003.塔里木盆地沉积与储层.北京:石油工业出版社,185-220
    [146]顾家裕.2000.塔里木盆地下奥陶统白云岩特征及成因.新疆石油地质,21(2):120-122
    [147]郭建华,沈昭国,李建明. 1994.塔北东段下奥陶统白云石化作用.石油与天然气地质,15(1):51-59
    [148]郭建军,陈践发,朱雷等.塔里木盆地塔中天然气的地球化学特征及其成因.石油实验地质,2007,29(6): 577-582
    [149]韩剑发,梅廉夫,杨海军等.塔里木盆地塔中地区奥陶系碳酸盐岩礁滩复合体油气来源与运聚成藏研究.天然气地球科学,2007,18(3): 426-435
    [150]韩林.2006.白云岩成因分类的研究现状及相关发展趋势.中国西部油气地质,2(4): 400-406
    [151]何登发.断裂-岩性体油气藏特征[J].石油学报, 2007, 28(2): 22-28.
    [152]何莹,鲍志东,沈安江,申银民,李明和.2006.塔里木盆地牙哈-英买力地区寒武系下奥陶统白云岩形成机理.沉积学报,24(6):806-818.
    [153]何莹,鲍志东,王国林. 2005.塔里木盆地英东2井寒武系白云岩储层特征.南方油气. 3:21-25
    [154]赫英,王定一,朱兴国.幔源二氧化碳和甲烷成藏的现实性与可能性[J].西北大学学报(自然科学版) . 1997 , 27(5) : 422~426
    [155]胡明毅,贾振远.1991.塔里木柯屏地区下丘里塔格群白云岩成因.江汉石油学院学报,13(2): 10-17
    [156]胡文宣,孙睿,张文兰,等.2001.金矿成矿流体的特点及深-浅部流体相互作用成矿机制[J].地学前缘,8(4):281-288.
    [157]黄思静,Hairuo QING,胡作维等.2007.四川盆地东北部三叠系飞仙关组碳酸盐岩成岩作用和白云岩成因的研究现状和存在问题.地球科学进展,22(5): 495-503
    [158]黄思静,Qing HR,裴昌蓉,胡作维,吴素娟,孙治雷.2006.川东飞仙关组白云岩锶含量、锶同位素组成与白云石化流体.岩石学报,22(8):2123-2132
    [159]黄思静,刘树根,李国蓉,等,2004.奥陶系海相碳酸盐锶同位素组成及受成岩流体的影响.成都理工大学学报(自然科学版) ,31 (1) : 1 - 7
    [160]黄思静,石和,毛晓冬,等. 2003.早古生代海相碳酸盐的成岩蚀变性及其对海水信息的保存性.成都理工大学学报:自然科学版, 30 (1):9-18
    [161]黄思静,石和,毛晓冬,等.2002.重庆秀山寒武系锶同位素演化曲线及全球对比.地质论评,48(5): 509-516
    [162]黄思静,石和,张萌,等.2004.锶同位素地层学在奥陶系海相地层定年中的应用-以塔里木盆地塔中12井为例.沉积学报, 22(1):1-5
    [163]黄思静. 1997.上扬子地台区晚古生代海相碳酸盐岩的碳、锶同位素研究.地质学报,71(1): 45-53
    [164]黄文辉,杨敏,于炳松,等.2006.塔中地区寒武系-奥陶系碳酸盐岩Sr元素和Sr同位素特征.地球科学-中国地质大学学报,31(6): 839-845
    [165]贾承造,魏国齐,姚慧君,等.塔里木盆地构造演化与区域构造地质[M].北京:石油工业出版社, 1995: 1-174.
    [166]贾承造,等.塔里木盆地板块构造与大陆动力学.北京:石油工业出版社,2004,114-148
    [167]贾承造,魏国齐.塔里木盆地构造特征与含油气性.科学通报,2002,47(增刊):1-8
    [168]贾承造,魏国齐.塔里木盆地古生界隆起和中、新生界前陆逆冲带构造及其控油意义.见:童晓光,梁狄刚,贾承造,编.塔里木盆地石油地质研究新进展.北京:科学出版社,1996
    [169]贾承造. 1997.中国塔里木盆地构造特征与油气.北京:石油工业出版社,37-438
    [170]贾承造. 1999.塔里木盆地构造特征与油气聚集规律.新疆石油地质, 20(3):177-183
    [171]贾承造.塔里木板块构造演化.见:李清波主编.现代地质学研究文集(上).南京大学出版社,1992.
