用户名: 密码: 验证码:
曲线坐标系下水动力模型的修正研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在水利建设和国民经济建设的许多领域中,研究水流和伴随着水流的热输运、物质输运都具有极其重要的意义。江、河、湖、海以及地下的水体昼夜不停地运动,携带着热量、泥沙、盐份和各类污染物质,改变着我们的生活环境。为了兴水利、除水害、作为水资源综合利用的第一步,必须探明水流运动的规律和伴随水流发生的热输运、物质输运的规律。对水流和输运现象进行预测,工程设计人员才能从大量的方案中选取最优设计方案,并保证其设计得以实现。准确地预测水流和输运现象,还能帮助我们预报乃至控制一些潜在的灾祸,如水体污染、洪水、潮汐等。
     预测的实质,是在给定的物理条件下,求出控制着物理过程的若干变量在空间的分布和随时间的演变。预测的方法,基本上可分为两类:实验研究和理论计算。
     本文采用理论计算的方法,基于现代紊流理论、现代数值计算方法建立适合描述水利工程中紊流规律的非线性数值模型,即曲线坐标系下的二、三维紊流水动力模型,旨在提高紊流精细模拟的实用性,以求有效地解决水利工程中的水流和输运现象的实际问题。因此,该研究既具有理论意义,又具有工程实用价值。
     本文的主要研究内容:
     1)对选题的目的和意义进行了论述;对水流与水质数值模拟发展的现状进行了系统的分析和评述,并提出了本文的研究问题;对现代紊流理论、数值计算方法进行了详细的综述、归纳和总结,并提出了本文采用的模型与方法;对紊流数值计算中的关键性技术问题(离散方法、自由表面位置的确定问题、复杂边界的处理方法等)进行了详细的综述和研究。
     2)提出一种生成正交曲线网格的新方法,收敛速度快,在复杂边界流场区域的数值计算中,有很大的实用价值。
     3)基于正交曲线拟合坐标系,建立了一种模拟二维非恒定弯曲边界明渠紊流的深度平均模型,并对流速深度平均值和二次流流速分布之间的差异所带来的影响进行修正,使其计入二次流的影响。采用修正的紊流模型计算紊动应力项;采用正交曲线拟合坐标技术处理复杂的实际计算域边界;采用试验数据验证所建计算模型的准确性和适应性,计算结果都与实验值有很好的一致性,从而证明流速深度平均值和二次流流速分布之间的差异带来的弥散应力项是影响大曲率弯道流动的最主要的应力。
     4)为了克服复杂几何边界给数值计算带来的困难,提高通用性以及水流的预测精度,本文将采用上述网格生成技术,将直角坐标系三维非恒定明渠紊流的数值模型,发展成曲线坐标系系统的多层紊流水动力模型,即平面上采用曲线拟合坐标系,在垂直方向采用sigema坐标变换。一般的曲线坐标和非交错网格系统的应用增强了模型计算复杂边界的三维流动的能力。
     5)为了提高模拟具有自由表面,受显著曲率壁面影响的弯曲明渠水流的能力,本文对曲线坐标系下的紊流水动力模型进行了曲率效应修正,计入曲率效应的影响,在一定程度上考虑了紊流的各向异性效应,‘是一种很有工程实用价值的模型。
     6)采用实例验证本文所建立的三维非恒定数值模型;并应用于三峡工程截流水流流态的数值计算中。
The prediction of flow and sediment transport is one of the most important tasks in river engineering and related areas. With the development of industry, a large amount of industry waste water and life polluted water harmful to people and other living things is discharged into river, lake, reservoir and ocean and make the natural water much more polluted. To protect environment, people must study the hydrodynamic and pollutant transport characteristics to obtain the distribution of the concentration.
     The prediction is very difficult because the flow in open channels is usually turbulent, the geometry is irregular and can vary with time, and sediment transport phenomena are very complex. Until now, predictions of flow and sediment transport in rivers usually neglect the influence of secondary flows. However, this influence is important for the main flow and the sediment transport and can only be accounted for realistically with a 3D model.
     In this paper, a 2D depth-averaged model for simulating and examining flow patterns in channel bends has been proposed, which takes into account the influence of the secondary flow phenomenon through the calculation of the dispersion stresses arisen from the integration of the products of the discrepancy between the mean and the true velocity distributions. And a three-dimensional numerical hydrodynamic model with an orthogonal curvilinear coordinate in the horizontal direction and sigma coordinate in the vertical direction has been developed, and the model includes the effects of significant curvature. The two models can effectively solve the practical problems of flows and water quality transportations in hydraulic engineering, and can strengthen the practical usage of the mathematical model. The research also has theoretical meanings and practical values in engineering.
