用户名: 密码: 验证码:
β-酮酸酯不对称α-羟基化反应的新有机催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学活性的α-羟基-β-二羰基单元广泛存在于天然产物、药物和精细化学品分子中。不对称催化氧化β-二羰基化合物是获得此类结构化合物最有效的方法之一。现仅有金鸡纳碱辛可宁有机催化β-酮酸酯不对称α-羟基化反应已工业化,可获得85%的收率和中等的对映选择性。继续开发具有新骨架结构的廉价有效的手性有机催化剂具有重要的理论意义和应用价值。
     本文提出手性有机催化剂与反应物之间的识别过程和手性药物与靶点的识别过程相似的思想,将药物先导化合物的筛选策略和方法应用于手性先导催化剂的筛选中。以商业易得的手性药物组建手性药物分子库,以β-酮酸酯不对称α-羟基化反应为模型反应,从库中筛选出具有β-烷氧基β’-氨基醇骨架结构的手性先导催化剂(S)-噻吗洛尔、(R)-普萘洛尔,以及具有二萜类生物碱骨架结构的手性有机催化剂高乌甲素。
     在考察的反应条件下,(S)-噻吗洛尔和(R)-普萘洛尔催化有重要工业应用的5-氯-1-茚酮-2-甲酸甲酯不对称α-羟基化反应的转化率分别为92%和84%,对映选择性为32% ee(R型)和18% ee(S型);高乌甲素催化4-甲氧基-1-茚酮-2-甲酸甲酯不对称α-羟基化反应的收率为78%,对映选择性达85% ee(R型)。
     采用药物先导化合物的优化策略(相似性和多样性原理)及位置定向筛选策略对手性先导有机催化剂噻吗洛尔进行结构优化。将噻吗洛尔分子结构分解为三部分:a.β-烷氧基部分;b.羟基部分和c.β’-氨基部分。设计、合成了B1-B10、N1-N32、Q1-Q3. BN1-BN3、S1-S3、Z1-Z3、U1-U3和C1~C12共73个有机催化剂分子。对设计合成的有机催化剂的构效关系研究发现:催化剂b部分的羟基键合的手性碳原子构型是产生对映选择性识别的原因,羟基是产生对映选择性的必要基团。R-型的催化剂催化得到S-型异构体过量的产物;S-型的催化剂催化得到R-型异构体过量的产物。催化剂c部分氨基键合的取代基体积影响催化剂的催化性能(催化活性和对映选择性)。仲胺有机催化剂的催化性能优于叔胺和伯胺的催化性能。大位阻取代基有利于提高对映选择性,但位阻过大降低催化活性。催化剂a部分芳环的电子效应影响催化剂的催化性能。供电性的芳环有利于提高催化剂的催化性能;吸电性的芳环降低催化剂的催化性能。催化剂a部分的芳环引入大位阻取代基降低对映选择性。
     从设计合成的有机催化剂中发现催化性能最优的催化剂(R)-3-(2-萘氧基)-1-叔丁胺基异丙醇(N6),优化了N6的催化反应条件。将N6应用于手性农药茚虫威的重要中间体(S)-5-氯-1-茚酮-2-羟基-2-甲酸甲酯的合成中,在考察的反应条件下,反应转化率达92%,产物ee值达42%(S型),与辛可宁催化的反应结果接近。N6易于合成,成本比辛可宁低,有工业应用前景。
The a-hydroxyl-β-keto ester moiety is an important structure in a variety of natural products, Pharmaceuticals and fine chemicals. Asymmetrically oxidizingβ-keto esters is the most effective approach to obtain a-hydroxyl-β-keto esters, however, until now only cinchona alkaloid cinchonine-catalyzed asymmetric a-hydroxylation ofβ-keto esters is raelized in industrial application. It is vitally important both in theoretical study and industrial application to continue developing cheap and efficient chiral organocatalysts with novel frameworks.
     It is proposed that the recognization process between the chiral organocatalysts and the substrates is similar to the recognization process between the chiral drugs and the targets. The method for the discorvery of lead compounds is applied to the discorvery of novel chiral organocatalyst lead compounds. By establishing the chiral drug molecule library with existed chiral drugs, using asymmetric a-hydroxylation ofβ-keto esters as the model reaction, two types of chiral organocatalyst lead compounds with novel frameworks are screen out from the chiral drug molecule library. Those are chiral organocatalyst lead compounds S-timolol and R-propranolol with a novel framework ofβ-alkyloxylβ-amino alcholol, and lappaconitine with a novle diterpenoid alkaloid framework.