    [172]贾承造.塔里木盆地构造特征与油气聚集规律.新疆石油地质,1999,20(3): 177-183
    [173]江茂生,朱井泉,陈代钊,等.塔里木盆地奥陶纪碳酸盐岩的碳、锶同位素特征及其对海平面变化的响应.中国科学(D辑) ,2002,32 (1) :36 - 42
    [174]金振奎,冯增昭.滇东-川西下二叠统白云岩的形成机理-玄武岩淋滤白云化.沉积学报,1999,l7(3):383-389
    [175]金之钧,张刘平,杨雷,等.沉积盆地深部流体的地球化学特征及油气成藏效应初探.地球科学-中国地质大学学报, 2002,27(6): 659-664
    [176]金之钧,朱东亚,胡文瑄,等.塔里木盆地热液活动地质地球化学特征及其对储层影响.地质学报, 2006, 80(2): 245-253
    [177]金之钧. 2005.中国海相碳酸盐岩层系油气勘探特殊性问题.地学前缘, 12(3): 15—22
    [178]康南昌.阿尔金断裂系与塔中构造带的形成与演化[J].石油地球物理勘探, 2002, 37(1):48-52.
    [179]康玉柱. 2005.塔里木盆地寒武-奥陶系古岩溶特征与油气分布.新疆石油地质, 26(5): 472-480
    [180]康玉柱.中国塔里木盆地石油地质条件及资源评价[M].北京:地质出版社,1996.295-297.
    [181]雷怀彦,朱莲芳.四川盆地震旦系白云岩成因研究.沉积学报,1992,10(2):69-77
    [182]黎平等,陈景山,王振宇.塔中地区奥陶系碳酸盐岩储层形成控制因素及储层类型研究.天然气勘探与开发, 2003,26(1):37-43
    [183]李国蓉.碳酸盐岩中缝合线的形成及其储集意义讨论[J].矿物岩石, 1997, 17(2): 49-54.
    [184]李慧莉,邱楠生,金之钧,何治亮.塔里木盆地的热史[J].石油与天然气地质,2005,26( 5):613-617
    [185]李慧莉,邱楠生,金之钧,杨海军,李宇平.塔里木盆地塔中地区地质热历史研究.西安石油大学学报(自然科学版), 2004,19(04):36-39
    [186]李慧莉,邱楠生,金之钧.利用磷灰石裂变径迹研究塔里木盆地中部地区的热历史[J].地质科学, 2005,(01):129-132
    [187]李君文,陈洪德,伍新河. 2006.马郎凹陷芦草沟组储层特征及控制因素.地质找矿论丛,21 (2):125-128
    [188]李凌,谭秀成,陈景山等.2007.塔中北部中下奥陶统鹰山组白云岩特征及成因.西南石油大学学报,29(1):34-36
    [189]李明诚.有关油气初次运移问题的探讨[J].石油实验地质,1984,6(1):41-47
    [190]李明杰,郑孟林,冯朝荣,张军勇.塔中低凸起的结构特征及其演化.西安石油大学学报(自然科学版),2004,19(4):43-45
    [191]李鹏春,刘春晓,张渊等.塔中顺西区块奥陶系良里塔格组礁滩复合体裂缝特征及成因.石油学报,2008,29(5): 694-700
    [192]李鹏春,刘春晓,张渊等.塔中地区奥陶系地层水化学特征及其成因与演化.石油与天然气地质,2007,28(6): 802-808
    [193]李曙光,侯振辉.大陆俯冲过程中的流体.地学前缘.2001, 8: 123-129
    [194]李铁军,闫相宾.塔里木盆地沙雅、卡塔克和巴楚隆起油气成藏主控因素对比与评价.石油与天然气地质,2007,28(6):721-730
    [195]李曰俊吴根耀孟庆龙杨海军韩剑发李新生董立胜.塔里木盆地中央地区的断裂系统:几何学,运动学和动力学背景[J].地质科学,2008,43(1):82-118.
    [196]梁狄刚,张水昌,张宝民,等.从塔里木盆地看中国海相生油问题.地学前缘,2000,7(4):534-547.
