用户名: 密码: 验证码:
钢结构非线性分析方法研究及其在软件中的实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢结构具有诸多优点,目前在国内外的工程建设中得到了越来越广泛的应用,尤其是在大跨度、大空间结构以及超高层结构的设计中更是必然的选择。传统的钢结构设计采用的是两阶段设计法,第一阶段是按线弹性理论计算结构内力,第二阶段是进行构件设计,通过计算长度系数考虑构件之间的影响,但该方法也有一定局限性,随着现代计算机技术和结构计算理论的发展,钢结构高等分析法被提出并逐渐完善。高等分析法是考虑了结构的非线性响应、各种缺陷以及其他影响结构承载能力的因素,通过对结构进行一次全过程的整体分析研究结构的响应。高等分析法的关键是对结构进行非线性分析,本文将对钢结构几何非线性以及材料非线性的理论进行研究和推导,并以通用钢结构设计软件USSCAD为平台进行非线性程序设计,以完善其非线性分析功能。
     空间杆单元受力比较简单,本文采用平衡方程法和UL法两种方法推导其切线刚度矩阵,并与TL法进行比较。在对杆单元进行几何非线性分析时,无论采用TL法或UL法推导的切线刚度矩阵,还是直接基于杆件平衡方程推导出的切线刚度矩阵,计算结果都基本一致。
     空间梁单元的几何非线性分析要比杆单元复杂很多,影响计算结果的因素也很多。本文分别采用梁柱法和基于UL列式法的非线性有限元法推导了空间梁单元的切线刚度矩阵。论证了空间大转动的不可易性和不可线性叠加的特点,并采用旋转矩阵和四元数的方法对大转动进行叠加;应用共转法的思想更新单元的局部坐标系,并计算出杆端的自然变形。详细介绍了自然变形法和外部刚度法两种单元内力的计算方法。
     目前在轻钢厂房中楔形单元使用非常广泛。本文提出了等效惯性矩的方法建立了楔形单元的力学模型,并对节点与截面形心不重合的偏心现象提出了力学解决方法。采用基于UL列式的非线性有限元法对楔形单元的几何非线性问题进行了分析。
     对空间梁单元进行材料非线性分析的关键是确定杆件的塑性模型,一般采用分布塑性模型或集中塑性模型。本文针对理想弹塑性材料,分别采用集中塑性模型中的弹塑性铰法和精细塑性铰法,推导了空间梁单元的弹塑性切线刚度矩阵,采用LRFD相关方程判断杆端的弹塑性状态,并计算了弹塑性单元内力,对超出屈服面的内力进行修正。
     根据本文的非线性理论进行程序设计,完善USSCAD钢结构设计软件的非线性功能,非线性方程求解采用Newton-Raphson法、修正的Newton-Raphson法和弧长法,收敛准则采用不平衡力的无穷范数。程序采用面向对象技术,采用C++编程语言,借助Autodesk公司提供的ObjectARX开发工具实现了对AutoCAD2007的二次开发。借助Office办公软件提供的程序接口,实现了word计算书的自动生成。应用USSCAD软件对算例进行的非线性分析表明,本文编制的程序的精度满足结构设计的要求,并具备对大型空间结构进行非线性分析的能力。
     本文最后对国内外有关结构抵抗连续性倒塌研究情况进行了介绍,对国外结构规范中有关结构连续性倒塌的内容进行了概述。介绍了拉结力设计法和变换荷载路径法两种常用的分析方法。并对某一满足我国钢结构设计规范要求的钢框架采用变换荷载路径法和美国GSA规范提出的荷载修改方法进行了连续性倒塌的初步分析。
Steel structures have many advantages, including high strength, low weight, fast construction, etc., that they have been widely used in engineering, especially for constructing large span, large space structures and high-rise buildings. Traditionally, steel structures are designed by the two-step method, which includes two steps that first calculating the internal force of members using linear-elastic method, and then designing the members separately under the guides of codes (In those guides, the interaction among members is considered by using effective length factor). As been widely recognized, the two-step method has many shortcomings. Alternatively, with the development of modern computer technology and calculation theory of structure, the advanced analysis method has been developed. The advanced analysis method can consider the nonlinear response of structures, the effects of deficiencies and other factors on the loading capacity of structures, etc.. By the advanced analysis method, only a full-phase global analysis is needed to design the structure. The nonlinear analysis is the key component for an advanced analysis. In this dissertation, the theory of geometric nonlinearity and material nonlinearity of steel structures will be presented. A non-linear programming is developed and added to the common design software of steel structure, USSCAD, to realize the nonlinear analyzing ability of the software.