     Under the optimized reaction conditions, the conversions of the asymmetric a-hydroxylation of methyl 5-chloro-l-indone carboxylate catalyzed by S-timolol and R-propranolol are 92% and 84%, and the enantioselectivitise are 32% ee(R) and 18%ee(S), respectively. The yield of the asymmetric a-hydroxylation of methyl 4-methyloxyl-l-indone carboxylate catalyzed by lappaconitine is 78% and the enantioselectivity reach up to 85% ee(R).
     Using the priciples of similarity and diversity and the strategy of location directional screening, the structure of the organocatalyst lead compound timolol is modified. The molecular structure of timolol is divided into three parts, a. theβ-alkyloxyl group; b. the hydroxyl group; c. theβ-amino group. According to the division, seventy three timolol analogs B1~B10, N1~N32, BN1~BN3, Q1~Q3, S1~S3, Z1~Z3, U1-U3 and C1~C12 are designed and synthesized. The structure-activity relationship of the organocatalysts is investigated. It is found that the configuration of the chiral carbon atom on part b is the reason for the catalyst to perform enantioselective recognization, and the hydroxyl group is the key group for the catalyst to afford enantioselectivity. The R-configurated catalyst affords S-enanomeric excess product and the S-configurated catalyst affords R-enanomeric excess product. The catalytic performance (activity and enantioselectivity) is affected by the bulk of theβ'-amino group of part c. The catalytic performance of the secondary amine catalyst is generally superior to the primary amine and tertiary amine catalyst. The large steric hindrance group avails to the enantioselectivity, but too much steric hindrance reduces the activity. The electronic effect of the aromatic ring on part a affects the catalytic performance. The electron donating aromatic rings elevate the catalaytic performance; the electron withdrawing aromatic rings reduce the catalaytic performance.
     The catalytic performance of organocatalyst N6 is found to be the best within the synthesized catalysts. The catalytic system of the catalyst N6 is optimized, and is applied to the synthesis of a key intermediate of the chiral pesticide indoxacarb. It is found that under the optimized reaction conditions, the conversion of the reaction reach to 92% and the enantioselectivity reach to 42% ee, which is comparable with cinchonine-catalyzed asymmetric reaction. The catalyst N6 is easy to synthesize and the price is much lower than cinchonine, showing the potential in industrial scale application.
引文
[1](a) Peter I D, Lionel M. In the golden age of organocatalysis [J]. Angew. Chem. Int. Ed.,2004,43:5138-5175.
    (b)Berkessel A, Groger H. Asymmetric organocatalysis-from biomimetic concepts to applications in asymmetric synthesis [M]. Weinheim:WILEY-VCH Verlag GmbH & Co. KgaA, 2005.
    (c)Mikami K, Lautens M. New frontiers in asymmetric catalysis [M]. Hoboken:John Wiley & Sons, Inc.,2007.
    [2](a) List B, Yang J W. The organic approach to asymmetric catalysis [J]. Science,2006, 313:1584-1586.
    (b)Armstrong A. Amine-catalyzed epoxidation of alkenes:A New Mechanism for the Activation of Oxone [J]. Angew. Chem. Int. Ed.,2004,43:1460-1462.
    (c)傅滨,肖玉梅,覃兆海等.有机催化剂在不对称合成中的应用[J].有机化学,2006,26(7):899-905.
    (d)江焕峰,王玉刚,刘海灵等.非金属有机催化剂及其在有机化学反应中的应用[J].有机化学,2004,24(12):1513-1531.
    [3](a) Julia S, Masana J, Vega J C. Highly stereoselective epoxidation of chalcone in a triphasic toluene-water-poly [(S)-alanine] system [J]. Angew. Chem. Int. Ed.,1980, 19:929-931
    (b)Julia S, Colonna S, Guixer J et al. Catalytic asymmetric epoxidation by means of polyamino-acids in a triphase system [J]. J. Chem. Soc. Perkin. Trans. Ⅰ,1982, 1317-1324.
    [4]Bentley P A, Roberts S M. Asymmetric epoxidation of enones employing polymeric a-amino acids in non-aqueous media [J]. Chem. Commun.,1997,739-740.
