用户名: 密码: 验证码:
应用饲料油脂防控牛感染大肠杆菌0157:H7的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究了亚麻籽和中链脂肪酸用于防控牛感染大肠杆菌O157:H7的可行性。试验分为两部分,第一部分通过向牛日粮中添加亚麻籽并取瘤胃液和真胃液与大肠杆菌O157:H7进行体外培养以验证长链脂肪酸是否在反刍动物瘤胃和真胃中对大肠杆菌O157:H7有抑制作用,同时本试验还通过检测不同日粮添加亚麻籽对牛胃肠道内容物中脂肪酸的组成及牛肠道内容物中粘膜抗体免疫球蛋白A浓度的影响以确定长链脂肪酸对牛肠道免疫力的影响,本论文还研究了日粮中添加亚麻籽对肉牛生产性能的影响从而为脂肪酸的应用奠定基础。第二部分为了更好的使用脂肪酸抵抗大肠杆菌O157:H7感染,本论文通过体外培养研究了不同碳链长度脂肪酸在不同pH条件下对大肠杆菌O157:H7的抑制活性,及中链脂肪酸与亚麻籽在瘤胃液和真胃液中的协同抑菌效果,从而为脂肪酸的合理搭配提供理论基础。试验结果如下:
     1不同日粮添加亚麻籽对牛瘤胃液和真胃液抑菌活性的影响不同。饲喂青干草+大麦组牛瘤胃液中添加亚麻籽显著抑制了大肠杆菌O157:H7的繁殖和真胃液中大肠杆菌O157:H7的存活,而青贮+大麦组牛添加亚麻籽后瘤胃液抑菌活性并未增强,但其真胃液抑菌活性显著提高。不同日粮添加亚麻籽对牛胃肠道内容物脂肪酸组成和IgA含量的影响不同,青贮+大麦日粮添加亚麻籽提高了牛十二指肠、回肠和结肠粘膜抗体IgA含量。添加亚麻籽提高了饲料转化效率,并增加了牛皮下脂肪中亚麻酸含量。
     2癸酸、月桂酸和亚油酸在pH2.5培养条件下抑菌活性最强,三种18碳不饱和脂肪酸在pH2.5培养条件下的抑大肠杆菌O157:H7活性为:亚油酸>油酸>亚麻酸,脂肪酸的抑菌活性随pH升高而降低。癸酸在青干草+大麦+亚麻籽组牛瘤胃液和真胃液中表现出与亚麻籽的协同抑菌效应。月桂酸在青干草+大麦+亚麻籽组牛瘤胃液中未表现出与亚麻籽的协同抑菌效应,但在真胃液中表现出与亚麻籽的协同抑菌效应。癸酸和月桂酸在饲喂青贮+大麦组牛的瘤胃液和真胃液中的抑菌活性强于其他各组,但未与亚麻籽表现出有协同抑菌效应。各组日粮牛真胃液调节到pH3.5后,中链脂肪酸的抑菌活性显著升高,癸酸在3h内将大肠杆菌降低到检测范围之下,月桂酸的抑菌活性也显著增强。
     本试验结果表明,添加亚麻籽能够在一定程度上抑制瘤胃和真胃液中大肠杆菌O157:H7的数量,但如果同时加入中链脂肪酸则抑菌效果更佳。饲料添加亚麻籽同时能够提高牛肠道免疫性能和生产性能并改善牛肉的脂肪酸组成。本试验将脂肪酸的抑菌功能和提高生产性能的功能相结合,为开发绿色、无污染的生物防治手段提供了一条可行路线。
The aim of current research was to study the feasibility of using feed oil to eliminate the infection of Escherichia coli O157:H7 in cattle. The whole experiment was carried out by two trails. In first trail, the ruminal and abomasal content were sampled from cattle fed different diet with or without flaxseed and were used to do the in vitro culture with Escherichia coli O157:H7 to see the influence of feed oil on the pathogen. At the same time we analyzed the composition of the fatty acids and the concentration of the IgA in bovine gastro-intestinal content to see the influence of feed oil on the bovine intestinal immunity. In the second trail, we studied the antibacterial effect of different single fatty acid on E.coli O157:H7 in LB medium. We also studied the synergism antibacterial activity of medium chain fatty acid and long chain fatty acid in ruminal and abomasal fluid.
     Our data indicated that addition of flaxseed to different diet has different influence on the antibacterial activity of bovine ruminal and abomasal fluid. Addition of flaxseed to the grass hay and barley diet increase the bactericidal activity of bovine ruminal and abomasal fluid, however addition of flaxseed to barley silage and barley diet only has influence on antibacterial activity of bovine abomasal fluid not on ruminal fluid. Addition of flaxseed changed the fatty acid composition of bovine gastro-intestinal content and increased the concentration of IgA which indicated the increased intestinal immunity of cattle.
     In our experiment, capric acid, lauric acid and linoleic acid show the strongest antibacterial activity on E. coli O157:H7 when incubated in pH 2.5 LB medium. The order of anti-E.coli O157:H7 activity of C18 fatty acid at pH 2.5 was as follow: linoleic acid > oleic acid > linolenic acid. The bactericidal activity of fatty acid was decreased with the increase of pH. Capric acid and flaxseed show synergism anti-E. coli O157:H7 activity when added to ruminal and abomasal fluid from cattle fed hay and barley. However, Lauric acid and flaxseed only show synergism anti-E. coli O157:H7 activity when added to abomasal fluid from cattle fed same diet. Both capric and lauric acid did not show synergism anti-E. coli O157:H7 activity when added to ruminal and abomasal fluid from cattle fed barley silage and barley. The antibacterial activity of capric and lauric acid was increased when the bovine abomasal fluid pH decreased to 3.5.
     In general, addition of flaxseed in bovine diet could partially increase the antibacterial activity of bovine ruminal and abomasal fluid, and this activity may be increased if added medium chain fatty acids at the same time. Addition of flaxseed could increase the immunity of bovine intestinal by increase the secretion of IgA. The immunity increasing function and the antibacterial activity of fatty acid was combinated in our study to give a new suggestion to eliminate the infection of cattle by E.coli O157:H7 without antibiotic resistance.
引文
1 Meyer-Broseta S, Bastian SN, Arne PD, Cerf O, Sanaa M. Review of epidemiological surveys on the prevalence of contamination of healthy cattle with Escherichia coli serogroup O157 : H7 [J].International Journal of Hygiene and Environmental Health, 2001,203:347-361.