     The mechanism of space bars is very simple that the bars can only have axial displacements. The dissertation has derived the tangent stiffness matrix of space bars by equilibrium equations and UL formulations respectively. In nonlinear analysis of space bars, the results by using the derived matrix from equilibrium equations and UL formulations are the same as the results by using the tangent stiffness matrix from TL formulations.
     The geometric nonlinearity analysis is more complex for space beams than that for space bars. The dissertation derives the tangent stiffness matrix of space beams by beam-column theory and the theory of nonlinear finite element by UL formulations. The characteristics of unchangeable and disable to be directly added for space rotations are proved, and then the methods of rotation matrix and quaternion are present for the superposition of space rotations. The idea of co-rotational is used to update the local coordinate system for space beams in each iteration process and to calculate the natural deformations of the ends of beams. In the process of nonlinear analysis, the unbalance forces are very important, which can affect the accuracy of final result. Here, two methods of calculating the internal force are present in detail, which are the natural deformation method and the external stiffens method.
     Currently the tapered members are used widely in the light steel plants, but there has no accurate mechanical model for this kind of element. The dissertation proposes a new approach to solve this problem, by adopting the method of equivalent moment of inertia to establish the mechanical model of tapered members. For the condition where the centriod of the section does not coincide with the corresponding node, two revised matrixes are used. The dissertation derives the theory of geometric nonlinear analysis for tapered members by the UL formulation.
     The key of material nonlinear analysis for space beams is that of defining the plastic model of members. Generally there are two models:distributed plasticity model and concentrated plasticity model. For elastic-perfectly plastic material the dissertation takes the elastic-plastic hinge method and the refine plastic hinge method deriving the elastic-plastic tangent stiffness matrix. The elastic-plastic state of members is judged by the limit yield surface equation of LRFD. Then the method of calculating the elastic-plastic internal force of beams is presented. At last in order to follow the yield criterion, it is necessary to revise the force-points which are deviant from the yield surface.
     By the nonlinear analysis theory of this dissertation, the programming can be easily designed, to complete the ability of nonlinear analysis for the steel software of USSCAD. The methods for solving nonlinear equations are Newton-Raphson method, modified Newton-Raphson method and arc-length method. The convergence criterion of iterations uses the infinite norm of unbalanced forces. The programming takes the object-oriented technique and C++ is adopted as the programming language. With the help of ObjectARX provided by the Autodesk Company, it achieves the secondary development of AutoCAD2007. Using the programming interface provided by the Microsoft Office, it is conveniently to realize the automatical generation of calculation book in the style of Microsoft Word. The results of several numerical examples designed by USSCAD show that the accuracy of nonlinear analysis theory can fulfill the requirements for engineering usages. Furthermore, the software is able to implement nonlinear analysis for large-sized space structures.
     Finally, the dissertation introduces the studies on the progressive collapse, and the provisions in some foreign codes for structure design about progressive collapse. The tie force method and the alternate path method are included for analyzing the capacity of structures to resist the progressive collapse. Following with the alternate path method and the modification method of load specified by USA' GSA code, a case study on progressive collapse analysis of a steel frame (which is designed under the guides of Chinese steel structures code) is given.
引文
[1]中华人民共和国国家标准.建筑结构可靠度设计统一标准(GB50068-2001)[S].北京:中国计划出版社,2001.
