用户名: 密码: 验证码:
中间锦鸡儿水分吸收、蒸腾耗水特征与生态水文效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在干旱半干旱地区,水分成为制约植物生长的主要限制因子。因此准确探明植物的吸收、耗水机制以及由此产生的生态水文效应对于植被的合理建植、科学管理,有着重要的指导意义。本研究,选择广泛分布于蒙古高原荒漠化草原区和黄土高原北部典型草原区的防风固沙植物中间锦鸡儿作为研究对象。在总结前人的工作基础上,采用了Granier热扩散探针法和稳定性同位素示踪法,分别以风沙土基质和黄绵土-黄土基质上生长的中间锦鸡儿为例对中间锦鸡儿的水分吸收方式、树干液流特征、蒸腾耗水量、群落特征及其水分利用状况进行了详细的调查分析,在阐明中间锦鸡儿耐旱适应机理的同时,分析了浑河流域中间锦鸡儿灌丛的水分收支状况。本研究在全面调查的基础上,将研究区选择在了毛乌素沙地腹地(行政区划位于乌审旗)和黄土丘陵沟壑区的浑河流域。结果如下:
     1中间锦鸡儿水分吸收特点
     1)中间锦鸡儿的根系形态可塑性强,可以适应不同基质的土壤含水量变化。风沙土基质中间锦鸡儿根系形态构型特点是:主根扎根较浅,侧根和吸收根(根径<1mm)主要分布在10-30cm土层中,数量占根系总量的72.2%,侧根主要以水平生长为主;黄绵土-黄土基质中间锦鸡儿根系形态构型特点是:主根扎根很深,主根直径随着土壤深度的增加逐渐减小;侧根和吸收根(根径<1mm)的数量也随土壤深度的增加呈下降趋势。侧根和吸收根(根径<1mm)主要分布于0-70cm的土层中,其中O-50cm土层中的侧根和吸收根的数量占到根系总数的91.7%。
     2)水力提升现象:中间锦鸡儿全天具有水力提升现象,但是在18:00到次日凌晨2:00这段时间的水力提升现象对植物的影响最大;中间锦鸡儿的水力提升现象,除了可以满足自身水分需要外还可以为邻近植物提供水分,提高了自身及邻近非水力提升植物的竞争力;根据实验,计算得出中间锦鸡儿幼苗提升水量为1.33gH2O·d-1·株-1。
     3)两种基质上生长的中间锦鸡儿有着不同的水分吸收方式。黄绵土-黄土基质上生长的中间锦鸡儿即可以通过主根利用深层土壤水,也可以利用表层发达的吸收根获取降水时所补充的浅层土壤水。风沙土基质上生长的中间锦鸡儿,其水分主要来源于大气降水所补充的浅层土壤水,并依靠侧根的水平生长来增加水分的吸收面积。
     2中间锦鸡儿树干液流特征
     1)中间锦鸡儿树干液流速率日变化呈明显的“几”字型宽峰曲线,没有出现“午休”现象。全天树干液流速率变化可以划分为:液流迅速上升、液流相对稳定、液流迅速下降和夜间液流四个阶段。影响中间锦鸡儿树干液流速率日变化的环境因子有太阳辐射、空气温度、水汽压亏缺、大气相对湿度、土壤温度和风速,除了大气相对湿度与树干液流速率呈显著的负相关关系以外,其余环境因子均与树干液流速率呈显著的正相关关系。
     2)中间锦鸡儿树干液流速率日变化同太阳辐射、水汽压亏缺的变化并不完全同步,存在时滞现象。风沙土基质上生长的中间锦鸡儿,其树干液流速率的变化要滞后于太阳辐射60min,提前于水汽压亏缺90min。黄绵土-黄土基质5月份、7月份中间锦鸡儿树干液流变化要滞后于太阳辐射30min,9月份没有出现滞后;5月份、9月份的水汽压亏缺滞后于中间锦鸡儿树干液流变化的时间均为150min,7月份滞后时间为120min。
     3)不同月份中间锦鸡儿的树干液流速率和液流量存在差异。5月份中间锦鸡儿在的树干液流速率(0.05kg·h-1)和液流量(36.75kgH2O·株-1)最低,7月份树干液流速率(0.08kg·h-1)和液流量(62.52kgH2O·株-1)均达到了整个生长季的最大值,8月、9月树干液流速率和液流量开始下降但整体保持在一个较高的水平。中间锦鸡儿树干液流速率季节变化与水汽压亏缺、太阳辐射、空气温度和风速呈正相关关系,与大气相对湿度呈负相关关系。
     4)中间锦鸡儿具有夜间水分补偿现象;中间锦鸡儿夜间仍然存在着树干液流变化,与白天树干液流相比,变化比较平缓,波动较少,液流量明显低于白天的液流量,中间锦鸡儿的夜间液流现象,是在补充白天因强烈蒸腾而导致的自身水分亏缺,而且不同月份的中间锦鸡儿夜间树干液流速率存在差异。
     5)不同天气条件下中间锦鸡儿树干液流变化存在差异,而且影响树干液流的环境因子也不同。但是,太阳辐射始终是影响中间锦鸡儿树干液流的主要环境因子。
     3中间锦鸡儿整株丛蒸腾耗水特征
     在利用树干液流计算中间锦鸡儿整株丛蒸腾耗水量时,要剔除夜间树干液流的数据。中间锦鸡儿整株丛蒸腾速率日变化规律呈明显的“几”字型宽峰曲线,没有出现“午休”现象;中间锦鸡儿的整株丛蒸腾速率季节变化规律呈现“抛物线”状,7月份中间锦鸡儿的蒸腾耗水量最高,5月份最低,9月份虽然进入中间锦鸡儿生长的后期,但是仍然具有较高的蒸腾耗水量。不同天气情况下中间锦鸡儿的蒸腾耗水量存在差异,晴天的蒸腾耗水量要明显高于阴天的蒸腾耗水量。
     4中间锦鸡儿灌丛蒸腾耗水量与生态水文效应
     1)中间锦鸡儿灌丛7月份的蒸腾耗水量最高。黄绵土-黄土基质中间锦鸡儿灌丛整个生长季的蒸腾耗水量5月份最低(19.53mm),7月份最高(45.65mm),9月份中间锦鸡儿虽然进入生长后期,但是群落的蒸腾耗水量仍然保持较高水平(27.6mm),整个生长季变化规律呈“抛物线”状。
     2)中间锦鸡儿灌丛水分收支平衡,在理想的状态下,除生长中期的7月份灌丛水分出现盈余以外,生长初期的5月份和生长后期的9月份灌丛水分均不同程度的出现亏缺。说明,仅依靠当期大气降水补充到土壤中的水分无法满足中间锦鸡儿灌丛水分需求,植物仍需要从土壤中获取大量的水分,进而加剧了土壤水分亏缺现象的出现。
     3)中间锦鸡儿灌丛生态水文效应:①中间锦鸡儿灌丛各月份均有土壤干层现象的出现,多数情况下土壤含水量处于凋萎湿度以下,土壤水分极度匮乏。②中间锦鸡儿灌丛内外的土壤含水量存在明显差异,灌丛外没有明显的土壤干化现象而灌丛内的土壤干化现象则较为明显。③从中间锦鸡儿灌丛与毗邻其它群落土壤水分的比较中,可以看出,中间锦鸡儿灌丛各层土壤含水量均低于其他群落,整体呈下降趋势,存在明显的土壤干层。80cm以下土层的土壤含水量低于凋萎湿度,土壤水分极度匮乏,说明中间锦鸡儿更容易造成土壤干层现象的出现。④中间锦鸡儿灌丛与其他群落相比,土壤水库的调节能力较差,灌丛土壤水库88.53%的调节能力持久性地丧失。中间锦鸡儿灌丛土壤水分的交换深度在80-100cm之间,100cm以下的土壤水分无法进行有效的水分交换,土壤干层现象无法得到缓解。