    2 Mead PS, Slutsker L, Griffin PM, Tauxe RV. Food-related illness and death in the United States - Reply[J]. Emerging Infectious Diseases, 1999,5:841-842.
    3 Rangel JM, Sparling PH, Crowe C, Griffin PM, Swerdlow DL. Epidemiology of Escherichia coli O157:H7 outbreaks, United States, 1982-2002[J]. Emerging Infectious Diseases, 2005, 11: 603-609.
    4 Bach SJ, McAllister TA, Veira DM, Gannon VPJ, Holley RA. Transmission and control of Escherichia coli O157:H7 -A review[J]. Canadian Journal of Animal Science 2002,82:475-490.
    5 Stevens MP, van Diemen PM, Dziva F, Jones PW, Wallis TS. Options for the control of enterohaemorrhagic Escherichia coli in ruminants. Microbiology-(UK), 2002,148:3767-3778.
    6 Fincher LM, Parker CD, Chauret CP. Occurrence and Antibiotic Resistance of Escherichia coli O157:H7 in a Watershed in North-Central Indiana[J]. Journal of Environmental Quality, 2009,38:997-1004.
    7 Scott L, McGee P, Walsh C, Fanning S, Sweeney T, Blanco J, Karczmarczyk M, Earley B, Leonard N, Sheridan JJ. Detection of numerous verotoxigenic E. coli serotypes, with multiple antibiotic resistance from cattle faeces and soil[J]. Veterinary Microbiology, 2009,134:288-293.
    8 Bergsson G, Arnfinnsson J, Steingrimsson O, Thormar H. Killing of Gram-positive cocci by fatty acids and monoglycerides[J]. Apmis, 2001,109:670-678.
    9 Kabara JJ, Swieczko.Dm, Truant JP, Conley AJ. Fatty Acids and Derivatives as Antimicrobial Agents[J]. Antimicrobial Agents and Chemotherapy, 1972,2:23-&.
    10 Bach SJ, Selinger LJ, Stanford K, McAllister TA. Effect of supplementing corn- or barley-based feedlot diets with canola oil on faecal shedding of Escherichia coli O157:H7 by steers[J]. J Appl Microbiol ,2005,98:464-475.
    11 Dierick NA, Decuypere JA, Molly K, Van Beek E, Vanderbeke E. The combined use of triacylglycerols containing medium-chain fatty acids (MCFAs) and exogenous lipolytic enzymes as an alternative for nutritional antibiotics in piglet nutrition I. In vitro screening of the release of MCFAs from selected fat sources by selected exogenous lipolytic enzymes under simulated pig gastric conditions and their effects on the gut flora of piglets[J]. Livestock Production Science, 2002,75:129-142.
    12 Knarreborg A, Simon MA, Engberg RM, Jensen BB, Tannock GW. Effects of dietary fat source and subtherapeutic levels of antibiotic on the bacterial community in the ileum of broiler chickens at various ages[J]. Applied and Environmental Microbiology, 2002,68:5918-5924.
    13 Skrivanova V, Marounek M. A note on the effect of triacylglycerols of caprylic and capric fattyacid on performance, mortality, and digestibility of nutrients in young rabbits[J]. Animal Feed Science and Technology, 2006,127:161-168.
    14 Traul KA, Driedger A, Ingle DL, Nakhasi D. Review of the toxicologic properties of medium-chain triglycerides[J]. Food and Chemical Toxicology, 2000,38:79-98.
    15 Diez-Gonzalez F, Callaway TR, Kizoulis MG, Russell JB. Grain feeding and the dissemination of acid-resistant Escherichia coli from cattle[J]. Science ,1998,281:1666-1668.
    16周志江.肠道出血性大肠杆菌O157[M].北京:军事医学科学出版社,2002,10-21.
    17 Karper JB, Mcdaniel,T.K., Jawis,K.G. and Gomez-Duarte, O.G. Genetics of virulence of enteropathogenic E. coli[J]. New York, Plenum Press,1997.
    18 Riley LW, Remis RS, Helgerson SD, McGee HB, Wells JG, Davis BR, Hebert RJ, Olcott ES, Johnson LM, Hargrett NT, Blake PA, Cohen ML. Hemorrhagic colitis Associated with a Rare Escherichia coli Serotype[J]. New England Journal of Medicine, 1983,308:681-685.
    19 Wells JG, Davis BR, Wachsmuth IK, Riley LW, Remis RS, Sokolow R, Morris GK. Laboratory Investigation of Hemorrhagic colits Outbreaks Associated with a Rare Escherichia coli Serotype[J]. Journal of Clinical Microbiology, 1983,18:512-520.
    20 Meng J, Doyle MP. Emerging and evolving microbial foodborne pathogens. Bulletin De L Institut Pasteur[J], 1998,96:151-163.
    21 PHAC http://www.phac-aspc.gc.ca/index-eng.php
    22 Callaway TR, Carr MA, Edrington TS, Anderson RC, Nisbet DJ. Diet, Escherichia coli O157:H7, and Cattle: A Review After 10 Years[J]. Curr Issues Mol Biol, 2009,11:67-79.
    23倪大新.江苏省1999年大肠埃希菌O157:H7宿主动物带菌情况调查[J].中华流行病学杂志2002,23:102-104.
    24 Michel P, Wilson JB, Martin SW, Clarke RC, McEwen SA, Gyles CL. Temporal and geographical distributions of reported cases of Escherichia coli O157 : H7 infection in Ontario [J]. Epidemiol Infect, 1999,122:193-200.
    25 Ostroff SM, Kobayashi JM, Lewis JH. Infections with Escherichia coli O157:H7 in Washington State - The 1ST Year of Statewide Disease Surveillance[J]. JAMA-J Am Med Assoc, 1989,262:355-359.
    26 Konowalchuk J, Speirs JI, Stavric S. Vero Response to a Cytotoxin of Escherichia coli[J]. Infection and Immunity, 1977,18:775-779.
    27 O'Brien SJ, Adak GK, Gilham C. Contact with farming environment as a major risk factor for shiga toxin (Vero cytotoxin)-producing Escherichia coli O157 infection in humans[J]. Emerging Infectious Diseases, 2001,7:1049-1051.