    [5]Allen J V, Roberts S M. Julia-Colonna asymmetric epoxidation reactions under non-aqueous conditions:rapid, highly regio-and stereo-selective transformations using a cheap, recyclable catalyst [J]. J. Chem. Soc. Perkin. Trans. Ⅰ,1998,3171-3179.
    [6]Baars S, Drauz K H, Krimmer H P et al. Development of the Julia-Colonna asymmetric epoxidation reaction:part 1. preparation and activation of the polyleucine catalyst [J]. Organic Process Research & Development,2003,7:509-513.
    [7](a) Geller T, Gerlach A, Kruger C M et al. Novel conditions for the Julia-Colonna epoxidation reaction providing efficient access to chiral, nonracemic epoxides [J]. Tetrahedron Lett.,2004,45:5065-5067.
    (b)Gerlach A, Geller T. Scale-up studies for the asymmetric Julia-Colonna epoxidation reaction[J]. Adv. Syn. Catal.,2004,346:1247-1249.
    [8]Geller T, Gerlach A, Kruger C M et al. The Julia-Colonna epoxidation:access to chiral, non-racemic epoxides [J]. J. Mol. Cata A:Chemical,2006,251:71-77.
    [9]Geller T, Kruger C M, Militzer H C. Scoping the triphasic/PTC conditions for the Julia-Colonna epoxidation reaction [J]. Tetrahedron Lett.,2004,45:5069-5071.
    [10](a) Savizky R M, Suzuki N, Bove J L. The use of sonochemistry in the asymmetric epoxidation of substituted chalcones with sodium perborate tetrahydrate [J]. Tetrahedron:Asymmetry,1998,9:3967-3969.
    (b)Bentley P A, Bickley J F, Roberts S M et al. Asymmetric epoxidation of a geminally-disubstituted and some trisubstituted enones catalysed by poly-L-leucine [J]. Tetrahedron Lett.,2001,42:3741-3743.
    (c)Flood R W, Geller T P, Petty S A et al. Efficient asymmetric epoxidation of a, β-unsaturated ketones using a soluble triblock polyethylene glycol-polyamino acid catalyst [J]. Org. Lett.,2001,3:683-686.
    (d)Allen J V, Drauz K H, Roberts S M. Polyamino acid-catalysed asymmetric epoxidation: sodium percarbonate as a source of base and oxidant [J]. Tetrahedron Lett.,1999,40: 5417-5420.
    (e)Pedrosa L J M, Pitts M R, Roberts S M. Asymmetric epoxidation of some arylalkenyl sulfones using a modified Julia-Colonna procedure [J]. Tetrahedron Lett.,2004,45: 5073-5075.
    [11]Blank J T, Miller SJ. Studies of folded peptide-based catalysts for asymmetric organic synthesis [J]. Biopolymers (Peptide Science),2006,84:38-47.
    [12]Berkessel A, Gasch N, Glautibz K et al. Highly enantioselective enone epoxidation catalyzed by shortsolid phase-bound peptides:dominant role of peptide helicity [J]. Org. Lett.,2001,3:3839-3842.
    [13]Kelly D R, Roberts S M. Oligopeptides as catalysts for asymmetric epoxidation [J]. Biopolymers (Peptide Science),2006,84:74-89.
    [14]List B. Pro]ine-catalyzed asymmetric reactions [J]. Tetrahedron,2002,58:5573-5590.
    [15]Lattanzi A. Enantioselective epoxidation of α,β-enones promoted by a, a-diphenyl-Z-prolinol as bifunctional organocatalyst [J]. Org. Lett.,2005,7: 2579-2582.
    [16]Zhuang W, Marigo M, Jorgensen K A. Organocatalytic asymmetric epoxidation reactions in water-alcohol solutions [J]. Org. Biomol. Chem.,2005,3:3883-3885.
    [17]Ooi T, Ohara D, Tamura M et al. Design of new chiral phase-transfer catalysts with dual functions for highly enantioselective epoxidation of α, β-unsaturated ketones [J].J. Am. Chem. Soc.,2004,126:6844-6845.
    [18](a) Lygo B, To D C M. Asymmetric epoxidation via phase-transfer catalysis:direct conversion of allylic alcohols into α,β-epoxyketones [J]. Chem. Commun.,2002, 2360-2361.
    (b)Adam W, Rao P B, Degen H G et al. Asymmetric Weitz-Scheffer epoxidation of isoflavones with hydroperoxides mediated by optically active phase-transfer catalysts [J]. J.Org. Chem.,2002,67:259-264.