    [2]American Standard.Specification for Structural Steel Buildings:Allowable Stress Design and Plastic Design[S].AISC,1989.
    [3]American Standard.Load and Resistance Factor Design Specification for Structural Steel Buildings[S].AISC,1999.
    [4]Jack C.McCormac. Structural Steel Design:LRFD Method.
    [5]郭耀杰.钢结构稳定设计[M].武汉大学出版社,武汉,2003.
    [6]Chen WF, Kim SE.LRFD Steel Design Using Advanced Analysis[M].Boca Raton:CRC Press INC,1997.
    [7]庄茁,朱以文.ABAQUS有限元软件6.4版入门指南[M].北京:清华大学出版社,2004.
    [8]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,2003.
    [9]Turner MJ,Clough RW,Martin HC,Topp LJ.Stiffness and deflection analysis of complex structures [J] Journal of Aeronautical Sciences,1956,23:805-823.
    [10]Oden JT.Finite Elements of Nonlinear Continua [M]. New York:McGraw-Hill,1972
    [11]Hughes TJR.The Finite Element Method, Linear Static and Dynamic Finite Element Analysis[M]. New Jersey:Prentice-Hall, Englewood Cliffs,1987.
    [12]Zienkiewicz OC, Taylor RL.The Finite Element Method[M].New York:McGraw-Hill, 1991.
    [13]Bathe KJ. Finite Element Procedures[M]. New Jersey:Prentice-Hall,1982.
    [14]殷有权.固体力学非线性有限元引论[M].北京:北京大学出版社,清华大学出版社,1987.
    [15]庄茁译,Belytschko著.连续体和结构的非线性有限元[M].北京:清华大学出版社,2002.
    [16]关正西,强洪夫译,Robert D.Cook,David S.Malkus著.有限元分析的概念与应用(第四版)[M].西安:西安交通大学出版社,2007.
    [17]Chen W F, Liu EM. Stability Design of Steel Frames [M].Boca Raton:CRC Press,1991.
    [18]Chen W F. Advanced Analysis in Steel Frames [M]. Boca Raton:CRC Presss,1993.
    [19]郑廷银.钢结构高等分析理论与实用计算[M].北京:科学出版社,2007.
    [20]KJ Bathe,S Bolourchi.Large Displacement Analysis of Three-Dimensional Beam Structures[J].International Journal for Numerical Methods Engineering,1979,14(7):961-986.
    [21]John Argyris.An excursion into large rotations[J].Computer Methods in Applied Mechanics Engineering,1982,32:85-155.
    [22]Orbison.Yield surface application in nonlinear steel frame analysis[J].Computer Methods in Applied Mechanics Engineering,1982,32:557-573.
    [23]WF Chen,T Atsuta.Theory of beam-columns:In-plane behavior and design[M].New York: McGraw-Hill,1976.
    [24]WF Chen,T Atsuta.Theory of beam-columns:Space behavior and design[M].New York: McGraw-Hill,1977.
    [25]Cenap Oran.Tangent Stiffness in Plane Frames [J].ASCE,1973,99(6):973-985.
    [26]Cenap Oran.Tangent Stiffness in Space Frames [J].ASCE,1973,99(6):987-1001.
    [27]Liew, et al.Improved nonlinear plastic hinge analysis of space frame structures [J]. Engineering Structures,2000,22:1324-1338.
    [28]MA Crisfield.A Faster Modified Newton-Raphson Iteration[J].Computer Methods in Applied Mechanics Engineering,1979,20:267-278.
    [29]MA Crisfield.A Fast Incremental/Iterative Solution Procedure that Handles Snap-Through[J].Computer & Structures,1981,13:55-62.
    [30]MA Crisfield.An arc-length method including line searches and accelerations [J]. International Journal for Numerical Methods in Engineering,1983,19:1269-1289.