    [197]梁狄刚.塔里木盆地油气勘探若干地质问题[J].新疆石油地质,1999,20(3):184-188
    [198]林青,王培荣,金晓辉,等.塔中北斜坡塔中45井奥陶系油藏成藏史浅析.石油勘探与开发, 2002, 29(3): 5-7
    [199]刘宝郡,张锦泉.沉积成岩作用.北京:科学出版社,1992:93-118
    [200]刘方槐,颜婉荪.油气田水文地质学原理[M].北京石油工业出版社,1991,48-51
    [201]刘国勇,张刘平,金之钧.深部流体活动对油气运移影响初探.石油实验地质,2005,27(3):269~275
    [202]刘克奇,金之钧,吕修祥等.塔里木盆地塔中低凸起奥陶系碳酸盐岩油气成藏.石油实验地质,2004,26(6): 531-536
    [203]刘绍文,王良书,李成,张鹏,李华.塔里木盆地岩石圈热-流变学结构和新生代热体制.地质学报,2006,80(3): 344-350
    [204]刘训, Graham S, Chang E,等.塔里木板块周缘晚古生代以来的构造演化[J].地球科学-中国地质大学学报, 1994, 19(6): 715-725.
    [205]刘忠宝.塔里木盆地塔中地区碳酸盐岩储层形成机理与分布预测.北京中国地质大学,2006
    [206]卢华复,王胜利,罗俊成,等.塔里木盆地东部断裂系统及其构造演化[J].石油与天然气地质, 2006, 27(4): 433-441.
    [207]罗韧.塔中62井区上奥陶统礁滩体储层特征研究.成都西南石油大学,2006
    [208]吕修祥,杨宁,解启来,等.塔中地区深部流体对碳酸盐岩储层的改造作用.石油与天然气地质, 2005, 26(3): 284-289
    [209]吕修祥,杨宁,解启来,李建交.塔里木盆地深部流体改造型碳酸盐岩油气聚集.科学通报,2007,52(增刊I):142-148
    [210]吕修祥,杨宁,李建交.沉积盆地深部流体活动及油气成藏效应.海相油气地质,2006,11(2): 29-34
    [211]罗志立编著.地裂运动与中国油气分布[M].北京:石油工业出版社, 1991: 77-79.
    [212]马永生,田海芹.碳酸盐岩油气勘探[M].东营:石油大学出版社,1999, 206
    [213]毛景文,李晓峰. 2004.深部流体及其与成矿成藏研究现状.矿床地质,23 : 520~532.
    [214]梅冥相,马永生,周丕康,等.1997.碳酸岩沉积学导论[M].北京:地震出版社.
    [215]欧光习等.塔里木盆地塔中、孔雀河储层流体特征及油气成藏时间研究.核工业北京地质研究院,中国石化西部新区勘探指挥部报告.2005, 1-153
    [216]彭苏萍,何宏,邵龙义等.2002.塔里木盆地寒武-奥陶系碳酸盐岩碳同位素组成特征.中国矿业大学学报,31(4): 353-357
    [217]钱一雄,陈跃,陈强路,等.塔中西北部奥陶系碳酸盐岩埋藏溶蚀作用.石油学报, 2006, 27(3): 47-52.
    [218]钱一雄,尤东华.塔中地区西北部奥陶系白云岩(化)成因分析.新疆石油地质,2006,27(2):146-150.
    [219]钱一雄,邹远荣,陈跃.塔里木盆地塔中西北部多期、多成因岩溶作用地质-地球化学表征—以中1井为例.沉积学报,2005,23(4):596-603.
    [220]强子同.碳酸盐岩储层地质学.山东东营:中国石油大学出版社,2007:287-372
    [221]秦启荣,刘胜,张宗命.塔中Ⅰ号断裂带O2+3石灰岩裂缝期次研究.天然气工业, 2002, 22(6): 117-118.