    (c)Arai S, Tsuge H, Oku M et al. Catalytic asymmetric epoxidation of enones under phase-transfer catalyzed conditions [J]. Tetrahedron,2002,58:1623-1630.
    (d)Adam W, Rao P B, Degen H G et al. Asymmetric Weitz-Scheffer epoxidation of conformationally flexible and fixed enones with sterically demanding hydroperoxides mediated by optically active phase-transfer catalysts [J]. Tetrahedron:Asymmetry, 2001,12:121-125.
    [19]Jew S S, Lee J H, Jeong B S et al. Highly enantioselective epoxidation of 2,4-diarylenones by using dimeric cinchona phase-transfer catalysts:enhancement of enantioselectivity by surfactants [J]. Angew. Chem. Int. Ed.,2005,44:1383-1385.
    [20]Hori K, Tamura M, Tani K et al. Asymmetric epoxidation catalyzed by novel azacrown ether-type chiral quaternary ammonium salts under phase-transfer catalytic conditions [J]. Tetrahedron Lett.,2006,47:3115-3118.
    [21]Bako T, Bako P, Keglevich G et al. Phase-transfer catalyzed asymmetric epoxidation of chalcones using chiral crown ethers derived from D-glucose, D-galactose, and D-mannitol [J]. Tetrahedron:Asymmetry,2004,15:1589-1595.
    [22]张治国,王歆燕,孙川等.烯烃的有机催化不对称环氧化研究进展及催化剂设计[J].有机化学,2004,24:7-14.
    [23](a) Adamo M F A, Aggarwal V K, Sage M A. Epoxidation of alkenes by amine catalyst precursors:implication of aminium ion and radical cation intermediates [J]. J. Am. Chem. Soc.,2000,122:8317-8318.
    (b)Adamo M F A, Aggarwal V K, Sage M A. Epoxidation of alkenes by amine catalyst precursors:implication of aminium ion and radical cation intermediates [J]. J. Am. Chem. Soc.,2002,124:11223-11223.
    [24]Ho C Y, Chen Y C, Wong M K et al. Fluorinated chiral secondary amines as catalysts for epoxidation of olefins with oxone [J]. J. Org. Chem.,2005,70:898-906.
    [25]Aggarwal V K, Lopin C, Sandrinel F. New insights in the mechanism of amine catalyzed epoxidation:dual role of protonated ammonium salts as both phase transfer catalysts and activators of oxone [J]. J. Am. Chem. Soc.,2003,125:7596-7601.
    [26]Wong M K, Ho L M, Zheng Y S et al. Asymmetric epoxidation of olefins catalyzed by chiral iminium salts generated in situ from amines and aldehydes [J]. Org. Lett.,2001,16: 2587-2590.
    [27]Page P C B, Buckley B, Blaker A J. Iminium salt catalysts for asymmetric epoxidation: the first high enantioselectivities [J]. J. Org. Lett.,2004,6:1543-1546.
    [28]Page P C B, Barros D, Buckley B et al. Organocatalysis of asymmetric epoxidation mediated by iminium salts under nonaqueous conditions [J]. J. Org. Chem.,2004,69: 3595-3597.
    [29]Page P C B, Rassias G A, Barros D et al. Functionalized iminium salt systems for catalytic asymmetric epoxidation [J]. J. Org. Chem.,2001,66:6926-6931.
    [30]Page P C B, Buckley B R, Heaney H et al. Asymmetric epoxidation of cis-Alkenes mediated by iminium salts:highly enantioselective synthesis of levcromakalim [J]. Org. Lett. 2005,7:375-377.
    [31]Page P C B, Barros D, Buckley B R et al. Organocatalysis of asymmetric epoxidation mediated by iminium salts:comments on the mechanism [J]. Tetrahedron:Asymmetry,2005, 16:3488-3491.
    [32]Shi Y. Organocatalytic asymmetric epoxidation of olefins by chiral ketones [J]. Acc. Chem. Res.,2004,37:488-496.
    [33]Yang D. Ketone-catalyzed asymmetric epoxidation reactions [J]. Acc. Chem. Res.,2004, 37:497-505.
    [34]Armstrong A, Moss W 0, Reeves J R. Asymmetric epoxidation catalyzed by esters of a-hydroxy-8-oxabicyclo [3.2. 1]octan-3-one [J]. Tetrahedron:Asymmetry,2001,12: 2779-2781.