    28 Karmali MA, Petric M, Louie S, Cheung R. Antigenic Heterogeneity of Escherichia coli Verotoxins[J]. Lancet, 1986,1:164-165.
    29 Neill MA. Overview of verotoxigenic Escherichia coli. Journal of Food Protection[J], 1997,60:1444-1446.
    30 Calderwood SB, Acheson DWK, Keusch GT, Barrett TJ, Griffin PM, Strockbine NA, Swaminathan B, Kaper JB, Levine MM, Kaplan BS, Karch H, Obrien AD, Ohrig TG, Takeda Y, Tarr PI, Wachsmuth IK. Proposed new nomenclature for SLT (VT) family[J]. ASM News, 1996,62:118-119.
    31 Martinsen TC, Bergh K, Waldum HL. Gastric juice: A barrier against infectious diseases[J]. Basic & Clinical Pharmacology & Toxicology, 2005,96:94-102.
    32 Smith JL. The role of gastric acid in preventing foodborne disease and how bacteria overcome acid conditions[J]. Journal of Food Protection, 2003,66:1292-1303.
    33 Peterson WL, Mackowiak PA, Barnett CC, Marlingcason M, Haley ML. The Human Gastric Bactericidal Barrier - Mechanisms of Action, Relative Antibacterial Activity, and Dietary Influences[J]. J Infect Dis, 1989,159:979-983.
    34 Sainz T, Perez J, Villaseca J, Hernandez U, Eslava C, Mendoza G, Wacher C. Survival to different acid challenges and outer membrane protein profiles of pathogenic Escherichia coli strains isolated from pozol, a Mexican typical maize fermented food[J]. International Journal of Food Microbiology, 2005,105:357-367.
    35 Price SB, Wright JC, Degraves FJ, Castanie-Cornet MP, Foster JW. Acid resistance systems required for survival of Escherichia coli O157 : H7 in the bovine gastrointestinal tract and in apple cider are different[J]. Applied and Environmental Microbiology, 2004,70:4792-4799.
    36 Bergholz TM, Whittam TS. Variation in acid resistance among enterohaemorrhagic Escherichia coli in a simulated gastric environment[J]. Journal of Applied Microbiology, 2007, 102: 352 - 362.
    37 Mach N, Devant M, Diaz I, Font-Furnols M, Oliver MA, Garcia JA, Bach A. Increasing the amount of n-3 fatty acid in meat from young Holstein bulls through nutrition[J]. J Anim Sci, 2006,84:3039-3048.
    38 Feder I, Wijey C, Paoli GC, Tu SI. Evaluation of enrichment media for detection of Escherichia coli O157 : H7 in ground beef using immunomagnetic-electrochemiluminescence[J]. Journal of Rapid Methods and Automation in Microbiology, 2007,15:92-106.
    39 Wijey C, Crawford CG, Tu SI, Paoli GC. Effect of bacterial protein extraction reagent combined with sodium azide on the detection of Escherichia coli O157 : H7 using immunomagnetic- electrochemiluminescence[J]. Journal of Rapid Methods and Automation in Microbiology, 2004,12:115-126.
    40 Al-Ajmi D, Padmanabha J, Denman SE, Gilbert RA, Al Jassim RAM, McSweeney CS. Evaluation of a PCR detection method for Escherichia coli O157 : H7/H- bovine faecal samples [J]. Letters in Applied Microbiology, 2006,42:386-391.
    41 Johnston LM, Elhanafi D, Drake M, Jaykus LA. A simple method for the direct detection of Salmonella and Escherichia coli O157 : H7 from raw alfalfa sprouts and spent irrigation water using PCR[J]. Journal of Food Protection, 2005,68:2256-2263.
    42 Yilmaz A, Gun H, Ugur MN, Turan N, Yilmaz H. Detection and frequency of VT1, VT2 and eaeA genes in Escherichia coli O157 and O157:H17 strains isolated from cattle, cattle carcasses [J]. International Journal of Food Microbiology, 2006,106:213-217.
    43 Hancock DD, Besser TE, Kinsel ML, Tarr PI, Rice DH, Paros MG. The Prevalenece of Escherichia coli O157:H7 in Dairy and Beef Cattle in Washington State[J]. Epidemiol Infect, 1994,113:199-207.
    44 Wells JG, Shipman LD, Greene KD, Sowers EG, Green JH, Cameron DN, Downes FP, Martin ML, Griffin PM, Ostroff SM, Potter ME, Tauxe RV, Wachsmuth IK. Isolation of Escherichia coli Serotype O157:H7 and Other Shiga Like Toxin Producing Escherichia coli from Dairy Cattle[J]. Journal of Clinical Microbiology, 1991,29:985-989.
    45 McClure P. The impact of E. coli O157 on the food industry[J]. World Journal of Microbiology and Biotechnology, 2000,16:749-755.
    46 Edwards JR, Fung DYC. Prevention and decontamination of Escherichia coli O157 : H7 on raw beef carcasses in commercial beef abattoirs[J]. Journal of Rapid Methods and Automation in Microbiology, 2006,14:1-95.
    47 Erickson MC, Doyle MP. Food as a vehicle for transmission of Shiga toxin-producing Escherichia coli[J]. Journal of Food Protection, 2007,70:2426-2449.
    48 Willshaw GA, Thirlwell J, Jones AP, Parry S, Salmon RL, Hickey M. Vero Cytotoxin Prpducing Escherichia coli O157 in Beefburgers Linker to an Outbreak of Diarrhea, Hemorrhagic colitis and Hemolytic Uremic Syndrome in Britain[J]. Letters in Applied Microbiology, 1994,19:304-307.
    49 Synge BA. Veterinary significance of verocytotoxin-producing Escherichia coli O157[J]. World Journal of Microbiology and Biotechnology, 2000,16:725-732.
    50 Swerdlow DL, Woodruff BA, Brady RC, Griffin PM, Tippen S, Donnell HD, Geldreich E, Payne BJ, Meyer A, Wells JG, Greene KD, Bright M, Bean NH, Blake PA. A Waterborne Outbreak in Missouri of Escherichia coli O157:H7 Associated with Bloody Diabrrhea and Death[J]. Ann Intern Med, 1992,117:812-819.
    51 Doyle MP. Escherichia coli O157:H7 and its Significance in Foods[J]. International Journal of Food Microbiology, 1991,12:289-302.