     4)浑河流域中间锦鸡儿灌丛生长期水分收支平衡状况,在仅依靠大气降水的情况下,除7月份中间锦鸡儿灌丛存在26.9mm的水分盈余以外。5、9月份均有不同程度的水分亏缺现象,5月份水分亏缺8.58mm、9月份亏缺2.8mm。
In Arid and Semi-arid Regions, water becomes the main factor to constrain plant growth. So to calculate accuvelocityly the absorption and water deprivation of plant and its eco-hydrological effects has the guiding significance to the rational planting and scientific management of plant. In this research, we choose Caragana intermedia as the object, which is an excellent wind-breaking and sand-fixing shrub species widely distributed in the Desert-steppe of Mongolian Plateau and the typical steppe region of northern Loess Plateau. On the basis of predecessors' work and the adoption of advanced Granier's thermal dissipation probe method and stable isotope technique, we have a detailed analysis on Caragana intermedia in sand soil and in loess about the water absorption, characteristics of stem sap flow, transpiration water consumption, community characteristics and water utilization. While clarifying the drought resistance mechanism of Caragana intermedia, we have an analysis on the water balance condition of Caragana intermedia community in the Hunhe river basin. On the basis of general investigation, we choose Maowusu sandlot and the Hunhe river basin in the hilly area of Loess Plateau as the research area. The results are as follows:
     1. Water absorption characteristic of Caragana intermedia
     1) The root system of Caragana intermedia is quite plastic, which can help the plant to adapt to different water capacity in different ground substances. The characteristic of root morphology of Caragana intermedia in sand soil is as below: the rooting depth of main root is shallow; the branch roots and absorbing roots (diameter less than lmm) mainly distribute in 10-30cm soil layer, which account for 72.2% of the total amount of roots, and the branch roots mainly grow horizontally. The characteristic of root morphology of Caragana intermedia in sand loess is different:the main root takes root deep, and its diameter becomes smaller as it goes deeper; the number of branch roots and absorbing roots (diameter less than 1mm) decreases as the depths grows. The branch roots and absorbing roots mainly distribute in the 0-70 cm soil layer and the number of those in the 0-50 cm soil layer account for 91.7% of the total amount of roots.