     The research details and results of this paper are as follows:
     1. The purpose and meanings of the research has been discussed; the development of numerical simulation for flows and matter transportations have been analyzed and commenced, and the problem to be solved has been presented; the update turbulent theory, numerical method and the key techniques in turbulence numerical simulation (such as the discretization method, the method of determining free water surface, and treatment of complicated boundary, etc.) have been summarized.
     2. A new method for the generation of curvilinear grid has been proposed. Some curvilinear grid generation examples show that satisfactory grids can be generated for simple-connected regions and connected-regions with complex boundary by using the proposed adjusting factors. The curvilinear grid at boundaries is orthogonal and the interior grids can be adaptive to the variation of physical parameters of fluid.
     3. A 2D depth-averaged model for simulating and examining flow patterns in channel bends has been proposed. In particular, this proposed 2D depth-averaged model takes into account the influence of the secondary flow phenomenon through the calculation of the dispersion stresses arisen from the integration of the products of the discrepancy between the mean and the true velocity distributions. The proposed model uses an orthogonal curvilinear coordinate system to efficiently and accurately simulate the flow field with irregular boundaries. Two sets of experimental data were used to demonstrate the model's capabilities. The simulations considering the secondary flow effect agree well with the measured data. Furthermore, an examination of the dispersion stress terms shows that the dispersion stresses play a major role in the transverse convection of the momentum shifting from the inner bank to the outer bank for flows in both mild and sharp bends.
     4. A three-dimensional numerical hydrodynamic model with an orthogonal curvilinear coordinate in the horizontal direction and sigma coordinate in the vertical direction has been developed. The use of the curvilinear coordinates and non-staggered grid system increases the ability of the presented model in computing complex 3D flows.
     5. To increases the ability of the present model in computing complex 3D free surface flows in channel bands, the three-dimensional hydrodynamic model in curvilinear coordinates including effects of significant curvature has been developed.
     6. The modified three-dimensional hydrodynamic model was used to predict the hydraulic characteristics of Three Gorge river flow when the left river is being closed and water has to pass only through the right channel.The important hydraulic parameters such as velocity and water level have been obtained very easily, and the computed results are in agreement with experimental data under different practical conditions.
引文
[1]Molls, T.& Chaudhry M. H.. Depth-averaged open-channel flow model. J. Hydraul. Eng. [J],121(6), 1995:453-465.
    12] Rozovskii, I. L... Flow of water in bends of open channels, The Israel Program for Scientific Translations, Jerusalem,1961.
    [3]Ye, J., and McCorquodale, J. A.. Depth-averaged hydrodynamic model in curvilinear collocated grid. J. Hydraul. Eng. [J],123(5),1997:380-388.
    [4]Chang, Y. C.. Lateral mixing in meandering channels. PhD dissertation, Iowa Institute of Hydraulic Research, Univ. of Iowa, Iowa City, Iowa,1971
    [5]Falconer, R. A.. Numerical modelling of tidal circulation in harbours. Journal of the Waterway, Port, Coastal and Ocean Division [J], ASCE 106,1980:31-48.
    [6]Falconer, R. A.. A two-dimensional mathematical model study of the nitrate levels in an inland natural basin. Proceedings of the International Conference on Water Quality Modelling in the Inland Natural Environment[C],BHRA Fluid Engineering, Bournemouth, England, Paper J1, June,1986:pp. 325-344.
    [7]Falconer, R. A.& Chen, Y. P.. An improved representation of flooding and drying and wind stress effects in a 2-D numerical model. Proceedings of the Institution of Civil Engineers[C], Part 2,Research and Theory 91,1991:659-687.
    [8]Falconer, R. A., George, D. G.& Hall, P.. Three-dimensional numerical modelling of wind-driven circulation in a shallow homogeneous lake. Journal of Hydrology [J],124,1991:59-79.
    [9]Lin, B.& Falconer, R. A.. Modelling sediment fluxes in estuarine waters using a curvilinear co-ordinate grid system. Estuarine, Coastal and Shelf Science [J],41,1995:413-428.
    [10]Shankar, N.J., Cheong, H.F., Chan, C.T.. A hybrid model for Singapore coastal waters. In: Proceedings of 8th Conference of ASEAN Federation of Engineering Organizations[C], Penang, Malaysia.1990.
    [11]Shankar, N.J., Cheong, H.F., Chan, C.T.. Boundary fitted grid models for tidal motions in Singapore coastal waters. J Hydraulic Res [J],35 (1),1997:3-19, Delft.
    [12]Cheong, H.F., Shankar, N.J., Chan, C.T.. Numerical modelling of tidal motion in southern waters of Singapore. In:Proceedings of the International Conference on Computer Modelling for Seas and Coastal Region[C], Southampton, UK, Ed. P.R. Partridge, Elsevier Applied Science, UK,1992.