    52 MacDonald IAR, Gould IM, Curnow J. Epidemiology of infection due to Escherichia coli O157: A 3-year prospective study[J]. Epidemiol Infect, 1996,116:279-284.
    53 Bell BP, Goldoft M, Griffin PM, Davis MA, Gordon DC, Tarr PI, Bartleson CA, Lewis JH, Barrett TJ, Wells JG, Baron R, Kobayashi J. A Multistate outbreak of Escherichia coli O157:H7Associated Bloody Diarrhea and Hemolytic Uremic Syndrome from Hamburgers - The Washington Experience[J]. JAMA-J Am Med Assoc, 1994,272:1349-1353.
    54 Swerdlow DL, Griffin PM. Duration of faecal shedding of Escherichia coli O157:H7 among children in day-care centres[J]. Lancet, 1997,349:745-746.
    55 Renwick SA, Wilson JB, Clarke RC, Lior H, Borczyk AA, Spika J, Rahn K, McFadden K, Brouwer A, Copps A, Anderson NG, Alves D, Karmali MA. Evidence of Direct Transmission of Escherichia coli O157:H7 Infection Between Calves and a Human[J]. J Infect Dis, 1993, 168: 792-793.
    56 Armstrong GL, Hollingsworth J, Morris JG. Emerging foodborne pathogens: Escherichia coli O157:H7 as a model of entry of a new pathogen into the food supply of the developed world[J]. Epidemiologic Reviews, 1996,18:29-51.
    57 Nataro JP, Kaper JB. Diarrheagenic Escherichia coli. Clin Microbiol Rev 1998,11:142.
    58 Su CY, Brandt LJ. Escherichia coli O157:H7 Infection in Humans[J]. Ann Intern Med, 1995,123:698-714.
    59 Serna A, Boedeker EC. Pathogenesis and treatment of Shiga toxin-producing Escherichia coli infections[J]. Current Opinion in Gastroenterology, 2008,24:38-47.
    60 Gill CJ, Hamer DH, Lau J. Risk of hemolytic uremic syndrome from antibiotic treatment of Escherichia coli O157 : H7 colitis[J]. JAMA-J Am Med Assoc, 2002,288:3110-3111.
    61 Proulx F, Turgeon JP, Delage G, Lafleur L, Chicoine L. Randomized, Controlled Trial of Antibiotic Therapy for Escherichia coli O157:H7 Enteritis[J]. Journal of Pediatrics, 1992, 121: 299-303.
    62 Tazzari PL, Ricci F, Carnicelli D, Caprioli A, Tozzi AE, Rizzoni G, Conte R, Brigotti M. Flow cytometry detection of Shiga toxins in the blood from children with hemolytic uremic syndrome[J]. Cytometry Part B-Clinical Cytometry, 2004,61B:40-44.
    63 Zhao T, Doyle MP, Shere J, Garber L. Prevalence of Eenerohemorrhagic Escherichia coli O157:H7 in a Survey of Dairy Herds[J]. Applied and Environmental Microbiology, 1995, 61: 1290-1293.
    64 Hoey DEE, Currie C, Else RW, Nutikka A, Lingwood CA, Gally DL, Smith DGE. Expression of receptors for verotoxin 1 from Escherichia coli O157 on bovine intestinal epithelium[J]. Journal of Medical Microbiology, 2002,51:143-149.
    65 Pruimboom-Brees IM, Morgan TW, Ackermann MR, Nystrom ED, Samuel JE, Cornick NA, Moon HW. Cattle lack vascular receptors for Escherichia coli O157:H7 Shiga toxins[J]. Proc Natl Acad Sci USA, 2000,97:10325-10329.
    66 Gannon VPJ, Graham TA, King R, Michele P, Read S, Ziebell K, Johnson RP. Escherichia coli O157 : H7 infection in cows and calves in a beef cattle herd in Alberta, Canada[J]. EpidemiolInfect, 2002,129:163-172.
    67 Reinstein S, Fox JT, Shi X, Alam MJ, Nagaraja TG. Prevalence of Escherichia coli O157 : H7 in the American Bison[J]. Journal of Food Protection, 2007,70:2555-2560.
    68 Elder RO, Keen JE, Siragusa GR, Barkocy-Gallagher GA, Koohmaraie M, Laegreid WW. Correlation of enterohemorrhagic Escherichia coli O157 prevalence in feces, hides, and carcasses of beef cattle during processing[J]. Proc Natl Acad Sci USA, 2000,97:2999-3003.
    69 Beutin L, KnollmannSchanbacher G, Rietschel W, Seeger H. Animal reservoirs of Escherichia coli O157:H7[J]. Veterinary Record, 1996,139:70-71.
    70 Fegan N, Desmarchelier P. Shiga toxin-producing Escherichia coli in sheep and pre-slaughter lambs in eastern Australia[J]. Letters in Applied Microbiology, 1999,28:335-339.
    71 Heuvelink AE, van den Biggelaar F, de Boer E, Herbes RG, Melchers WJG, Huis In 'T Veld JHJ, Monnens LAH. Isolation and characterization of verocytotoxin-producing Escherichia coli O157 strains from Dutch cattle and sheep[J]. Journal of Clinical Microbiology, 1998, 36: 878- 882.
    72 Kudva IT, Hatfield PG, Hovde CJ. Escherichia coli O157:H7 in microbial flora of sheep[J]. Journal of Clinical Microbiology, 1996,34:431-433.
    73 Chapman PA, Siddons CA, Malo ATC, Harkin MA. A 1-year study of Escherichia coli O157 in cattle, sheep, pigs and poultry[J]. Epidemiol Infect, 1997,119:245-250.
    74 Chapman PA, Siddons CA, Manning J, Cheetham C. An outbreak of infection due to verocytotoxin-producing Escherichia coli O157 in four families: the influence of laboratory methods on the outcome of the investigation[J]. Epidemiol Infect, 1997,119:113-119.
    75 Trevena WB, Willshaw GA, Cheasty T, Wray C, Gallagher J. Vero cytotoxin-producing E. coli O157 infection associated with farms[J]. Lancet, 1996,347:60-61.
    76 Hancock DD, Besser TE, Rice DH, Ebel ED, Herriott DE, Carpenter LV. Multiple sources of Escherichia coli O157 in feedlots and dairy farms in the northwestern USA[J]. Preventive Veterinary Medicine, 1998,35:11-19.