    [31]E Riks.An incremental approach to the solution of snapping and buckling problems[J]. International Journal of Solids and Structures,1979,15:529-551.
    [32]Holden.On the finite deflections of thin beams [J]. Solids Structures,1972,8:1051-1055.
    [33]Rankin, Brogan.An element independent corotational procedure for the treatment of large rotations [J].Journal of Pressure Vessel Technology,1986,108:165-174.
    [34]Yang YB,McGuire.Joint rotation and geometric nonlinear analysis[J].Journal of Structural Engineering,1986,112(4):879-905.
    [35]SG Ekhande,et al.Stability functions for three-dimensional beam-columns[J].Journal of Structural Engineering,1989,115(2):467-479.
    [36]陈政清,曾庆元,颜全胜.空间杆系结构大挠度问题内方分析的UL列式法[J].土木工程学报,1992,25(5):34-44.
    [37]黄文,李明瑞,黄文彬.杆系结构的几何非线性分析-三维问题[J].计算结构力学及其应用,1995,12(2):133-141.
    [38]丁泉顺,陈艾荣,项海帆.空间杆系结构实用几何非线性分析[J].力学刊,2001,22(3):300-306.
    [39]周凌远,李乔.基于UL法的CR列式三维梁单元计算方法[J].西南交通大学学报,2006,41(6):690-695.
    [40]沈世钊,陈听.网壳结构稳定性[M].北京:科学出版社,1999.
    [41]童根树.钢结构的平面内稳定[M].北京:中国建筑工业出版社,2005.
    [42]童根树.钢结构的平面外稳定[M].北京:中国建筑工业出版社,2007.
    [43]李国强,刘玉妹,赵欣.钢结构框架体系高等分析与系统可靠度设计[M].北京:中国建筑工业出版社,2006.
    [44]舒兴平.高等钢结构分析与设计[M].北京:科学出版社,2006.
    [45]Standards Australia. Steel Structures(AS4100)[S].Sydney, Australia,1998.
    [46]British Standards Institution.BS5950:Structural use of steelwork in buildings,part 1: Code of practice for design-Rolled and welded sections[S]. London (UK),2001.
    [47]American Standard.Specification for Structural Steel Buildings:Load and Resistance Factor Design[S].AISC,2005.
    [48]刘珀.美国钢结构规范中结构稳定分析方法简介[J].钢结构,2009,24(7):66-69.
    [49]HKSAR Standard.Code of Practice for the Structural Use of Steel 2005[S].Buildings Department, HKSAR Government,2005.
    [50]中华人民共和国国家标准.钢结构设计规范(GB50017-2003)[S].北京:中国计划出版社,2003.
    [51]中华人民共和国国家标准.建筑抗震设计规范(GB50011-2001)[S].北京:中国计划出版社,2001.
    [52]中华人民共和国行业标准.高层民用建筑钢结构技术规程(JGJ99-98)[S].北京:中国建筑工业出版社,1998.
    [53]中华人民共和国行业标准.网壳结构技术规程(JGJ61-2003)[S].北京:中国建筑工业出版社,2003.
    [54]胡文进.钢结构CAD软件计算子系统的开发[D].武汉:武汉大学博士论文,2008.
    [55]张慎.空间网格结构极限承载力及损伤免疫力分析方法研究[D].武汉:武汉大学博士论文,2009.
    [56]刘正兴,孙雁,王国庆.计算固体力学[M].上海:上海交通大学出版社,2000.
    [57]凌道盛,徐兴.非线性有限元及程序[M].杭州:浙江大学出版社,2004.
    [58]项海帆.高等桥梁结构[M].北京:人民交通出版社,2001.
    [59]Wen RK, Rahimzadeh J. Nonlinear elastic frame analysis by finite element [J]. Journal of Structural Engineering, ASCE,1983,109(8):1952-1971.
    [60]朱慈勉,吴维华,陈栋.TL法和UL法对刚架弹性大位移分析的适用性[J].力学季刊,2001,22(1):104-111.