    [13]M. Kawahara, H. Hirano, K. Tsuhora, K. Iwagaki. Selective lumping finite element method for shallow water equations, Int. J. Numer. Methods Engrg.[J],2,1982:99-112.
    [14]I. King, W.R. Norton. Recent application of RMAs finite element models for two-dimensional hydrodynamics and water quality, in:C. Brebbia, W.G. Gray, G.F. Pinder (Eds.), Finite Elements in Water Resources II, Pentech Press, London,1978.
    [15]D.R. Lynch, W.R. Gray, A wave equation model for finite element computations, Comput. Fluids [J],7,1979:207-228.
    [16]R. Szymkiewicz, Oscillation-free solution of shallow water equations for nonstaggered grid, J. Hydraulic Engrg.[J],119,1993:1118-1137.
    [17]0. Zienkiewicz, P. Ortiz, A split-characteristic based finite element model for the shallow water equations, Int. J. Numer. Methods Fluids [J],20,1995:1061-1080.
    [18]C.A. Blain, J.J. Westerink, R.A. Luettich, The influence of domain size on the response characteristics of a hurricane storm surge model, J. Geophys. Resour.[J],99 (C9),1994:18467-18479
    [19]C.A. Blain, J.J. Westerink, R.A. Luettich, Grid convergence studies for the prediction of hurricane storm surges, Int. J. Numer.Methods Fluids[J],26,1998:369-401.
    [20]M.G.G. Foreman, An analysis of the wave equation model for finite element tidal computations, Comput. Phys. [J],52,1983:290-312.
    [21]M.G.G. Foreman, A comparison of tidal models for the southwest coast of Vancouver Island, in: M.A. Celia (Ed.), Computational Methods in Water Resources:Proceedings of the VII International Conference[C], MIT, Elsevier,1988.
    [22]W.G. Gray, A finite element study of tidal flow data for the North Sea and English Channel, Adv. Water Resour. [J],12,1989:143-154.
    [23]W.G. Gray, J. Drolet, I.P.E. Kinnmark, A simulation of tidal flow in the southern part of the North Sea and the English Channel, Adv. Water Resour. [J],101987:131-137.
    [24].P.E. Kinnmark, The Shallow Water Wave Equations:Formulation, Analysis, and Application[D], Ph.D. thesis, Department of Civil Engineering, Princeton University,1984.
    [25]R. Kolar, J. Westerink, M. Cantekin, C. Blain, Aspects of nonlinear simulations using shallow water models based on the wave continuity equation, Comput. Fluids [J],23 (3),1994:523-538.
    [26]R.A. Luettich, J.J. Westerink, N.W. Scheffner, ADCIRC:An advanced three-dimensional circulation model for shelves, coasts and estuaries, Report 1:Theory and methodology of ADCIRC-2DDI and ADCIRC-3DL, in Dreding Research Program Technical Report DRP-92-6, U.S. Army Engineers Waterways Experiment Station, Vicksburg, MS,1992.
    [27]F. Werner, D.R. Lynch, Field verification of wave equation tidal dynamics in the English Channel and southern North Sea, Adv. Water Resour. [J],10,1987:115-130.
    [28]F. Werner, D.R. Lynch, Harmonic structure of English Channel/Souther Bight tides from a wave equation simulation, Adv. Water Resour. [J],12,1989:121-142.
    [29]J.J. Westerink, R.A. Luettich, A.M. Baptista, N.W. Scheffner, P. Farrar, Tide and storm surge predictions using a finite element model, J. Hydraulic Engrg. [J],118,1992:1373-1390.
    [30]J.J. Westerink, R.A. Luettich, R.L. Kolar, Advances in finite element modeling of coastal ocean hydrodynamics, in:11th International Conference on Computational Methods in Water Resources [C], Computational Mechanics Publications, Southampton,UK,1996.
    [31]S. Chippada, C.N. Dawson, M.L. Mart_inez, M.F. Wheeler, Finite element approximations to the system of shallow water equations, Part I:Continuous time a priori error estimates, SIAM J. Numer. Anal. [J],35,1998:692-711.
    [32]S. Chippada, C.N. Dawson, M.L. Mart_inez, M.F. Wheeler, Finite element approximations to the system of shallow water equations, Part II:Discrete time a priori error estimates, SIAM J. Numer. Anal. [J],35,1998:1724-1790.
    [33]F. Alcrudo, P. Garcia-Navarro, A high-resolution Godunov-type scheme in finite volumes for the 2d shallow-water equations, Int.J. Numer. Methods Fluids [J],16,1993:489-505.
    [34]V. Aizinger, C. Dawson, Discontinuous Galerkin methods for two-dimensional flow and transport in shallow water, Adv. Water Resour. [J],25,2002:67-84.