    [222]冉隆辉,陈更生,张健,杨雨.2002.四川盆地东北部飞仙关鲕滩储层分布研究与勘探潜力分析.中国石油勘探.7(1):46-55
    [223]邵龙义,何宏,彭苏萍,李瑞军.2002.塔里木盆地巴楚隆起寒武系及奥陶系自云岩类型及形成机理.古地理学报,4(2):19-29
    [224]申宝剑,黄智龙,刘洪文等.深部流体对天然气成藏影响.石油实验地质,2007,29(3) 259-268
    [225]沈昭国,陈永武,郭建华.1995.塔里木盆地下古生界白云石化成因机理及模式探讨.新疆石油地质,l6(4):320-323
    [226]史洪亮.塔中24-82井区上奥陶统礁滩体沉积特征及沉积相分布研究.西南石油大学硕士论文,2006
    [227]宋岩,徐永昌.天然气成因类型及其鉴别.石油勘探与开发,2005,32(4): 24-29
    [228]苏立萍,罗平,胡社荣.罗忠,刘柳红,房小荣.2004.川东北罗家寨气下三叠统飞仙关组鲕粒滩成岩作用.古地理学报,6(2); 182-100
    [229]孙樯,谢鸿森,郭捷等.地球深部流体与油气生成及运移浅析.地球科学进展,2000,15(3):283-288
    [230]谭秀成.塔中地区中上奥陶统生物礁分布规律及其储集性能研究.西南石油学院硕士论文,1999
    [231]陶洪兴,徐元秀.热液作用与油气储层.石油勘探与开发,1994,21(6):92~98
    [232]万丛礼,周瑶琪,陈勇,王建伟.鄂尔多斯盆地中西部深部流体活动及其对奥陶系天然气形成的热作用.地学前缘,2006,13(3): 122-128
    [233]王飞宇.塔里木盆地中原探区成藏史研究.中原油田分公司西部勘探经理部内部报告.2007
    [234]王国安,申建中,季美英.塔北、塔中天然气中CO2的碳同位素组成及成因探讨.地质地球化学,2001,29(1): 36 - 39.
    [235]王剑锋.浙西北中生代火山岩的微量元素地球化学特征与岩石成因探讨.地球化学,1992,21(1):41~48
    [236]王雷,史基安,王琪,等. 2005.鄂尔多斯盆地西南缘奥陶系碳酸盐岩储层主控因素分析.油气地质与采收率,12 (4):10-13
    [237]王嗣敏,金之钧,解启来.塔里木盆地塔中45井区碳酸盐岩储层的深部流体改造作用.地质论评, 2004,50(5):543~547
    [238]王嗣敏,吕修祥.塔中地区奥陶系碳酸盐岩储层特征及其油气意义.西安石油大学学报(自然科学版), 2004,19(4): 72-76
    [239]王一刚,刘划一,文应初,杨雨,张静.2002.川东飞仙关组鲕滩储层分布规律勘探方法与远景预测.天然气工业,22(增刊):14-19
    [240]王一刚,文应初,洪海涛,徐丹舟,张静,师晓蓉.2004.川东北三叠系飞仙关组深层鲕滩气藏勘探目标天然气工业,24(12):5-9
    [241]王一刚,张静,杨雨等.四川盆地东部上二叠统长兴组生物礁气藏形成机理.海相油气地质,1997,5(1-2): 145-152
    [242]王增香.塔里木盆地塔中地区奥陶系裂缝储层发育特征.北京:中国地质大学, 2006.
    [243]王招明,赵宽志,邬光辉等.塔中I号坡折带上奥陶统礁滩型储层发育特征及其主控因素.石油与天然气地质,2007,28(6): 797-801
    [244]王震亮.盆地流体动力学及油气运移研究进展[J].石油实验地质,2002,24(2): 99-105
    [245]王振宇,李宇平,陈景山等.塔中地区中-晚奥陶世碳酸盐陆棚边缘大气成岩透镜体的发育特征.地质科学,2002,37(增刊):152-160
    [246]卫平生,刘全新,张景廉,等.再论生物礁与大油气田的关系.石油学报,2006,27(2): 38-42
    [247]魏国齐,贾承造,宋蕙珍,等.塔里木盆地塔中地区奥陶系构造-沉积模式与碳酸盐岩裂缝储层预测[J].沉积学报, 2000, 18(3): 408-413.
    [248]魏国齐,杨威,张林,金惠,吴世样,沈钮红.川东北飞仙关组鲕滩储层白云石化成因模式.天然气地球科学,2005,16(2):162-166
    [249]邬光辉,李建军,卢玉红.塔中Ⅰ号断裂带奥陶系灰岩裂缝特征探讨.石油学报, 1999, 20(4): 19-23.
    [250]邬光辉,李启明,张宝收,等.塔中Ⅰ号断裂坡折带构造特征及勘探领域[J].石油学报, 2005, 26(1): 27-30.