    [35]Armstrong A, Ahmed G, Fernandez B D et al. Enantioselective epoxidation of alkenes catalyzed by 2-fluoro-/V-carbethoxytropinone and related tropinone derivatives [J]. J. Org. Chem.,2002,67:8610-8617.
    [36]Armstrong A, Tsuchiya T. A new class of chiral tetrahydropyran-4-one catalyst for asymmetric epoxidation of alkenes [J]. Tetrahedron,2006,62:257-263.
    [37]柳文敏,王巧峰,张生勇.手性β-氨基醇催化α,β-不饱和酮的不对称环氧化反应[J].有机化学,2007,27:862-865.
    [38]Marigo M, Jorgenson K A. Organocatalytic direct asymmetric α-heteroatom functionalization of aldehydes and ketones [J]. Chem. Commun.,2006,2001-2011.
    [39]Engqvist M, Casas J, Sunden H et al. Direct organocatalytic asymmetric u-oxidation of ketones with iodosobenzene and N-sulfonyloxaziridines [J]. Tetrahedron Lett.,2005, 46:2053-2057.
    [40]Plietker B. New oxidative pathways for the synthesis of α-hydroxy ketones-the a-hydroxylation and ketohydroxylation [J]. Tetrahedron:Asymmetry,2005,16: 3453-3459.
    [41]Zhong G F. A Facile and Rapid Route to Highly enantiopure 1,2-diols by novel catalytic asymmetric α-aminoxylation of aldehydes [J]. Angew. Chem. Int. Ed.,2003,42: 4247-4250.
    [42]Brown S P, Brochu M P, Sinz C J et al. The direct and enantioselective organocatalytic α-oxidation of aldehydes [J]. J. Am. Chem. Soc.,2003,125:10808-10809.
    [43]Hayashi Y, Yamaguchi J, Hibino K et al. Direct proline catalyzed asymmetric a-aminooxylation of aldehydes [J]. Tetrahedron Lett.,2003,44:8293-8296.
    [44]Hayashi Y, Yamaguchi J, Sumiya T et al. Direct proline-catalyzed asymmetric a-aminoxylation of aldehydes and ketones [J]. J. Org. Chem.,2004,69:5966-5973.
    [45]Hayashi Y, Yamaguchi J, Sumiya T et al. Direct proline-catalyzed asymmetric a-aminoxylation of ketones [J]. Angew. Chem. Int. Ed.,2004,43:1112-1115.
    [46]Bogevig A, Sunden H, Cordova, A. Direct catalytic enantioselective α-aminoxylation of ketones:a stereoselective synthesis of α-hydroxy and α, α'-dihydroxy ketones [J]. Angew. Chem. Int. Ed.,2004,43:1109-1112.
    [47]Sunden H, Ibrahem I, Adolfsson H et al. Novel organic catalysts for the direct enantioselective α-oxidation of carbonyl compounds [J]. Tetrahedron Lett.,2005, 46:3385-3389.
    [48]Ramachary D B, Barbas C F. Direct amino acid-catalyzed asymmetric desymmetrization of meso-compounds:tandem aminoxylation/0-N bond heterolysis reactions [J]. Org. Lett.,2005,7:1577-1580.
    [49]Cordova A, Sunden H, Bogevig A et al. The direct catalytic asymmetric α-aminooxylation reaction:development of stereoselective routes to 1,2-diols and 1, 2-amino alcohols and density functional calculations [J]. Chem. Eur. J.,2004,10: 3673-3684.
    [50]Yeon P H, Houk K N. Origins of selectivities in proline-catalyzed a-aminoxylations [J]. J. Am. Chem. Soc.,2004,126:13912-13913.
    [51]Joseph J, Ramachary D B, Jemmis E D. Electrostatic repulsion as an additional selectivity factor in asymmetric praline [J]. Org. Biomol. Chem.,2006,4:2685-2689.
    [52]Mathew S P, Blackmond D G. Amplification of enantiomeric excess in a proline-mediated reaction [J]. Angew. Chem. Int. Ed.,2004,43:3317-3321.
    [53](a) Tong X L, Xu J. New efficient organocatalytic oxidation of benzylic compounds by molecular oxygen under mild conditions [J]. Tetrahedron Lett.,2006,47:1763-1766.