    [35]S. Chippada, C.N. Dawson, M.L. Mart_inez, M.F. Wheeler, A Godunov-type finite volume method for the system of shallow water equations, Comput. Methods Appl. Mech. Engrg. [J],151, 1998:105-129.
    [36]C. Dawson, J. Proft, Discontinuous and coupled continuous/discontinuous Galerkin methods for the shallow water equations, Comput. Methods Appl. Mech. Engrg [J],191,2002:4721-4746.
    [37]Clint Dawson, Jennifer Proft, iscontinuous/continuous Galerkin methods for coupling the primitive and wave continuity equations of shallow water, Comput. Methods Appl. Mech. Engrg. [J],192,2003:5123-5145
    [38]魏文礼,金忠青.复杂边界河道流速场的数值模拟.水利学报[J],11,1994:26-30.
    [39]王船海,程文辉.河道二维非恒定流计算.河海大学学报[J],15(3),1987:39-53.
    [40]王船海,程文辉.河道二维非恒定流场计算方法研究.水利学报[J],(1),1991:10-17.
    [41]程文辉,王船海用正交曲线网格及“冻结”法计算河道流速场.水利学报[J],(6),1988:18-24.
    [42]周建军,林秉南,王连祥.河道平面二维水流数值计算.水利学报[J],(5),1991:8-18.
    [43]魏文礼,张宗孝,刘玉玲.分型算法在二维非恒定流的数值模拟中的应用.西北水资源与水工程[J],10(4),1999:41-43.
    [44]吴修广,沈永明,郑永红,王平义.非正交曲线坐标下二维水流计算的SIMPLEC算法.水利学报[J],(2),2003:25-30.
    [45]方春明.全隐式插分法求解河道平面二维恒定水流运动方程.水利学报[J],(4),1997:42-48.
    [46]刘晓东,华祖林,赵玉萍.基于四叉树网格的GODUNOV型二维水流数值计算模式.河海大学学报[J],30(6),2002:7-10.
    [47]李光炽,周晶晏,张贵寿.高桩码头对河道流场影响的数值模拟.河海大学学报[J],32(2),2004:217-220.
    [48]邓家泉.二维明渠非恒定水流BGK数值模型.水利学报[J],(4),2002:1-7.
    [49]胡四一,谭维炎.无结构网格上二维浅水流动的数值模拟.水科学进展[J],6(1),1995:1-9.
    [50]王如云,张东生,张长宽,朱寿峰.曲线坐标网格下二维涌波数值模拟的TVD型格式.水利学报[J],(10),2002:72-77.
    [51]邵颂东,王光谦,费祥俊.平面二维Lagrange-Euler方法及其在水流计算中的应用.水利学报[J],(6),1997:34-39.
    [52]程永光,索丽生.二维明渠非恒定流的格子Boltzmann模拟.水科学进展[J],14(9),2003:9-14.
    [53]魏文礼,沈永明,孙广才,刘玉玲.二维溃坝洪水波演进的数值模拟.水力学报[J],(9),2003:43-47.
    [54]金忠青,王玲玲,魏文礼.三峡工程大江截流流场的数值模拟.河海大学学报[J],26(1),1998:83-87.
    [55]汪德灌,杨艳艳.边界拟和坐标法的应用.河海大学学报[J],17(1),1989:50-57.
    [56]汪德灌,陈新建,杨艳艳.长江口南支流场的平面二维有限插分模拟.河海大学学报[J],15(5),1987:34-46.
    [57]金忠青,戴会超.坝下效能工局部水流的数值模拟.水动力学研究与进展[J],9(2),1994:163-169.
    [58]吴时强,吴修锋,周辉 淮河入海水道淮安地涵枢纽河道水流数值计算.河海大学学报[J],29(3),2001:27-32.
    [59]赵志舟,周华君,兰波,杨胜发.涪江潼南河段综合整治.重庆交通学院学报[J],19(4),2000:91-101.
    [60]麻荣永,梁军贤,梁红飞.梧州市桂江三桥对河道行洪影响研究.广西大学学报[J],23(4),1998:314-318.
    [61]魏文礼,金忠青.复杂边界河道流速场的数值模拟.水利学报[J],1994(11):26-30
    [62]吴吉春,薛禹群,黄海,张政治,王玉海.山西柳林泉域地下水流数值模拟.水文地质工程地质[J],(2),2001:18-20.
    [63]聂杰,傅宗甫.复杂边界多建筑物的河道水流数值模拟.水利水运工程学报[J],(3),2002:46-50.
    [64]张细兵,余新明,金琨.桥渡壅水对河道水位流场影响二维数值模拟.人民长江[J],34(3),2003:23-48.
    [65]徐祖信,尹海龙.黄浦江干流二维水动力实时数学模型研究.水动力学研究与进展[J],18(2),2003:372-378.
    [66]Flokstra, C. The closure problem for depth-averaged twodimensional flows. Proc.,18th Congress of the Int. Association for Hydraulic Research,1977:247-256.