    [251]吴仕强,朱井泉,王国学,等.2008.塔里木盆地寒武-奥陶系白云岩结构构造类型及其形成机理.岩石学报,24(6):1390-1400
    [252]吴亚生.生物礁的群落相.岩石学报,1994,10(2): 218-222
    [253]吴亚生.生物礁结构岩石类型和结构相.中国科学,1992(B),3:304-310
    [254]吴亚生.生物礁岩分类方案.地质论评,1997,43(3): 281-289
    [255]向才富,夏斌,解习农.孙辽盆地十屋断陷流体-岩石相互作用[J].石油勘探与开发.2004,31(6): 51-55
    [256]修群业,于海峰,刘永顺,陆松年,毛德宝,李惠民,李铨,阿尔金北缘枕状玄武岩的地质特征及其锆石U-Pb年龄.地质学报.2007,81(6): 787-794
    [257]杨威,王清华,赵仁德,等.和田河气田奥陶系碳酸盐岩裂缝[J].石油与天然气地质, 2000, 21(3): 252-255.
    [258]杨威,魏国齐,顾乔元,等.塔里木盆地桑塔木断垒带奥陶系裂缝特征及成藏意义[J].石油实验地质, 2004, 26(5): 437-441.
    [259]杨海军,邬光辉,韩剑发,等.塔里木盆地中央隆起带奥陶系碳酸盐岩台缘带油气富集特征[J].石油学报, 2007, 28(4): 26-30.
    [260]杨海军,韩剑发,陈利新等.塔中隆起下古生界碳酸盐岩油气复式成藏特征和及模式.石油与天然气地质,2007,28(6): 784-790
    [261]杨金中,沈远超,赵玉灵.初论深部流体与成矿作用.黄金科学技术,1998,6(4): 1-7
    [262]杨宁,吕修祥,郑多明.塔里木盆地火成岩对碳酸盐岩储层的改造作用.西安石油大学学报(自然科学版), 2005, 20(4): 1-5
    [263]杨宁,吕修祥,周新源,郑多明.塔里木盆地碳酸盐岩油气聚集带.地质学报, 2006,80(3): 398-405
    [264]杨树锋,陈汉林,冀登武,等.塔里木盆地早一中二叠世岩浆作用过程及地球动力学意义.高校地质学报,2005,11(4):504-511.
    [265]杨威,王清华,刘效曾. 2000.塔里木盆地和田河气田下奥陶统白云岩成因.沉积学报,18(4):544-548
    [266]叶德胜. 1993.塔里木盆地北部震旦系至奥陶系白云岩的岩石学及地球化学特征.地球化学, (1): l-8
    [267]叶德胜.1992.塔里木盆地北部丘里塔格群(寒武系至奥陶系)白云岩的成因.沉积学报,10(4):77-86
    [268]于红枫,周文.松华镇-白马庙地区须二段储层裂缝分布规律[J].成都理工学院学报, 2001, 28(2): 174-178.
    [269]曾鼎乾.曾鼎乾地质文选北京:石油工业出版社.1995:225-325
    [270]曾溅辉,金之钧,张刘平.东营凹陷高青-平南断裂带幔源流体活动特征及其成藏效应[J].地质论评, 2004 , 50(5) : 501-506
    [271]翟永红,王泽中,王正允,等.1992.塔中地区奥陶系白云岩特征及成因.江汉石油学院学报,14(4): 1-7
    [272]张洪安,韩宝清.塔里木盆地卡1、顺西区块油气成藏条件与勘探潜力分析.见牟书令主编:塔里木盆地油气勘探研讨会报告集, 2005,117-126
    [273]张景廉,金之钧,等.2001.塔里木盆地深部地质流体与油气藏的关系.新疆石油地质,22(5):371~375.
    [274]张景廉,王先彬.热液烃的形成与深部油气藏.地球科学进展,2000,15(5): 545-552
    [275]张景廉.生物礁与油气田、金属矿床的相互关系讨论.海相油气地质,2001,6(1): 53-59
    [276]张水昌,梁狄刚,张宝民.塔里木盆地海相油气的生成[M].北京:石油工业出版社,2004.432
    [277]张水昌,王飞宇,张保民,等.塔里木盆地中上奥陶统油源层地球化学研究.石油学报,2000,21(6):23-28.
    [278]张涛,闫相宾.塔里木盆地深层碳酸盐岩储层主控因素.石油与天然气地质,2007,28(6): 745-754
    [279]张兴阳,张水昌,罗平,朱如凯,等. 2007.塔中地区晚燕山—喜马拉雅期油气调整与热液活动的关系.科学通报, 52 ( S1) : 192~198.