    77 Rice DH, Hancock DD, Besser TE. Verotoxigenic Escherichia cioli O157 Colonization of wild Deer and Range Cattle[J]. Veterinary Record, 1995,137:524-524.
    78 Sargeant JM, Hafer DJ, Gillespie JR, Oberst RD, Flood SJA. Prevalence of Escherichia coli O157 : H7 in white-tailed deer sharing rangeland with cattle[J]. J Am Vet Med Assoc, 1999, 215:792-794.
    79 Huntington GB. Starch utilization by ruminants: From basics to the bunk[J]. J Anim Sci, 1997,75:852-867.
    80 Berg J, McAllister T, Bach S, Stilborn R, Hancock D, LeJeune J. Escherichia coli O157 : H7 excretion by commercial feedlot cattle fed either barley- or corn-based finishing diets[J]. Journal of Food Protection, 2004,67:666-671.
    81 Buchko SJ, Holley RA, Olson WO, Gannon VPJ, Veira DM. The effect of different grain diets onfecal shedding of Escherichia coli O157 : H7 by steers[J]. Journal of Food Protection, 2000, 63:1467-1474.
    82 Fox JT, Depenbusch BE, Drouillard JS, Nagaraja TG. Dry-rolled or steam-flaked grain-based diets and fecal shedding of Escherichia coli O157 in feedlot cattle[J]. J Anim Sci, 2007, 85: 1207-1212.
    83 Lim K, Mustapha A. Inhibition of Escherichia coli O157:H7, Listeria monocytogenes and Staphylococcus aureus on sliced roast beef by cetylpyridinium chloride and acidified sodium chloritev[J]. Food Microbiol, 2007,24:89-94.
    84 Hovde CJ, Austin PR, Cloud KA, Williams CJ, Hunt CW. Effect of cattle diet on Escherichia coli O157 : H7 acid resistance[J]. Applied and Environmental Microbiology, 1999, 65: 3233- 3235.
    85 Nelson KE, Pell AN, Doane PH, GinerChavez BI, Schofield P. Chemical and biological assays to evaluate bacterial inhibition by tannins[J]. J Chem Ecol, 1997,23:1175-1194.
    86 Wells JE, Berry ED, Varel VH. Effects of common forage phenolic acids on Escherichia coli O157 : H7 viability in bovine feces[J].Applied and Environmental Microbiology, 2005, 71: 7974- 7979.
    87 Shere JA, Bartlett KJ, Kaspar CW. Longitudinal study of Escherichia coli O157 : H7 dissemination on four dairy farms in Wisconsin[J]. Applied and Environmental Microbiology, 1998,64:1390-1399.
    88 Wang GD, Doyle MP. Survival of enterohemorrhagic Escherichia coli O157 : H7 in water[J]. Journal of Food Protection, 1998,61:662-667.
    89 LeJeune JT, Besser TE, Hancock DD. Cattle water troughs as reservoirs of Escherichia coli O157[J]. Applied and Environmental Microbiology, 2001,67:3053-3057.
    90 Duffy G. Verocytoxigenic Escherichia coli in animal faeces, manures and slurries[J]. Journal of Applied Microbiology, 2003,94:94S-103S.
    91 Rangarajan A, Pritts MP, Reiners S, Pedersen LH. Focusing food safety training based on current grower practices and farm scale[J]. Horttechnology, 2002,12:126-131.
    92 Fenlon DR, Ogden ID, Vinten A, Svoboda I. The fate of Escherichia coli and E. coli O157 in cattle slurry after application to land[J]. Journal of Applied Microbiology, 2000,88:149S-156S.
    93 Maule A. Survival of verocytotoxigenic Escherichia coli O157 in soil, water and on surfaces[J]. Journal of Applied Microbiology, 2000,88:71S-78S.
    94 Berry ED, Miller DN. Cattle feedlot soil moisture and manure content: II. Impact on Escherichia coli O157[J]. Journal of Environmental Quality, 2005,34:656-663.
    95 Rahn K, Renwick SA, Johnson RP, Wilson JB, Clarke RC, Alves D, McEwen S, Lior H, Spika J. Persistence of Escherichia coli O157:H7 in dairy cattle and the dairy farm environment[J]. Epidemiol Infect, 1997,119:251-259.
    96 Barkocy-Gallagher GA, Arthur TM, Siragusa GR, Keen JE, Elder RO, Laegreid WW, KoohmaraieM. Genotypic analyses of Escherichia coli O157 : H7 and O157 nonmotile isolates recovered from beef cattle and carcasses at processing plants in the midwestern states of the United States[J]. Applied and Environmental Microbiology, 2001,67:3810-3818.
    97 Fooks LJ, Fuller R, Gibson GR. Prebiotics, probiotics and human gut microbiology[J]. International Dairy Journal, 1999,9:53-61.
    98 Zhao T, Doyle MP, Harmon BG, Brown CA, Mueller POE, Parks AH. Reduction of carriage of enterohemorrhagic Escherichia coli O157 : H7 in cattle by inoculation with probiotic bacteria [J]. Journal of Clinical Microbiology 1998,36:641-647.
    99 Tabe ES, Oloya J, Doetkott DK, Bauer ML, Gibbs PS, Khaitsa ML. Comparative effect of direct-fed microbials on fecal shedding of Escherichia coli O157 : H7 and Salmonella in naturally infected feedlot cattle[J]. Journal of Food Protection ,2008,71:539-544.
    100 Younts-Dahl SM, Osborn GD, Galyean ML, Rivera JD, Loneragan GH, Brashears MM. Reduction of Escherichia coli O157 in finishing beef cattle by various doses of Lactobacillus acidophilus in direct-fed microbials[J]. Journal of Food Protection ,2005,68:6-10.
    101 Callaway TR, Elder RO, Keen JE, Anderson RC, Nisbet DJ. Forage feeding to reduce preharvest Escherichia coli populations in cattle, a review[J].Journal of Dairy Science ,2003, 86: 852-860.
    102 Sargeant JM, Amezcua MR, Rajic A, Waddell L. Pre-harvest interventions to reduce the shedding of E. coli O157 in the faeces of weaned domestic ruminants: A systematic review[J]. Zoonoses and Public Health,2007,54:260-277.
    103 Smith DJ, Oliver CE, Shelver WL, Caesar T, Anderson RC. Chlorate Metabolism in Pure Cultures of Escherichia coli O157:H7 Pretreated with either Nitrate or Chlorate[J]. Journal of Agricultural and Food Chemistry ,2009,57:10216-10224.