    [67]Finnie, J., Donnell, B., Letter, J., and Bernard, R. S.. Secondary flow correction for depth-averaged flow calculations. J. Hydraul.Eng.,125(7),1999:848-863.
    [68]Lien, H. C., Hsieh, T. Y., Yang, J. C., and Yeh, K. C.. Bend-flow simulation using 2D depth-averaged model. J. Hydraul. Eng.,125(10),1999a:1097-1108.
    [69]张红武,吕听.弯道水力学.水利电力出版社[J],1993.
    [70]de Vriend, H.J.. A mathematical model of steady flow in curved shallow channels. J. Hydraul. Res., 15(1),1977:37-54.
    [71]Odgaard, A. J.. River-meander model. Ⅰ:Development. J. Hydraul.Eng.,115(11),1989:1433-1450.
    [72]Yen, C. L., and Ho, S. Y.. Bed evolution in channel bends. J.Hydraul. Eng.,116(4),1990:544-562.
    [73]Kalkwijk, J. P. T., and de Vriend, H. J.. Computation of the flow in shallow river bends. J. Hydraul. Res.,18(4),1980:327-342.
    [74]Nagata, T., Hosoda, T., Muramoto, Y., and Rahman, M. M.. Development of the numerical model to forecast the channel processes with bank erosion. Proc.,4th Japan-Chinese (Taipei) Joint Seminar on Natural Hazard Mitigation,1997:167-176.
    [75]宋志尧.罗索夫斯基弯道环流公式的统一.水科学进展[J],14(2),2003:218-221.
    [76]王平义,蔡金德,方铎,吴持恭.弯曲河道纵向垂线平均流速平面分布的研究.水动力学研究与进展[J],9(3),1994:267-275.
    [77]彭凯.矩形连续弯道流场简化计算数学模型.重庆建筑大学学报[J],25(1),2003:29-32.
    [78]陈国祥,金海生.用k-ε模式解平面二维弯道水流.河海大学学报[J],16(2),1988:104-113.
    [79]Heaps, N. S..Estimation of density currents in the Liverpool Bay area of the Irish Sea. Geophysical Journal of the Royal Astronomical Society[J],30,1972:415-432.
    [80]Leendertse, J. I., Alexander, R. C.& Liu, S. K.. A Threedimensional Model for Estuaries and Coastal Seas:Volume I. Principles of Computation. Report No. R-1417-OWRR, Rand Corporation, Santa Monica,1973:p.57.
    [81]Davies, A. M.. Formulation of a linear three-dimensional hydrodynamic sea model using a Galerkin-eigenfunction method.International Journal for Numerical Methods in Fluids[J],3, 1983:33-60.
    [82]Oey, L. Y.& Mellor, G. L.. A three-dimensional simulation of the Hudsan-Raritan Estuary. Part Ⅰ: Description of the model and model simulation. Journal of Physical Oceanography[J],15, 1985:1676-1692.
    [83]Stephens, C. V.. A three-dimensional model for tides and salinity in the Bristol Channel. Continental Shelf Research 6,1986:531-560.
    [84]Shen, Y. P.. On modelling three-dimensional estuarine and marine hydrodynamics. In Three-Dimensional Models of Marine and Estuarine Dynamics (Nihoul, J. C. J.& Jamart, B. M., eds). Elsevier Oceanography Series, Elsevier, Amsterdam,1987:pp.35-44.
    [85]Casulli, V.& Cheng, R. T.. Semi implicit finite-difference methods for three dimensional shallow water flow. International Journal for Numerical Methods in Fluids[J],15,1992:629-648.
    [86]Jin, X.& Kranenburg, C.. Quasi-3D numerical modelling of shallow-water circulation. Journal of Hydraulic Engineering[J], ASCE 119,1993:458-472.
    [87]Stelling, G. S.& van Kester. On the approximation of horizontal gradients in sigma co-ordinates for bathymetry with steep bottom slopes. International Journal for Numerical Methods in Fluids[J],18, 1994:915-935.
    [88]Zhan J M,Li Y S. A large eddy simulation turbulence model for the South China Sea [A]. Proc. of 3rd Intern. Conf. on Hydrodynamics[C]. Korea:1998.365-370.
    [89]沈焕庭:中国河口数学模拟研究的进展[J],海洋通报,16,2,1997:80-85.
    [90]宋志尧,薛鸿超等.潮汐动力场准三维数值模拟[J],海洋工程,1998,16(3):54-261.
    [91]卢启苗,O nyxW H W ai.海岸河口三维潮流数学模型[J],海洋工程,13(4),1995:47-60.
    [92]李孟国:伶丁洋三维流场数值模拟研究[J],水动力学研究与进展[J],11(3),1996:342-351.