     2) There is hydraulic lift phenomenon in Caragana intermedia, but it is the most important effect plant between 18:00 and 2:00 the next day. This phenomenon can not only satisfy its own needs for water, but also provide water for plants nearby, thus improving the competitive strength of Caragana intermedia and other nearby plants without hydraulic lift. Experiments show that the amount of water lifted by young plant of Caragana intermedia is 1.33g per plant per day.
     3) There are different ways of water absorption for Caragana intermedia in two different ground substances. Caragana intermedia growing in sand loess can absorb water in deep soil with main root and also water in shallow layer of soil with its rich absorbing roots. Caragana intermedia in sand soil mainly makes use of water in the shallow surface and increases absorbing area by its branch roots that grow horizontally.
     2. Sap flow characteristics of Caragana intermedia
     1) The daily variation of sap flow velocity of Caragana intermedia is wide-peak curve, and there is no obvious phenomenon of "nap". It can be divided into four stages:rapid ascending period, stationary period, rapid descending period and nighttime period. The variation is mainly influenced by factors such as solar radiation, air temperature, vapor pressure deficit, relative air humidity, soil temperature and wind speed. Among these factors, relative air humidity has the obvious negative correlation with sap flow velocity, while all others have obvious positive correlation.
     2) The daily variation of sap flow velocity of Caragana intermedia does not keep pace with solar radiation, and vapor pressure deficit, but there is time-delay. The sap flow velocity variation of Caragana intermedia in sand soil is 60 minutes behind solar radiation and 90 minutes before vapor pressure deficit. The sap flow variation of Caragana intermedia in May and July in loess is 30 minutes behind solar radiation, and there is no time delay in September. In May and September, the vapor pressure deficit is 150 minutes behind the sap flow variation of Caragana intermedia, and the time delay in July is 120 minutes.
     3) There is a difference between sap flow velocity and sap flow capacity in Caragana intermedia. In May, the sap flow velocity (0.05kg·h-1), and the sap flow capacity (36.75kgH2O·strain-1) are the lowest, while that in July reach the highest in the grow season with the sap flow velocity (0.08kg·h-1) and the sap flow capacity (62.52kgH2O·strain-1). In August and September, the sap flow velocity and sap flow capacity begin to drop but still keep at a relatively high level. The seasonal sap flow velocity variation of Caragana intermedia has positive correlation with vapor pressure deficit, solar radiation, air temperature and wind speed while it has negative correlation with relative air humidity.