    [61]GA Wempner.Finite elements, finite rotations and small strains of flexible shells[J]. International Journal of Solids and Structures,1969,5:117-153
    [62]T Belyschko,L Schwer.Non-linear transient finite element analysis with convected co-ordinate[J]. International Journal of Numerical Methods and Engineering,1973,7(9):255-271.
    [63]T Belyschko,LW Glaum.Application of higher order corotational stretch theories to nonlinear finite element analysis[J]. Computers & Structures,1979,10:175-182.
    [64]MA Crisfield.A consistent co-rotational formulation for non-linear three-dimensional beam elements[J].Computer Methods in Applied Mechanics and Engineering,1990,81: 131-150.
    [65]MA Crisfield,X Peng.Efficient nonlinear shells formulations with large rotations and plasticity. In Computational Plasticity, Fundamentals & Applications, Part 2[M]. Swansea: Prineridge Press,1992:1979-1996.
    [66]B Nour-Omid,CC Rankin.Finite rotation analysis and consistent linearization using projectors[J].Computer Methods in Applied Mechanics and Engineering,1991,93:353-384.
    [67]MK Nygard, PP Bergan.Advances in treating large rotations for nonlinear problems[R].In state of the Art Surveys on Computational Mechanics, ASME, New York,1989.
    [68]KM Hsiao,HJ Hong,YR Chen.A Co rotational Procedure that Handles Large Rotations of Spatial Beam Structures[J].Computers & Structures,1987,27(6):769-781.
    [69]KM Hsiao.Nonliear analysis of general shell structures by flat triangular shell element[J]. Computers & Structures,1987,27(16):11-35.
    [70]X Peng,MA Crisfield.A consistent co-rotational formulation for shells using the constant stress/constant moment triangle[J].International Journal of Numerical Methods and Engineering,1992,35:1829-1847.
    [71]MA Crisfield,GF Moita,et al. Enhanced lower-order element formulations for large strains [M].In Computational Plasticity, Fundamentals & Applications,Part 1,1995,Pineridge Press, Swansea,293-320.
    [72]MA Crisfield.A unified co-rotational framework for solids,shells and beams[J]. International Journal of Solids and Structures,1996,33(20-22):2969-2992.
    [73]K Mattiasson, A Samuelsson.Total and updated Lagrangian forms of the co-rotational finite element formulation in geometrically and materially nonlinear analysis[M]. Numerical Methods for Non-linear Problems,1984,Pineridge Press,Swansea,135-151.
    [74]KM Hsiao.Corotational total Lagrangian formulation for three-dimensional beam element[J].AIAA J,1992,30:797-804.
    [75]Lei Jiang.A co-rotational, updated lagrangian formulation for geometrically nonlinear finite element analysis of shell structures [J].Finite Elements in Analysis and Design,1994, 18(1-3):129-140.
    [76]GA Wempner.Discrete approximations related to nonlinear theories of solids[J]. International Journal of Solids and Structures,1971,7:1581-1599.
    [77]E Ramm.Strategies for tracing the nonlinear response near limit point[M].Nonlinear Finite Element Analysis in Structural Mechanics, New York:Springer,1981.
    [78]PG Bergan.Solution algorithms for nonlinear structural problems[J].Computer& Structures,1980,12(4):497-509.
    [79]尹德钰,刘善维,钱若军.网壳结构设计[M].北京:中国建筑工业出版社,1996.
    [80]张其林,沈祖炎.空间桁架弹性大位移问题的增量有限元理论[J].工程力 学,1991,8(3):45-54.
    [81]Yeong-Bin Yang, William McGuire.Stiffness matrix for geometric nonlinear analysis[J]. Journal of Structural Engineering,1986,112(4):853-877.
    [82]Chan SL, Zhou Zh H.Positive equilibrating polynomial element for nonlinear analysis of frames[J].Journal of Structural Engineering,1994,120(6):1703-1717.