    [93]Cheng, R. T.& Smith, P. E.. A survey of three-dimensional numerical estuarine models, estuarine and coastal modeling (Spaulding, M. L., ed.) ASCE, Conference Proceedings, Newport, Rhode Island[C],1989:p.1-15.
    [94]Davies, A. M.. Quasi-three-dimensional modelling using mixed finite difference and spectral models. In Coastal, Estuarial and Harbour Engineers'Reference Book (Abbott, M. B.& Price, W. A., eds). E& FN Spon Ltd., London,1993:P.736.
    [95]Leendertse J J. A three-dimensionalmodel for estuaries and coastal seas[M]. The Rand Co rpo rat ion 1973.
    [96]Kim C, L ee J. A three-dimensional PC2based hydrodynamic model using an AD I scheme. Coastal Engineering[J],23,1994:271-287.
    [97]易家豪,叶雪祥: 长江口南港航道三维水流数值模拟[A]第二届河流泥沙国际学会议论文集[C],1,1983.
    [98]Philip s N A. A coordinate system having some special advantages for numerical forecasting. J. of Meteorology[J],14,1957:184-185.
    [99]Burchard H, Petersen 0..Hybridization between R-and z-coordinates for imp roving the internal pressure gradient calculations in marine models with steep botton slopes[J]. Inter. J. For Numer. Meth. in Fluids,25,1997:1003-1023.
    [100]Muin M, Spaulding M..Three-dimensional boundary-fitted circulation model. J. of Hydr. Engrg. [J],123 (1),1997:2-12,
    [101]Blumberg, A.F., Mellor, G.L.. Diagnostic and prognostic numerical circulation studies of the South Atlantic Bight. Journal of Geophysics Research[J],88,,1983:4579-4592.
    [102]Kowalik, Z., Murty, T.S.. Three-dimensional time-dependent motion. Numerical modelling of ocean dynamics. Advanced Series on Ocean Engineering [J],5,1993:216-341.
    [103]Blumberg A F. Mello r G L. Diagnostic and prognostic numerical circulation studies of the South Atlantic Bight. J. of Geoph. Research[J],88, C8,1983:4579-4592.
    [104]Sheng Y P. On modeling three-dimensional estuarine and marine hydrodynamics. Three-Dimensional Model of Marine and Estuarine Dynamics,Nihoul, J. C. J., Jamart, B. M., eds., Elsevier Oceanography Series, Elsevier Science Publishers,1987:35-54.
    [105]W ang K H. Characterization on circulation and salinity change in Galveston Bay. J. Engrg. Mech. [J],120,3,1994:557-579
    [106]Abbott M B. Range of tidal flow modeling. J. of Hydraulic Engineering, [J],123 (4) 1997:255-277.
    [107]DaviesA M, Jones J E,Xing J. Review of recent developments in tidal hydrodynamic modeling. J. of Hydraulic Engineering[J],123,4,1997:278-292.
    [108]韩国其,汪德灌,许协庆1潮汐河口三维水流数值模拟.水利学报[J],12,1989:(5)42-60.
    [109]窦振兴,杨连武,OzerJ渤海湾三维潮流数值模拟.海洋学报[J],15(5),1993:12-15.
    [110]刘桦,何友声.长江口水环境数值模拟研究.水动力学研究与进展[J],2000,(1):
    [111]吴修广,沈永明,.非静压假定的-σ坐标下垂向二维浅水模型的应用研究,水力发电学报[J],Vol.24,No.1,Feb.2005:p93-112
    [112]张华庆.河道及河口海岸水流泥沙数学模型研究与应用.[博士学位论文][D],南京:河海大学,1998.
    [113]Cao, Z.D., Zhang, Y.P.. A Three-dimensional numerical model for tide flow and transport of spilled oil_. in Chinese. Internal Report, Tianjin Institute of Water-transportation Engineering, Tianjin, P.R. China.1987.
    [114]Kawahara, M., Kobayashi, M., Nakata, K.. Multiple level finite element analysis and its applications to tidal current flow in Tokyo bay. Appl. Math. Mod. [J],7,1983:197-211.
    [115]Kim, C., Lee, J.. A three-dimensional PC-based hydrodynamic model using an ADI scheme. Coastal Engineering[J],23,1994:271-287.
    [116]Xiaobo Chao, N.J. Shankar, Cheong Hin Fatt. A three-dimensional multi-level turbulence model for tidal motion, Ocean Engineering[J],26,1999:1023-1038。
    [117]Rodi, W.. Turbulence Models and Their Application in Hydraulics[M]. IAHR Publication, Delft, 1980.