    104 Amani J, Mousavi SL, Rafati S, Salmanian AH. In silico analysis of chimeric espA, eae and tir fragments of Escherichia coli O157:H7 for oral immunogenic applications[J]. Theoretical Biology and Medical Modelling ,2009,6:28.
    105 Moxley RA, Smith DR, Luebbe M, Erickson GE, Klopfenstein TJ, Rogan D. Escherichia coli O157:H7 Vaccine Dose-Effect in Feedlot Cattle[J]. Foodborne Pathogens and Disease , 2009, 6: 879-884.
    106 Potter AA, Klashinsky S, Li YL, Frey E, Townsend H, Rogan D, Erickson G, Hinkley S, Klopfenstein T, Moxley RA, Smith DR, Finlay BB. Decreased shedding of Escherichia coli O157 : H7 by cattle following vaccination with type III secreted proteins[J]. Vaccine, 2004, 22: 362-369.
    107 Kudva IT, Jelacic S, Tarr PI, Youderian P, Hovde CJ. Biocontrol of Escherichia coli O157 with O157-specific bacteriophages[J]. Applied and Environmental Microbiology 1999, 65: 3767- 3773.
    108 Hagens S, Loessner MJ. Bacteriophage for Biocontrol of Foodborne Pathogens: Calculations and Considerations[J]. Current Pharmaceutical Biotechnology ,2010,11:58-68.
    109 Sheng HQ, Knecht HJ, Kudva IT, Hovde CJ. Application of bacteriophages to control intestinal Escherichia coli O157 : H7 levels in ruminants[J]. Applied and Environmental Microbiology , 2006,72:5359-5366.
    110 Duncan SH, Flint HJ, Stewart CS. Inhibitory activity of gut bacteria against Escherichia coli O157 mediated by dietary plant metabolites[J]. Fems Microbiology Letters 1998,164:283-288.
    111 Murinda SE, Roberts RF, Wilson RA. Evaluation of colicins for inhibitory activity against diarrheagenic Escherichia coli strains, including serotype O157:H7[J]. Applied and Environmental Microbiology ,1996, 62:3196-3202.
    112 Nobmann P, Smith A, Dunne J, Henehan G, Bourke P. The antimicrobial efficacy and structure activity relationship of novel carbohydrate fatty acid derivatives against Listeria spp. and food spoilage microorganisms[J]. International Journal of Food Microbiology ,2009,128:440-445.
    113 Shin SY, Bajpai VK, Kim HR, Kang SC. Antibacterial activity of eicosapentaenoic acid (EPA) against foodborne and food spoilage microorganisms[J]. Lwt-Food Science and Technology , 2007,40:1515-1519.
    114 Thormar H, Hilmarsson H. The role of microbicidal lipids in host defense against pathogens and their potential as therapeutic agents[J]. Chemistry and Physics of Lipids ,2007,150:1-11.
    115 Cunningham AS, Jelliffe DB, Jelliffe EFP. Breadst-Feeding and Health in the 1980s - A Global Epidemiologic Review[J]. Journal of Pediatrics ,1991,118:659-666.
    116 Isaacs CE, Litov RE, Thormar H. Antimicrobial Activity of Lipids Added to Human-Milk, Infant Formaula and Bovine Milk[J]. J Nutr Biochem ,1995,6:362-366.
    117 Sprong RC, Hulstein MFE, Van der Meer R. Bactericidal activities of milk lipids[J]. Antimicrobial Agents and Chemotherapy ,2001,45:1298-1301.
    118 Welsh JK, Skurrie IJ, May JT. Use of Semliki forest Virus to Identify Lipid Mediated Anti Viral Activity and Anti-Alpha-Virus Immunoglobulin-A in Human Milk[J]. Infection and Immunity ,1978,19:395-401.
    119 Thormar H, Isaacs CE, Brown HR, Barshatzky MR, Pessolano T. Inactivation of Enveloped Viruses and Killing of Cells by Fatty Acids and Monoglycerides[J]. Antimicrobial Agents and Chemotherapy ,1987,31:27-31.
    120 Bergsson G, Steingrimsson O, Thormar H. In vitro susceptibilities of Neisseria gonorrhoeae to fatty acids and monoglycerides[J].Antimicrobial Agents and Chemotherapy, 1999, 43:2790- 2792.
    121 Bergsson G, Steingrimsson O, Thormar H. Bactericidal effects of fatty acids and monoglycerides on Helicobacter pylori[J]. International Journal of Antimicrobial Agents , 2002, 20:258-262.
    122 Thormar H, Hilmarsson H, Bergsson G. Stable concentrated emulsions of the 1-monoglyceride of capric acid (Monocaprin) with microbicidal activities against the food-borne bacteria Campylobacter jejuni, Salmonella spp., and Escherichia coli[J]. Applied and Environmental Microbiology ,2006,72:522-526.
    123 Yoshida H, Miura S, Kishikawa H, Hirokawa M, Nakamizo H, Nakatsumi RC, Suzuki H, Saito H, Ishii H. Fatty acids enhance GRO/CINC-1 and interleukin-6 production in rat intestinal epithelial cells[J]. Journal of Nutrition ,2001,131:2943-2950.
    124 Hara Y, Miura S, Komoto S, Inamura T, Koseki S, Watanabe C, Hokari R, Tsuzuki Y, Ogino T, Nagata H, Hachimura S, Kaminogawa S, Ishii H. Exposure to fatty acids modulates interferon production by intraepithelial lymphocytes[J]. Immunol Lett ,2003,86:139-148.
    125 Imaeda H, Miura S, Serizawa H, Toda K, Ohkubo N, Kimura H, Yoshioka M, Tsuchiya M, Tso P. Influence of Fatty Acid Absorption on Bidirectional Release of Immunoglobulin A into Intestinal Lumen and Intestinal Lymph in rats[J]. Immunol Lett ,1993,38:253-258.
    126 Allen PC, Danforth H, Stitt PA. Effects of nutritionally balanced and stabilized flaxmeal-based diets on Eimeria tenella infections in chickens[J]. Poultry Science ,2000,79:489-492.
    127 Allen PC, Danforth HD. Effects of dietary supplementation with n-3 fatty acid ethyl esters on coccidiosis in chickens[J]. Poultry Science ,1998,77:1631-1635.