    (b)Jarboe S G, Beak P. Mechanism of oxygen transfer in the epoxidation of an olefin by molecular oxygen in the presence of an aldehyde [J]. Org. Lett.,2000,2:357-360.
    [54](a) Foote C S. Photosensitized oxygenations and the role of singlet oxygen [J]. Acc. Chem. Res.,1968,1:104-110.
    (b)Schweitzer C, Schmidt R. Physical Mechanisms of generation and deactivation of singlet oxygen [J]. Chem. Rev.,2003,103:1685-1757.
    [55](a) Cordova A, Sunden H, Engqvist M et al. The direct amino acid-catalyzed asymmetric incorporation of molecular oxygen to organic compounds [J]. J. Am. Chem. Soc.,2004, 126:8914-8915.
    (b)Brussee, Gen A V D. Enantioselective oxidation of aromatic ketones by molecular oxygen, catalyzed by chiral monoaza-crown ethers [J]. Tetrahedron:Asymmetry,1995, 6:1123-1132.
    (c)Niclaou K C, Yang Z, Shi G Q et al. Total synthesis of brevetoxin A [J]. Nature, 1998,392:264-269.
    [56](a) Sunden H, Engqvist M, Casas J et al. Direct amino acid catalyzed asymmetric a oxidation of ketones with molecular oxygen [J]. Angew. Chem. Int. Ed.,2004,43: 6532-6535.
    (b)Ibrahem I, Zhao G L, Sunden H et al. A route to 1,2-diols by enantioselective organocatalytic a-oxidation with molecular oxygen [J]. Tetrahedron Lett.,2006,47: 4659-4663.
    [57]McCann S F, Annis G D, Shapiro R et al. Synthesis and biological activity of oxadiazine and triazine insecticides:the discovery of indoxacarb, ACS Symposium Series 800(Synthesis and chemistry of agrochemicals VI) [C], Washington, DC:American Chemical Society Press,2002:Chapter 17.
    [58]Shapiro R, Annis G D, Blaisdell C T et al. Toward the manufacture of indoxacarb, ACS Symposium Series 800(Synthesis and chemistry of agrochemicals VI) [C], Washington, DC:American Chemical Society Press,2002:Chapter 16.
    [59](a) Taylor E G, Wilmington D D. WO 03/040083[P].2003.(b)安尼斯G D,麦坎S F,沙皮罗R.中国专利[P].CN 1059901C,2000.
    [60]Xi Z W, Zhou Y, Sun Y et al. Reaction-controlled phase-transfer catalysis for propylene epoxidation to propylene oxide [J]. Science,2001,292:1139-1141.
    [61]Acocella M R, Mancheno 0 G, Bella M et al. Organocatalytic asymmetric hydroxylation of o-keto esters:metal-free synthesis of optically active anti-Aiols [J]. J. Org. Chem.,2004,69:8165-8167.
    [62]Lu M, Zhu D, Lu Y P, et al. Chiral Brφnsted acid-catalyzed enantioselective a-hydroxylation of β-dicarbonyl compounds [J]. J. Am. Chem. Soc.,2009,131: 4562-4563.
    [63]Christoffers J, Baro A, Werner T. α-Hydroxylation of β-dicarbonyl compounds [J]. Adv. Synth. Catal.,2004,346:143-151.
    [64](a) Toullec P Y, Bonaccorsi C, Mezzetti A et al. Expanding the scope of asymmetric electrophilic atom-transfer reactions:titanium-and ruthenium-catalyzed hydroxylation of β-ketoesters [J]. Proc. Natl. Acad. Sci. U. S. A.,2004,101: 5810-5814,
    (b)Bonaccorsi C, Althaus M, Becker C et al. Chiral Ru/PNNP complexes in catalytic and stoichiometric electrophilic 0-and F-atom transfer to 1,3-dicarbonyl compounds [J]. Pure Appl. Chem.,2006,78:391-396.
    (c)Ishimaru T, Shibata N, Nagai J et al. Lewis acid-catalyzed enantioselective hydroxylation reactions of oxindoles and α-keto esters using DBFOX ligand [J]. J. Am. Chem. Soc.,2006,128:16488-16489.
    [65](a) Davis F A, Chen B C. Asymmetric hydroxylation of enolates with N-sulfonyloxaziridines [J]. Chem. Rev.,1992,92:919-934.