    [118]Q.Y. Zhang, K.Y.H. Gin.Three-dimensional numerical simulation for tidal motion in Singapore's coastal waters, Coastal Engineering[J],39,2000:71-92。
    [119]B. Lin and R. A. Falconer, Three-dimensional Layer-integrated Modelling of Estuarine Flows with Flooding and Dryin, Estuarine, Coastal and Shelf Science[J],44,1997:737-751
    [120]金忠青.N-S方程的数值解和紊流模型[M].南京:河海大学出版社,1989.
    [121]陶文铨.数值传热学[M].西安: 西安交通大学出版社,1988.
    [122]陶文铨.计算传热学的近代发展[M].北京:科学出版社,2000.6.
    [123]程心一.计算流体动力学[M].北京: 科学出版社,1984。
    [124]魏文礼.紊流模型理论及工程应用[M],西安:陕西科学技术出版社,2006年1月。
    [125]叶坚、窦国仁,紊流模型中壁函数关系的改进,水利水运科学研究[J],1990年第3期。
    [126]陈景仁.《流体力学与传热学》[M].国防工业出版社.1984年
    [127]马福喜,三维自由表面强紊动水流数值模拟:[博士学位论文][D],南京:河海大学,1992年7月。
    [128]Thompson J F. Numerical Grid Generation,Foundation and Applications. NorthHolland,New York,1985.4,26,95-140,163.
    [129]Thompson J F.Boundary-fitted coordinate system for numerical solution of partial differential equation [J].J Computer Phys,1982,47:1-108.
    [130]Thompson J.F., Numerical silution of Flow Problem using Body-Fitted Coordinate System. Computational Fluid Dynamics (edited by Wolfgang Kollmann),1980.
    [131]谢利曼,一般任意网格有限差分法,华水科技情报,1985(4)
    [132]余利仁,水环境中污染物质紊动输运的湍流模式和数值研究:[博士学位论文][D],南京:河海大学,1988年4月。
    [133]Hirt,C.W. and Nichols, B.D., Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comp. Phy.[J], Vol.39,201-225,1981.
    [134].Nichols,D. and Hirt, C.W., Calculating three dimensional free surface flows in the vicinity of submerged and exposed structure, J.Comp. Phys. [J],Vol.12,1973
    [135]魏文礼.等参元函数变换在二维河道流场计算中的应用.水利学报[J],1994(11).
    [136]Winslow A M. Numerical Solution of the Quasilinear Poisson Equation in a Nonuniform Triangle Mesh. J. Comput. Phys. [J],1967,12:49-172.
    [137]Mastin C W,Thompson J F. Elliptic Systems and Numerical Transformations. J. Math. Anal. Application[J],1978,62:52-62.
    [138]Thomas P D, Middlecoeff J F. Direct control of the grid point distribution in meshes generated by elliptic equation. AIAAJ [J],1980,18:652-656.
    [139]王玲玲.复杂紊流场数值试验室研究及应用:[博士学位论文][D],南京:河海大学,2000.
    [140]吴江航,韩庆书.计算流体力学的理论、方法及应用[M].北京:科学出版社.1988年.
    [141]魏文礼.计算水力学理论及应用[M],西安:陕西科学技术出版社,2001年1月
    [142]A. K. Rastogi and W. Rodi.'Predictions of heat and mass transfer in open channels', J. HydrauI. Div. [J],ASCE,104,397-420 (1978).
    [143]N.Rajaratnam and B. Nwachukwu. Turnulence of open channel flow over smooth and rough beds.Proc.JSCE[J],241,1975:115-168.
    [144]Rozovskii, I. L..Flow of water in bends of open channels.Acad. Sci. Ukrainian S. S. R., Translated from Russian, Israel Program for Science Translation,1961:1-233
    [145]Leschziner, A., and Rodi, W..Calculation of strongly curved open channel flow. J. Hydraul. Div[J]., Am. Soc. Civ. Eng.,105(10),1979:1297-1314.
    [146]Johannesson, H..Theory of river meanders.[D], PhD thesis, Univ.of Minnesota, Minneapolis. 1988.
    [147]Shimizu, Y., Yamaguchi, H., and Itakura, T.. Three-dimensional computation of flow and bed deformation. J. Hydraul. Eng.[J],116(9),1990:1090-1108.
    [148]H.P.A.H.Irwin and P.Arnot Smith, Prediction of the Effect of Streamline Curvature on Turbulence, the physics of Fluids[J], Vol.18, No.6, June 1974
    [149]Ellis,L.B.,and Joubert P.N. Turbulent Shear Flow in a Curved Duct, J.Fluids mech. [J],Vol.62, Part 1,1974, pp65
    [150]B.E.Launder, C.H.Priddin, and B.I.Sharma, The Calculation of Turbulence Boundary Layers on Spinning and Curved Surfaces, Transactions of the ASMR, J.Fluds Eng. [J], March 1977, pp231-239.