    128 Korver DR, Wakenell P, Klasing KC. Dietary fish oil or Lofrin, a 5-lipoxygenase inhibitor, decrease the growth-suppressing effects of coccidiosis in broiler chicks[J]. Poultry Science , 1997,76:1355-1363.
    129 Hristov AN, Ivan M, McAllister TA. In vitro effects of individual fatty acids on protozoal numbers and on fermentation products in ruminal fluid from cattle fed a high-concentrate, barley-based diet[J]. J Anim Sci ,2004,82:2693-2704.
    130 Matsumoto M, Kobayashi T, Takenaka A, Itabashi H. Defaunation Effects of Medium Chain Fatty Acids and Their Derivatives on Goat Rumen Protozoa[J]. Journal of General and Applied Microbiology ,1991,37:439-445.
    131 Dong Y, Bae HD, McAllister TA, Mathison GW, Cheng KJ. Lipid-induced depression of methane production and digestibility in the artificial rumen system[J]. Canadian Journal of Animal Science ,1997,77:269-278.
    132 Jordan E, Lovett DK, Hawkins M, Callan JJ, O'Mara FP. The effect of varying levels of coconut oil on intake, digestibility and methane output from continental cross beef heifers[J]. Animal Science ,2006,82:859-865.
    133 Lovett D, Lovell S, Stack L, Callan J, Finlay M, Conolly J, O'Mara FP. Effect of forage/concentrate ratio and dietary coconut oil level on methane output and performance of finishing beef heifers[J]. Livestock production science,2003: 135-146.
    134 Chaucheyras-Durand F, Madic J, Doudin F, Martin C. Biotic and Abiotic Factors Influencing In Vitro Growth of Escherichia coli O157:H7 in Ruminant Digestive Contents[J]. Appl Environ Microbiol ,2006,72:4136-4142.
    135 Jenkins TC, Bridges WC. Protection of fatty acids against ruminal biohydrogenation in cattle[J]. Eur J Lipid Sci Technol ,2007,109:778-789.
    136 Sukhija PS, Palmquist DL. Rapid Method for Determination of Total Fatty Acid Content and Composition of Feedstuffs and Feces[J]. Journal of Agricultural and Food Chemistry ,1988, 6: 202 -206.
    137 Shah MA, Mir PS, Aalhus JL, Basarab J, Okine EK. Effects of sunflower seed inclusion in finishing diets for steers on performance, carcass characteristics, muscle and adipose fatty acid composition and meat quality[J]. Canadian Journal of Animal Science ,2006,86:37-48.
    138 Hristov AN, Grandeen KL, Ropp JK, McGuire MA. Effect of sodium laurate on ruminal fermentation and utilization of ruminal ammonia nitrogen for milk protein synthesis in dairy cows[J]. Journal of Dairy Science ,2004,87:1820-1831.
    139 Wolin MJ. Volatile Fatty Acids and Inhibition of Escherichia coli Growth by Rumen Fluid[J]. Applied Microbiology ,1969,17:83.
    140 Rasmussen MA, Cray WC, Casey TA, Whipp SC. Rumen Contents as a Reservoir of Eenterohemorrhagic Escherichia coli[J]. Fems Microbiology Letters ,1993,114:79-84.
    141 McDonald MI, Graham I, Harvey KJ, Sinclair A. Antibacterial Activity of Hydrolyzed Linseed Oil and Linolenic Acid Against Methicilin Resistant Staphylococcus Aureus[J]. Lancet ,1981, 2: 1056-1056.
    142 Sun CQ, O'Connor CJ, Roberton AM. Antibacterial actions of fatty acids and monoglycerides against Helicobacter pylori[J]. Fems Immunology and Medical Microbiology ,2003,36:9-17.
    143 Hooper LV, Macpherson AJ. Immune adaptations that maintain homeostasis with the intestinal microbiota[J]. Nature Reviews Immunology ,2010,10:159-169.
    144 Tapping RI. Innate immune sensing and activation of cell surface Toll-like receptors[J]. Seminars in Immunology ,2009,21:175-184.
    145 Tezuka H, Ohteki T. Regulation of intestinal homeostasis by dendritic cells[J]. Immunological Reviews ,2010,234:247-258.
    146 Brandtzaeg P. Mucosal Immunity: Induction, Dissemination, and Effector Functions[J]. Scandinavian Journal of Immunology ,2009,70:505-515.
    147 Fujihashi K, Kiyono H. Mucosal immunosenescence: new developments and vaccines to control infectious diseases[J]. Trends in Immunology ,2009,30:334-343.
    148 Ferguson A, Humphreys KA, Croft NM. Technical Report - Results of Immunological Tests on Fecal Extracts are Likely to be Extremely Misleading[J].Clinical and ExperimentalImmunology ,1995,99:70-75.
    149 Scholljegerdes E, Kronberg S. Influence of level of supplemental whole flaxseed on forage intake and site and extent of digestion in beef heifers consuming native grass hay[J]. J Anim Sci ,2008,86:2310-2320.
    150 Kucuk O, Hess BW, Rule DC. Soybean oil supplementation of a high-concentrate diet does not affect site and extent of organic matter, starch, neutral detergent fiber, or nitrogen digestion, but influences both ruminal metabolism and intestinal flow of fatty acids in limit-fed lambs[J]. J Anim Sci ,2004,82:2985-2994.
    151 Loor JJ, Ueda K, Ferlay A, Chilliard Y, Doreau M. Biohydrogenation, duodenal flow, and intestinal digestibility of trans fatty acids and conjugated linoleic acids in response to dietary forage : concentrate ratio and linseed oil in dairy cows[J]. Journal of Dairy Science, 2004, 87: 2472-2485.
    152 Wu Z, Ohajuruka OA, Palmquist DL. Ruminal Synthesis, Biohydrogenation, and Digestibility of Fatty Acids by Dairy Cows[J]. Journal of Dairy Science ,1991,74:3025-3034.
    153 Belury MA. Dietary conjugated linoleic acid in health: Physiological effects and mechanisms of action[J]. Annual Review of Nutrition ,2002,22:505-531.
    154 Calder PC. N-3 polyunsaturated fatty acids and cytokine production in health and disease[J]. Ann Nutr Metab ,1997,41:203-234.