    [280]张学丰,胡文瑄,张军涛.2006.白云岩成因相关问题及主要形成模式.地质科技情报,25(5): 32-40
    [281]张学丰,胡文瑄,张军涛等.2008.塔里木盆地下奥陶统白云岩化流体来源的地球化学分析.地学前缘,15(2): 80-89
    [282]张振生,李明杰,刘社平.塔中低凸起的形成与演化.石油勘探与开发,2002,29(1): 28-31
    [283]赵澄林,朱筱敏主编.沉积岩石学(第三版).北京:石油工业出版社.2001: 173-182
    [284]赵靖舟李启明.塔里木盆地油气藏形成与分布规律[M].北京:石油工业出版社,2003.50-100.
    [285]赵靖舟,王清华,时保宏,等. 2007.塔里木古生界克拉通盆地海相油气富集规律与古隆起控油气论.石油与天然气地质, 28(6): 703-712
    [286]赵靖舟,王清华,时保宏,秦胜飞,刘洪军等.塔里木古生界克拉通盆地海相油气富集规律与古隆起控油气论.石油与天然气地质,2007,28(6): 703-712
    [287]赵靖舟.塔里木盆地北部寒武-奥陶系海相烃源岩重新认识.沉积学报,2001,19(1):117-124
    [288]赵靖舟.塔里木盆地石油地质基本特征.西安石油学院学报,1997,12(2): 8-5
    [289]赵孟军,卢双肪,王庭栋等著.塔里木盆地天然气成藏与勘探.北京:石油工业出版社,2004,35
    [290]赵永刚.奥陶系碳酸盐岩古岩溶及其储层研究.成都西南石油大学博士论文,2006
    [291]赵宗举,李宇平,吴兴宁,等.塔中地区奥陶系特大型棚缘滩体岩性油气藏勘探区带.海相油气地质,2004,8(3-4): 31-40
    [292]赵宗举,王招明,吴兴宁,陈学时. 2007.塔里木盆地塔中地区奥陶系储层成因类型及分布预测.石油实验地质,29(1): 40-46
    [293]赵宗举,周新源,陈学时,等. 2006.塔中地区中晚奥陶世古潜山岩溶储集层特征.新疆石油地质, 27(6): 660-663
    [294]赵宗举,周新源,王招明等. 2007.塔里木盆地奥陶系边缘相分布及储层主控因素.石油与天然气地质, 28(6): 738-744
    [295]郑和荣,吴茂炳,邬兴威,等.2007.塔里木盆地下古生界白云岩储层油气勘探前景.石油学报,28(2): 1-8
    [296]郑荣才,柳梅青. 1992.试论块状白云岩的混合水成因模式.矿物岩石, 12(1): 60-61
    [297]郑荣才,王成善,朱利东等.2003.酒西盆地首例湖相“白烟型”喷流岩-热水沉积白云岩的发现及其意义.成都理工大学学报(自然科学版), 30(1): 1-7
    [298]郑永飞.深俯冲大陆板块折返过程中的流体活动.科学通报.2004, 49: 917-929
    [299]钟建华,温志峰,李勇,郭泽清,王海侨,柳祖汉等.生物礁的研究现状与发展趋势.地质论平,2005,51(3): 288-300
    [300]周文.裂缝性油气储集层评价方法[M].成都:四川科技出版社, 1998: 25-128.
    [301]周文.由构造变形历史评价中坝构造须二段有效裂缝分布[J].天然气工业, 1993, 13(4): 23-28.
    [302]周世新,王先彬,孟自芳,等.塔里木盆地深层碳酸盐岩中气体包裹体组成及其碳同位素特征.中国科学D辑:地球科学, 2003, 33(7): 665-672
    [303]周新源,王招明,杨海军等.中国海相油气勘探实例之五-塔中奥陶系大型凝析气田的勘探和发现.海相油气地质,2006,11(1): 45-51
    [304]朱东亚,金之钧,胡文瑄,张学丰.塔里木盆地深部流体对碳酸盐岩储层影响.地质论评,2008,54(3): 348-358
    [305]朱东亚,胡文宣,宋玉财,金之钧.2005.塔里木盆地塔中45井油藏萤石化特征及其对储层的影响.岩石矿物学杂志,24(3):205-215
    [306]朱光有,张水昌,梁英波. 2006.四川盆地深部海相优质储集层的形成机理及其分布预测.石油勘探与开发,33(2):161-166
    [307]朱井泉,吴仕强,王国学,胡文瑄. 2008.塔里木盆地寒武-奥陶系主要白云岩类型及孔隙发育特征.地学前缘, 15(2): 67-79

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700