     4) There is nighttime water compensation in Caragana intermedia. Nighttime sap flow still exits in Caragana intermedia, but compared to daytime sap flow,the rate variation at night is slow, the curve is relatively smooth and the amount of sap flow is obviously lower. This is to compensate for the water deficit caused by strong transpiration during the day, and the nighttime sap flow rate in different months are different.
     5) The sap flow of Caragana intermedia varies in different weather conditions, and the environmental factors that affect the sap flow are different. But solar radiation is always the main environmental factor that affects the sap flow of Caragana intermedia.
     3. The transpiration water consumption characteristics of Caragana intermedia
     When calculating the transpiration water consumption by way of sap flow, it is necessary to get rid of the sap flow at night. The seasonal variation curve of transpiration of single Caragana intermedia is paracurve. The transpiration is the highest in July, and the lowest in May. In September, the transpiration still keeps at a high level, even though it has reached the later period of growth. Besides, the transpiration is different in different weather conditions, in which it is higher in clear days than in cloudy days.
     4. The transpiration water consumption of Caragana intermedia shrub and its eco-hydrological effects
     1) The transpiration of Caragana intermedia community is the highest in July. The transpiration of Caragana intermedia community in sand loess during the whole growth period reaches the lowest in May (19.53mm) and the highest in July (45.65mm). In September, the transpiration still keeps at a high level (27.6mm), even though it has reached the later period of growth. The seasonal variation curve of transpiration of Caragana intermedia is paracurve.
     2) There is a water balance in Caragana intermedia community. In an ideal state, there is a water surplus in July (middle period of growth); while there is a water deficit in varying degrees in May (early period of growth) and September (later period of growth). This explains that precipitation can not satisfy the water need of Caragana intermedia community, and the plant has to absorb water from the soil, which accelevelocitys the water deficit in the soil.
     3) The eco-hydrological effects of Caragana intermedia community.①There is a phenomenon of dry layer of soil every month in the Caragana intermedia community. The water content in the soil is below the point of wilting moisture most of the time. The soil is extremely lack of water.②There is an obvious difference in soil water content in and outside the Caragana intermedia community. The dry layer of soil is quite obvious in the Caragana intermedia community, but it is not the case outside the Caragana intermedia community.③Compared to other plant communities nearby, the water content in different layers of soil in the Caragana intermedia community is lower, and there is obvious dry layer of soil. The water content below 80cm is below the point of wilting moisture, and there is extreme lack of water in the soil, which means Caragana intermedia is more likely to cause dry layer of soil.④Compared to other plant communities, the soil reservoir in the Caragana intermedia community lacks the ability of the self-control, which means 88.53% of ability is permanently lost. The water exchange depth in the Caragana intermedia community is 80-100cm, below which the water can not exchange effectively and the problem of day layer of soil can not be solved.
     4) The water budget of Caragana intermedia community during growth period in the Hunhe River basin is as follows:if only depending on precipitation, there is a water surplus of 26.9mm in July, and there is a water deficit in varying degrees in May and September, which are 8.58mm and 2.8mm respectively.
引文
[1]王九龄.西部干旱半干旱地区生态建设中的造林问题.世界林业研究,2000,13(4):7-10.
    [2]王飞,李锐,谢永生.历史时期黄土高原生态环境建设分析.水土保持研究,2001,8(2):138-142.
    [3]吕桂英.水分对作物生长发育和产品质量的影响.中国种业,2007,(3):61-62.
    [4]Feddes R A, Rijtema P E. Water With drawal by Plant Roots. Journal of Hydrology,1972, (17):33-59.
    [5]张岁岐,山仑.根系吸水机理研究进展.应用与环境生物学报,2001,7(4):396-402.
    [6]Sanderson J. Water uptake by different regions of the barley root. JExp Bot,1983,34:240-253.
    [7]Frensch J, Hsiao TC, Steudle E. Water and solute transport along developing maize roots. Planta,1996,198: 348-355.