    155 Lin MT, Hsu CS, Yeh SL, Yeh CL, Chang KJ, Lee PH, Chen WJ. Effects of omega-3 fatty acids on leukocyte Th1l/Th2 cytokine and integrin expression in rats with gut-derived sepsis[J]. Nutrition ,2007,23:179-186.
    156 Canadian Grain Commission. http://www.grainscanada.gc.ca/index-eng.htm
    157 Daun JK, Przybylski R. Environmental effects on the composition of four Canadian flax cultivars. North Dakota State Univ, Flax Inst: Fargo,2000:80-91.
    158 Bartle SJ, Preston RL, Miller MF. Dietary Energy-Source anf Density - Effects of Roughage Source, Roughage Equivalent, Tallow Level, anf Steer Type on Feedlot Perpormance and Carcass Characteristics[J]. J Anim Sci ,1994,72:1943-1953.
    159 Brandt RT, Kuhl GL, Campbell RE, Kastner CL, Stroda SL. Effects of Steam-Flaked Sorghum Grain or Corn and Supplemental Fat on Feedlot Performance, Carcass Traits, Longissimus Composition, and Sensory Propeities of Steers[J]. J Anim Sci ,1992,70:343-348.
    160 Krehbiel CR, McCoy RA, Stock RA, Klopfenstein TJ, Shain DH, Huffman RP. Influence of Grain Type, Tallow Level, and Tallow Feeding System on Feedlot Cattle Performance[J]. J Anim Sci ,1995, 73:2916-2921.
    161冯仰廉.反刍动物营养学[M].北京:科学出版社,2004.409-411.
    162 Ashes JR, Siebert BD, Gulati SK, Cuthbertson AZ, Scott TW. Incorporation of N-3 Fatty-Acidsof Fish oil into Tissue and Serum Lipids of Ruminants[J]. Lipids ,1992,27:629-631.
    163 Marchell.Ja, Hale WH, Dryden FD. Bovine Serum Lipids .4. Influence of Added Saturated and Unsaturated Fat to Ration[J]. J Anim Sci ,1972,35:611.
    164 Farran TB, Reinhardt CD, Blasi DA, Minton JE, Elsasser TH, Higgins JJ, Drouillard JS. Source of dietary lipid may modify the immune response in stressed feeder cattle[J]. J Anim Sci ,2008,86:1382-1394.
    165 Raes K, Haak L, Balcaen A, Claeys E, Demeyer D, De Smet S. Effect of linseed feeding at similar linoleic acid levels on the fatty acid composition of double-muscled Belgian Blue young bulls[J]. Meat Sci ,2004,66:307-315.
    166 Maddock TD, Bauer ML, Koch KB, Anderson VL, Maddock RJ, Barcelo-Cobijn G, Murphy EJ, Lardy GP. Effect of processing flax in beef feedlot diets on performance, carcass characteristics, and trained sensory panel ratings[J]. J Anim Sci ,2006,84:1544-1551.
    167 Benjamin MM, Datta AR. Acid Tolerance of Enterohemorrhagic Escherichia coli[J]. Applied and Environmental Microbiology ,1995,61:1669-1672.
    168 Marounek M, Skrivanova E, Rada V. Susceptibility of Escherichia coli to C2-C18 fatty acids[J]. Folia Microbiologica ,2003,48:731-735.
    169 Kodicek E. The Effect of Unsaturated Fatty Acids on Gram-Positive Bacteria[J]. Symposia of the Society for Experimental Biology ,1949,3:217-232.
    170 Fuller R, Moore JH. The Inhibition of the Growth of Clostridium welchii by Lipids Isolated from the Contents of the Small Intestine of the Pig[J]. J Gen Microbiol ,1967,46:23-41.
    171 Cao Hoang L, Marechal PA, Le-Thanh M, Gervais P. Synergistic action of rapid chilling and nisin on the inactivation of Escherichia coli[J]. Applied Microbiology and Biotechnology, 2008, 79:105-109.
    172 Jordan E, Lovett DK, Monahan FJ, Callan J, Flynn B, O'Mara FP. Effect of refined coconut oil or copra meal on methane output and on intake and performance of beef heffers[J]. J Anim Sci ,2006,84:162-170.
    173秦为淋.应用气相色谱测定瘤胃挥发性脂肪酸方法的改进[J].南京农学院学报,1982,(4):111-115.
    174冯宗慈.通过比色法测定瘤胃液氨氮含量方法的改进[J].内蒙古畜牧科学,1993,(4):40-41.
    175 Dohme F, Machmuller A, Wasserfallen A, Kreuzer M. Ruminal methanogenesis as influenced by individual fatty acids supplemented to complete ruminant diets[J]. Letters in Applied Microbiology ,2001,32:47-51.
    176 Machmuller A, Kreuzer M. Methane suppression by coconut oil and associated effects on nutrient and energy balance in sheep[J]. Canadian Journal of Animal Science ,1999,79:65-72.
    177 Yabuuchi Y, Matsushita Y, Otsuka H, Fukamachi K, Kobayashi Y. Effects of supplemental lauric acid-rich oils in high-grain diet on in vitro rumen fermentation[J]. Animal Science Journal ,2006,77:300-307.
    178 Perez-Cano FJ, Ramirez-Santana C, Molero-Luis M, Castell M, Rivero M, Castellote C, Franch A. Mucosal IgA increase in rats by continuous CLA feeding during suckling and early infancy [J]. Journal of Lipid Research ,2009,50:467-476.
    179 Kronberg SL, Barcelo-Coblijn G, Shin J, Lee K, Murphy EJ. Bovine muscle n-3 fatty acid content is increased with flaxseed feeding[J]. Lipids ,2006,41:1059-1068.
    180 Montgomery SP, Drouillard JS, Nagaraja TG, Titgemeyer EC, Sindt JJ. Effects of supplemental fat source on nutrient digestion and ruminal fermentation in steers[J]. J Anim Sci , 2008, 86: 640-650.
    181 Machmuller A, Ossowski DA, Wanner M, Kreuzer M. Potential of various fatty feeds to reduce methane release from rumen fermentation in vitro[J]. Animal Feed Science and Technology , 1998 ,71:117-130.
    182 Dohme F, Machmuller A, Estermann BL, Pfister P, Wasserfallen A, Kreuzer M. The role of the rumen ciliate protozoa for methane suppression caused by coconut oil[J]. Letters in Applied Microbiology ,1999,29:187-192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700