    [83]Chan Siulai, Zhou zhihua.Non-linear integrated design and analysis of skeletal structures by 1 element per member [J].Engineering Structures,2000(22):246-257.
    [84]张俊峰,郝际平.精细塑性铰法理论研究及面向对象程序设计[J].华中科技大学学报(城市科学版),2008,25(3):86-89.
    [85]吕列武,沈世钊等.钢结构构件稳定理论[M].北京:中国建筑工业出版社,1983.
    [86]陈骥.钢结构稳定理论与设计[M].北京:科学出版社,2001.
    [87]Lui EM,Chen WF.Analysis and behavior of flexibly jointed frames[J].Engineering Structures,1986,8:107-18.
    [88]Seung-Eock Kim, Jong-She Lee,et al. Practical second-order inelastic analysis for frames subjected to distributed load [J]. Engineering Structures,2004,26:51-61.
    [89]Lip H Teh.Cubic beam elements in practical analysis and design of steel frames [J]. Engineering Structures,2001,23:1243-1255.
    [90]龙泽斌.几何变换[M].长沙:湖南科学技术出版社,1984.
    [91]BH勃拉涅茨,Ν.Π.什梅格列夫斯基著,梁振和译.四元数在刚体定位问题中的应用[M].北京:国防工业出版社,1977.
    [92]Ickes BP.A new method of performing digital control system attitude computation using quaternions[J]. AIAA Journal,1970,11:8-15
    [93]AT Yang.Application of dual-number quaternion algebra to the analysis of spatial mechanisms. ASME journal of applied mechanics,1964,31:300-308.
    [94]王庆贵.四元数变换及其在空间机构位移分析中的应用[J].力学学报,1983,15(1):54-61
    [95]陈惠发著,周绥平译.钢框架稳定设计[M].上海,世界图书出版公司:1999.
    [96]梁志广,齐岳,石现峰.杆系结构几何非线性分析方法的讨论[J].石家庄铁道学院院报,1997,10(3):55-60.
    [97]沈祖炎,罗永峰.节点大位移条件下的梁-柱单元坐标转换矩阵[J].上海力 学,1994,15(4):13-19.
    [98]JL MEEK,HS TAN.Geometrically nonlinear anasysis of space frames by an incremental iterative technique[J].Computer Methods in Applied Mechanics and Engineering,1984,47: 261-282.
    [99]David J Just.Plane Frame works of Tapering Box and I-Section[J].Journal of The Structural Division,1977,103(1):71-86.
    [100]刘永华,张耀春.钢框架高等分析研究综述[J].哈尔滨工业大学学报,2005,37(9):1283-1290.
    [101]Chen WF.Structural stability:from theory to practice[J].Engineering Structures,2000,22: 116-122.
    [102]NW Newmark.Numerical produre for computing deflections,moments,and buckling loads[J].Transactions of ASCE,1943,108:1161.
    [103]WB Cranston.Analysis of slender biaxially loaded restrained columns[R].Reserch Report,Cement and Concrete Associstion,London,1983.
    [104]陈明祥.弹塑性力学[M].北京:科学出版社,2007.
    [105]Chen WF,Lui EM.Structural stability-theory and implementation[M].New York:Elsevier Science Publication Co,1986.
    [106]舒兴平,沈蒲生.平面钢框架结构的几何与材料非线性分析[J].湖南大学学报,1993,20(4):97-103.
    [107]中华人民共和国国家标准.建筑结构荷载规范(GB 50009-2001)[S].北京:中国建筑工业出版社,2006.
    [108]中华人民共和国国家标准.冷弯薄壁型钢结构技术规范(GB50018-2002)[S].北京:中国计划出版社,2002.
    [109]中华人民共和国国家标准.高耸结构设计规范(GB50135-2006)[S].北京:中国建筑工业出版社,2006.
    [110]中国工程建设标准化协会标准.矩形钢管混凝土结构技术规程(CECS 159:2004)[S].北京:中国计划出版社,2004.