    [8]North GB, Nobel PS. Changes in hydraulic conductivity and anatomy caused by drying and rewetting roots of A gave deserti (Agavaceae). Ameri JBot,1991,7:906-915.
    [9]包海龙,贺晓,赵宏宇,等.毛乌素沙地油蒿群落毛细根分布特点及与土壤水分的关系.干旱区资源与环境,2009,(4):175-178.
    [10]成向荣,黄明斌,邵明安,等.紫花苜蓿和短花针茅根系分布与土壤水分研究.草地学报,2008,16(2):170-175.
    [11]Xiaoli Cheng, Shuqing An, Bo Li, et al. Summer rain pulse size and rainwater uptake by three dominant desert plants in a desertified grassland ecosystem in northwestern China. Plant Ecology,2006,184(1):1-12.
    [12]徐贵青,李彦.共生条件下三种荒漠灌木的根系分布特征及其对降水的响应.生态学报,2009,29(1):130-137.
    [13]严小龙,廖红,年海.根系生物学原理与应用.北京:科学出版社,2007,72.
    [14]Linkohr B I, Williamson L C, Fitter A H, et al. Nitrate and phosphate availability and distribution have different effects on root system architecture of A rabidopsis. Plant Journal,2002,29:751-760.
    [15]Jose L B, Alfredo C R, Luis H E. The role of nutrient availability in regulating root architecture. Current Opinion in Plant Biology,2003,6(3):280-287.
    [16]杨小林,张希明,李义玲,等.塔克拉玛干沙漠腹地3种植物根系构型及其生境适应策略.植物生态学报,2008,32(6):1268-1276.
    [17]李海涛.白皮沙拐枣(Caligonum leucocladum)根系与环境关系的初步研究.新疆农业大学学报,1996,
    (1):58-63,74.
    [18]邵明安,杨文治,李玉山.土壤-植物-大气连统体中的水流阻力及相对重要性.水利学报,1986,(9):8-14.
    [19]Peterson CA. Exodermis Casparian bands:their significance for ion uptake in roots. Plant Physiol,1988, 72:204-208.
    [20]郭庆荣,张秉刚,钟继洪.植物根系吸收土壤水分的研究综述.土壤与环境,1996,5(3):173-179.
    [21]崔晓阳,宋金凤,屈明华.土壤水势对水曲柳幼苗水分生态的影响.应用生态学报,2004,15(12):2237-2244.
    [22]刘晚苟,山仑.土壤机械阻力对玉米根系导水率的影响.水利学报,2004,(4):114-117,122.
    [23]Herkelrath WN, Miller EE, Gardner WR Water uptake by plants. II. The roots contact model. Soil Sci Soc Am J,1977,41:1039-1043.
    [24]Taylor H E, Willatt ST. Shrinkage of soybean roots. Agron J,1983,75:818-820.
    [25]张日升,刘敏.半干旱地区主要造林树种蒸腾耗水特点的研究进展,防护林科技,2008,(1):69-71.
    [26]陈永金,陈亚宁,薛燕.干旱区植物耗水量的研究与进展.干旱区资源与环境,2004,18(6):152-158.
    [27]Gebauer R L E, Schwinning S, Ehleringer J R. Inter specific competition and resource pulse utilization in a cold desert community Ecology,2002,83(9):2602-2616.
    [28]Burgess S SO, Adams M A, Turner N C, et al. The redistribution of soil water by tree root systems. Oecologia,1998,115:306-311.
    [29]Smith D M, Jackson N A, Roberts J M, el al. Reverse flow of sap in tree roots and downward siphoning of water by Gillea robusta. Funct. Ecol,1999,13:256-264.
    [30]Magistad OC, Breazeale J F. Plant and soil relations at and below the wilting percentage. Ariz. Agric.Exp.Stri. Tech.Bull,1929,15.
    [31]Breazeale J F, Maintenance of moisture-equilibrium And nutrition of Plants at and below the wilting percentage, Ariz, Agric ExiP Stn Bull,1930,29:137-177.
    [32]Hunier A S, Kelley O I, The extension of Plant roots into dry soil. Plant Phyrsio,1946.121:445-451.