    [151]D.C.Wilcox and T.L.Chambers, Streamline Curvature Effects on Turbulent Boundary Layers, AIAA Journal[J], Vol.15, No.4, April 1977, pp574-580
    [152]M.M.Gibson, An Algebraic Stress and Heat Flux Model for Turbulent Shear Flow with Streamline Curvature, Int.J. Heat Mass Transfer[J], Vol.21,1978, pp1609
    [153]Sang Keun Dong, Myung Kyoon Chung, Curvature Correction to Reynolds Stress Model for Computation of Turbulent Recirculating Flows, AIAA Journal[J], Vol.30, No.12, December 1992, pp2968-2970
    [154]H.P.A.H.Irwin and P.Arnot Smith, Prediction of the Effect of Streamline Curvature on Turbulence, the physics of Fluids[J], Vol.18, No.6, June 1974
    [155]N.Shima, Prediction of Turbulent Boundary Layers with Second Moment Closure; Part I Effects of Periodic Pressure Gradient Wall Transpiration and Free Stream Turbulence J.of Fluids Eng. [J],Vol.115, March 1993, pp56-63
    [156]N.Shima, Rediction of Turbulent Boundary Layers with Second Moment Closure: Part II Effects of Streamline Curvature and Spanuise Rotatim, J.of Fluids Eng. [J], Vol.115, March 1993, pp64-69
    [157]GC.Cheng, On Turbulent Flows Dominated by Curvature Effects, J.of Fluids Eng. [J], Vol.114, March 1992, pp52-57
    [158]J.L.Narasimban, Prediction of Wake in a Curved Duct, International Journal for Numerical Methods in Fluids[J], Vol.13,1991, pp907-916
    [159]W.Rodi and G.Scheuerer, Calculation of Curved Shear Layers with Two Equation Turbuence Models, the Physics of Fluids[J], Vol.26, No.6, June 1983, pp1422-1436
    [160]S.V.Patankar, V.S.Pratap and D.B.Spalding, Prediction of Turbulent Flow in Curved Pipes, J.Fluids mech. [J], Vol.67, Part 3,1975, pp583-595
    [161]Farzad Pourahmadi and Joseph A.C.Humphery Prediction of Curved Channel Flow with an Extended k-ε Model of Turbulence, AIAA Journal[J], Vol.21, No.10, October 1983, pp1365-1373
    [162]B.Lakshminaryana, Tubulence Modelling for Complex Shear Flow, AIAA[J], Vol.24, No.12, 1986, pp.1-37
    [163]Chang Y C. Lateral mixing of meandering flow [D]. Ph. D Dissertation of University of Iowa, 1971
    [164]戴会超.泄水建筑物紊流数值模拟研究及应用:[博士学位论文][D],南京:河海大学,1994,132-451.
    [165].J.W.Deardorff. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers[J]. Journal of Fluid Mechanics[J],1970,41,453-480.
    [166].Bardina,J., Ferziger, J.H., and Reynolds, W.C., Improved subgrid models for large eddy simulation, AIAA paper[J],1980,80-1357.
    [167]P.Moin,J.Kim. Numerical investigation of turbulent channel flow. Journal of Fluid Mechanics[J],1982,118,341-377.
    [168]W.Rodi, J.H.Ferziger, M.Breuer, M.Pourquie. Status of large eddy simulation:results of a workshop [J], Journal of Fluids Engineering[J],1997,119,248-262.
    [169]Da-hai Yu, Ashan Kareem. Numerical simulation of flow around rectangular prism, J. Wind eng. Ind. Aero.[J],1997,67&68,195-208.
    [170]J.Frohlich, W. Rodi. Introduction to Large Eddy Simulation of Turbulent Flows[A], Closure Strategies for Turbulent and Transitional Flows[C], edited by Brian Launder, Neil Sandham, 2002。Cambridge University Press,London,,267-298
    [171]王玲玲,大涡模拟理论及其应用综述,河海大学学报(自然科学版)[J];Vol.32 No.3;2004.5
    [172]彭凯.矩形连续弯道流场简化计算数学模型.重庆建筑大学学报[J].25(1),2003:29-32.
    [173]徐桂英.闸前弯道水流特性的实验研究.武汉水利电力大学学报,28(3),1995:38-341.
    [174]戴会超等编著.水利水电工程水流精细模拟理论与应用[M].北京:科学出版社,2006.
    [175]Jian Ye and J.A. Mccorquodale.simulation of Curved open channel flows by 3D hydrodynamic model[J]. J. of Hydraulic Engineering,124 (7) 1998:687-698
    [176]童朝锋.分汉口水沙运动特征及三维水流数学模型应用研究[博士学位论文].南京:河海大学,2005.
    [177]Garratt, J.R, Review of drag coefficients over oceans and continents[J]. Mon. Weather Rev.,1977, Vol.7, No.105:915-929.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700