    [111]中国工程建设标准化协会标准.钢管混凝土结构设计与施工规程(CECS 28:90)[S].北京:中国计划出版社,1992.
    [112]中华人民共和国行业标准.型钢混凝土组合结构设计规程(JGJ 138-2001)[S].北京:中国建筑工业出版社,2002.
    [113]中国工程建设标准化协会标准.门式刚架轻型房屋钢结构技术规程(CECS 102:2002)[S].北京:中国计划出版社,2003.
    [114]中华人民共和国行业标准.网架结构设计与施工规程(JGJ 7-91)[S].北京:中国建筑工业出版社,1992.
    [115]中华人民共和国电力行业标准.架空送电线路杆塔结构设计技术规定(DL/T5154-2002)[S].北京:中国电力出版社,2002.
    [116]吴晓涵.面向对象结构分析程序设计[M].北京:科学出版社,2002.
    [117]钱能.C++程序设计教程[M].北京:清华大学出版社,1999.
    [118]李长勋AutoCAD ObjectARX程序开发技术[M].北京:国防工业出版社,2005.
    [119]二代龙震工作室.AutoCAD ARX函数库查询辞典[M].北京:中国铁道出版社,2003.
    [120]American Standard. SEI/ASCE 7-05 minimum design loads for buildings and other structures[S].ASCE,2005.
    [121]Japanese Standard.Guidelines for Collapse Control Design-Construction of Steel Buildings with High Redundancy[S].Tokyo,Japanese Society of Steel Construction & Council on Tall Buildings and Urban Habitat,2004.
    [122]European Committee for Standardization.EN1991-1-7 Eurocode 1-actions on structures-part 1.7:general action-accidental actions due to impact and explosion,2006.
    [123]American Standard.Progressive Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization Projects[S].General Services Administration of America, Washington DC,2000.
    [124]American Standard.Progressive Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization Projects[S].General Services Administration of America, Washington DC,2003.
    [125]American Standard.Unified Facilities Criteria (UFC):Design of buildings to resist progressive collapse[S]. Department of Defense of America, Washington DC,2005.
    [126]金丰年,贾金刚等.基于GSA规范改进方法的框架结构连续性倒塌分析[J].解放军理工大学学报(自然科学版),2009,10(2):143-150.
    [127]Canada Standard.National Building Code of Canada[S].National Research Council of Canada,Ottawa,Canada,1975.
    [128]中华人民共和国国家标准.混凝土结构设计规范(GB50010-2002).北京:中国计划出版社,2002.
    [129]陆新征,江见鲸.世界贸易中心飞机撞击后倒塌过程的仿真分析[J].土木工程学报,2001,34(6):8-10.
    [130]Moore DB.The UK and European regulations for accidental actions.Workshop on prevention of progressive collapse.National Institute of Building Sciences,2002, Washington,DC.
    [131]梁益,陆新征等.结构的连续倒塌:规范介绍和比较[C].第六届全国工程结构安全防护学术会议论文集,2007,195-200.
    [132]王开强,李国强.美国建筑连续性倒塌设计标准的现状[J].解放军理工大学学报(自然科学版),2007,8(5):513-519.
    [133]江晓峰,陈以一.建筑结构连续性倒塌及其控制设计的研究现状[J].土木工程学报,2008,41(6):1-8.
    [134]陆新征,李易等.钢筋混凝土框架结构抗连续性倒塌设计方法的研究[J].工程力学,2008,25(增刊Ⅱ):150-157.
    [135]American Standard.NEHRP commentary on the guidelines for the seimic rehabilitation of buildings(FEMA274)[S].Federal Emergency Management Agency,1997.
    [136]American Standard.NEHRP guidelines for the seimic rehabilitation of buildings (FEMA273)[S].Federal Emergency Management Agency,1997.
    [137]张其林.轻型门式刚架[M].济南:山东科学技术出版社,2004.
    [138]邓讯,徐远杰.材料力学[M].武汉:武汉大学出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700