    [33]Breazele E L, Mcgeorge W T, Breazeale J F. Moisture absorption by plants from an atmosphere of high humidity. Plant Physiol,1950,25:413-419.
    [34]Breazele E L, Mcgeorge W T, Breazeale J F. Water absorption and transpiration by leaves. Soil Sci,1951,72: 239-244.
    [35]Haines FM, The absorption of water by leaves in an atmosphere of high humidity, JExp, Bot,1952,3:
    95-102.
    [36]Hohn K. Untersuehungen uber das wasserdampfaufnahme und wasserdampfabgabe ver mogen hoerer Pflanzen. Beitr BiolPflanzen,1954,30:159.
    [37]Richards J H, Caldwell M M. Hydraulic lift:Substantial nocturnal water transports between soil layers by Artemisia tridentate roots. Oecologia,1987,73:486-489.
    [38]Caldwell M M, Richards J H. Hydraulic lift:water efflux from upper roots improves effectiveness of water up take by deep roots. Oecologia,1989,79:1-5.
    [39]Xu X, Bland W L. Reverse water flow in sorghum roots. Agronomy Journal,1993,85:384-388.
    [40]Wan CG, Sosebee RE, Mcmichael BL. Does hydraulic lift existin shallow-rooted species? A quantitative examination with a half-shrub Gutierrezia sarothrae. Plant and Soil,1993,153:11-17.
    [41]Xu X, Bland W L. Resumption of water up take by sorghum after water stress. Agronomy Journal,1993,85: 697-702.
    [42]Callaway RM, Delucia E H, Moore D, et al. Competition and facilitation:contrasting effects of Artem-isia tridentate on desert vs. montane pines. Ecology,1996,77:2130-2141.
    [43]Vetterlein D, Marschner H, Hom R. Microtensiometer technique for in situ measurement of soil matric potential and root water extraction from a sandy soil. Plant and Soil,1993,149(2):263-274.
    [44]Caldwell MM. Water parasitism stemming from hydraulic lift:a quantitative test in the field. Israel Journal of Botany,1990,39:395-402.
    [45]Wan CH G, Wenwei X, Ronald ES, et al. Hydraulic lift in drought-tolerant and susceplible maize hybrids. Plant and Soil,2000,219:117-126.
    [46]樊小林,李玲,张林刚.根系水力提升作用的土壤水分变异及养分有效性Ⅲ.土壤剖面中隔水层对作物吸收养分和土壤养分有效性的效应.华南农业大学学报,1998,19(3):72-77.
    [47]Passioura J B. Water transport in and to. Annual Review of Plant Physiology and Plant Molecular Biology, 1988,39:245-265.
    [48]Dawson TE. Determining water use by trees and forests from isotopic, energy balance and transpiration analysis:The roles of tree size and hydraulic lift. Tree Physiology,1996,16:263-272.
    [49]Volk GM. Significance of moisture translocation from soil zones of low moisture tension to zones of high tension by plant roots. Journal of the American Society Agronomy,1947,39:93-97.
    [50]Molz F J, Perterson C M. Water transport from root to soil. Agron J,1976,62:901-904.
    [51]Yoder C K, Nowak R S. Hydraulic lift among native plant species in the Mojave Desert. Plant and soil,2000, 219:117-126.
    [52]刘美珍,孙建新,蒋高明,等.植物-土壤系统中水分再分配作用研究进展.生态学报,2006,26(5):1550-1557.
    [53]薛小红,牛得草,傅华,等.沙打旺根系水力提升作用及其机理研究.西北植物学报,2007,27(11):129-134.
    [54]Schipper B, Schroth M N, Hildebrand D C. Emanation of water from under ground plant parts. Plant Soil, 1967,27:81-91.
    [55]Canadell J, Jaekson RB, Ehleringer J R, Maximum rooting depth of vegetation types at the global seale. Oecologia,1996,108:583-595.
    [56]Schulze E D, Caldwell M M, Canadell J, et al. Downward flux of water through roots (i.e.inverse hydraulic lift) in dry Kalahari sands. Oecologia,1998,115:460-462.
    [57]Baker J M, Van Bavel C H M. Water transfer through cotton plants connecting soil regions of differing water potential. Agron.J,1988,80:993-997.