    (b)Crimmins M T, Pace J M, Nantermet P G et al. The total synthesis of (±)-ginkgolide [J]. J. Am. Chem. Soc,2000,122:8453-8463.
    [66]丁奎岭,范青华著.不对称催化新概念与新方法[M].北京:化学工业出版社,2009.
    [67]Hartwig J. Recipes for excess [J]. Nature,2005,437:487-488.
    [68]Zhang J, Sun X W, Wen H H et al. Synthesis and crystal structure of lappaconitine hydrobromide [J]. Chin. J. Org. Chem.,2007,27:1409-1413.
    [69]郭宗儒.药物分子设计[M].北京:科学出版社,2005.
    [70]吴秋华,高勇军,李芝等.手性(硫)脲衍生物在不对称有机催化反应中的应用[J].有机化学,2007,27(12):1491-1501.
    [71]肖自胜,兰支利,尹笃林等.环糊精手性微反应器中苯乙烯的不对称环氧化反应[J].催化学报,2007,28:469-473.
    [72]Fang L, Lin A J, Hu H W et al. Highly enantioselective sulfenylation of β-ketoesters: H-bond acceptor catalysis [J]. Chem. Eur. J.,2009,15:7039-7043.
    [73]a) Piva 0, Mortezaei R, Henin F et al. Highly enantioselective photodeconjugation of a,,β-unsaturated esters [J]. J. Am. Chem. Soc.,1990,112:9263-9272.
    (b)Henin F, Passi A B, Muzart J et al. Photoreactivity of α-tetrasubstituted arylketones:Production and asymmetric tautomerization of arylenols [J]. Tetrahedron, 1994,50:2849-2864.
    [74](a) Soai K, Niwa S. Enantioselective addition of organozine reagents to aldehydes [J]. Chem. Rev.,1992,92,833-856.
    (b)Boyall D, Lopez F, Sasaki H et al. Enantioselective addition of 2-methyl-3-butyn-2-ol to aldehydes:preparation of 3-hydroxy-l-butynes [J]. Org. Lett.,2000,2:4233-4236.
    [75](a) Pallavicini M, Bolchi C, Binda M et al.5-(2-Pyrrolidinyl)oxazolidinones and 2-(2-pyrrolidinyl)benzodioxanes:synthesis of all the stereoisomers and a 4β2 nicotinic affinity [J]. Bioorganic & Medicinal Chemistry Letters,2009,19(3):854-859.
    (b)Lakeev S N, Mullagalin I Z, Galin F Z et al. Optically active keto stabilized sulfur ylide obtained from L-proline:synthesis and study [J]. Russ. Chem. Bull. Int. Ed, 2002,51(12):2230-2233.
    (c)Sengupta S, Sarma D S, Mondal S. A facils synthesis of enantiopure γ-amino-and γ-hydroxy-β-ketosulfones [J].Synthetic Communications,1998,28(23):4409-4417.
    [76]Georgiev V St, Saeva G A, Kinsolving R. New substituted 4-azatricyclo [4.3.1. 13,8] undecane derivatives [J]. J. Heterocyclic Chem.,1986,23:1023-1025.
    [77]Boto A, Hernandez R, Suarez E. Tandem Radical Decarboxylation-Oxidation of Amino Acids:A Mild and Efficient Method for the Generation of N-Acyliminium Ions and Their Nucleophilic Trapping [J]. J. Org. Chem.,2000,65:4930-4937.
    [78]Lattanzi A. Russo A. Diaryl-2-pyrrolidinemethanols catalyzed enantioselective epoxidation of α,β-enones:new insight into the effect of structural modification of the catalyst on reaction efficiency [J]. Tetrahedron,2006,62:12264-12269.
    [79]何炜,张生勇,姜茹等.新金鸡纳生物碱衍生物配体的合成及其在烯烃的不对称双羟化反应中的应用[J].分子催化,2005,19(12):440-443.
    [80]Azizi N, Saidi M R. Highly chemoselective addition of amines to epoxides in water [J]. Org. Lett.,2005,7(17):3649-3651.
    [81]Mousseron M, Granger R, Combes G et al. Alicyclic series. XIX. Amino alcohols [J]. Bulletin de la Societe Chimique de France,1947,207:850-868.
    [82]Denmark S E, Rivera I. Asymmetric carboalkoxyalkylidenation with a chiral Horner-Wadsworth-Emmons reagent [J]. J. Org. Chem.,1994,59:6887-6889.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700