    [58]Ishikawa C M, Bledsoe C S. Seasonal and diurnal patterns of soil water potential in the rhizosphere of blue oaks:evidence for hydraulic lift. Oecologia,2000,125:459-465.
    [59]Corak S J, Blevins D G, Pallardy S G. Water transfer in an alfalfa/maize association. Plant Physical,1987,84: 582-586.
    [60]Jensen R D, Taylor SA, Wiebe H H. Negarive transport and resistance to water flow through plant. Plant Physical,1961,36:633-638.
    [61]管秀娟,赵世伟.植物根水倒流的证据及意义.西北植物学报,1999,19(4):746-754.
    [62]阿拉木萨,蒋德明,骆永明.植物根系水力提升作用研究进展综述.干旱区研究,2008,25(2):236-241.
    [63]陈亚明,傅华,张荣,等.根-土界面水分再分配研究现状与展望.生态学报,2004,24(5):1040-1047.
    [64]何兴东,高玉葆.干旱区水力提升的生态作用.生态学报,2003,23(5):996-1002.
    [65]樊小林,李生秀.植物根系的水力提升作用.西北农业大学学报,1997,25(5):75-81.
    [66]李唯,倪郁,胡自治,等.植物根系水力提升作用研究述评.西北植物学报,2003,23(6):1056-1062.
    [67]樊小林,石卫国,曹新华,等.根系水力提升作用的土壤水分变异及养分有效性Ⅰ.谷子根系水力提升作用及根系吸收对土壤水分变异的影响.水土保持学报,1995,9(4):36-42.
    [68]何维明,张新时.水分共享在毛乌素沙地4种灌木根系中的存在状况.植物生态学报,2001,25(5):630-633.
    [69]杨鑫光.霸王对干旱胁迫的响应及根系水力提升研究.研究生学位论文,兰州大学,2006.
    [70]李唯,胡自治,杨德龙,等.苜蓿、玉米根系水力提升作用测定的影响因素—植物根系水力提升作用机理研究I.甘肃农业大学学报,2008,43(1):77-82.
    [7l]李唯,胡自治,倪郁,等.苜蓿、玉米根系水力提升作用与耐旱性的关系—植物根系水力提升作用机理研究II,草地学报,2007,15(6):10-13,25.
    [72]李唯,胡自治,万长贵,等.苜蓿、玉米根系水力提升作用与土壤水势—植物根系水力提升作用机理研究Ⅲ.草地学报,2008,16(1):16-21.
    [73]綦伟,厉恩茂,翟衡,等.葡萄根系水力提升作用研究.中外葡萄与葡萄酒,2006,(4):13-16,42.
    [74]桑玉强,刘全军,吴文良,等.毛乌素沙地新疆杨生长季节蒸腾耗水规律.东北林业大学学报,2008,36(9):28-30,47.
    [75]虞沐奎,姜志林,鲁小珍,等.火炬松树干液流的研究.南京林业大学学报(自然科学版),2003,27(3):7-10.
    [76]曹云,黄志刚,欧阳志云,等.南方红壤区杜仲(Eucommia ulmoides)树干液流动态.生态学报,2006,26(9):2887-2895.
    [77]吴丽萍,王学东,尉全恩,等.樟子松树干液流的时空变异性研究.水土保持研究,2003,10(4):66-68.
    [78]孙慧珍,孙龙,王传宽,等.东北东部山区主要树种树干液流研究.林业科学,2005,41(3):36-42.
    [79]刘玉华,史纪安,贾志宽,等.旱作条件下紫花苜蓿光合蒸腾日变化与环境因子的关系.应用生态学报,2006,17(10):1881-1814.
    [80]徐炳成,山仑,黄瑾.黄土丘陵区不同立地条件下沙棘光合生理日变化特征比较.西北植物学报,2003,23(6):949-953.
    [81]张翠霞,张秋良,常金宝.库布其沙漠几种植物的光合蒸腾及水分利用效率.南京林业大学学报:自然科学版,2007,31(4):81-84.
    [82]郭成久,王莉,苏芳莉,等.辽西樟子松树干液流运动规律.东北林业大学学报,2008,36(7):3-5.
    [83]陈永金,陈亚宁,薛燕.干旱区植物耗水量的研究与进展.干旱区资源与环境,2004,18(6):152-158.
    [84]鲍玉海,杨吉华,李红云,等.不同灌木树种蒸腾速率时空变异特征及其影响因子的研究.水土保持学报,2005,19(3):184-187.
    [85]卜崇峰,刘国彬.黄土丘陵沟壑区狼牙刺的蒸腾作用研究.植物研究,2005,25(1):64-68.
    [86]张日升,刘敏.半干早地区主要造林树种蒸腾耗水特点的研究进展,防护林科技,2008,(1):69-71.
    [87]李红丽,董智,丁国栋,等.浑善达克沙地植物蒸腾特征的研究.干旱区资源与环境,2003,17(5):135-140.
    [88]Lareher, W. Physiological Plant ecology (third edtion) New York, Berlin:Heidelberg, Aufl., Spinger-Verlag,1995.
    [89]熊伟,王彦辉,徐德应.宁南山区华北落叶松人工林蒸腾耗水规律及其对环境因子的响应.林业科学,2003,39(2):1-7.
    [90]曹文强,韩海荣,马钦彦,等.山西太岳山辽东栎夏季树干液流通量研究.林业科学,2004,40(2):174-177.
    [91]夏桂敏,康绍忠,李王成,等.甘肃石羊河流域干旱荒漠区柠条树干液流的日季变化.生态学报,2006,26(4):1186-1193.
    [92]周海光,刘广全,焦醒,等.黄土高原水蚀风蚀复合区几种树木蒸腾耗水特性,生态学报,2008,28(9):4568-4574.
    [93]Kramer P J, Boyer J.S. Water relation of plants and soils. Academic Press, Inc.1995.
    [94]高照全,邹养军,等.植物水分运动影响因子的研究进展.干旱地区农业研究,2004,22(2):200-204.
    [95]李雪华,蒋德明,等.不同施水量处理下樟子松幼苗叶片水分生理生态特性的研究.生态学杂志,2003,22(6):17-20.
    [96]李黛,胡凯,谈锋.干旱条件下淡黄花百合叶片水分生理的适应性变化.西南师范大学学报(自然科学版),2004,29(5):852-855.
    [97]郭连生,刘亮.9种阔叶幼树的蒸腾速率、叶水势和环境因子关系的研究.生态学报,1992,12(1):47-52.
    [98]郭连生,田有亮.4种针叶幼树光合速率、蒸腾速率与土壤含水量的关系及其抗旱性研究.应用生态学报,1994,5(1):32-36.
    [99]王百田,张府娥.黄土高原主要造林树种苗木蒸腾耗水特性.南京林业大学学报(自然科学版),2003,27(6):93-97.
    [100]Lagergren, F, Lindroth, A. Transpiration response to soil moisture in pine and spruce trees in Sweden. Agriculture and For Meteor.2002,112:67-85.
    [101]刘世荣,温远光等.中国森林生态系统水文生态功能规律.中国林业出版社.1996.
    [102]张利平,滕元文,王新平,等.沙生植物花棒气孔导度的周期波动.兰州大学学报(自然科学版),1996,32(4):132-135.
    [103]Clarkson, D.T, Carvajal, M., Henzler.T, et al. Root hydraulic conductance diurnal aquaporin Expression and the effects of nutrients tress. Journal of experimental Botany,2000,51:61-70.
    [104]吴林,李亚东,刘洪章,等.果树水分胁迫研究进展.吉林农业大学学报,1996,18(2):91-97.
    [105]奚如春,马履一,樊敏,等.油松枝干水容特征及其对蒸腾耗水的影响,北京林业大学学报,2007,29(1):160-165.
    [106]Schulze ED, Cermak J, Matyssek R, et al. Canopy transpiration and water fluxes in the xylem of the trunk of Larix and Picea tree-a comparison of xylem flow, porometer and cuvette measurements. Oecologia,1985, 66:475-483.
    [107]周平,李吉跃,招礼军.北方主要造林树种苗木蒸腾耗水特性研究.北京林业大学学报,2002,24(6):50-55.
    [108]岳广阳,赵哈林,张铜会,等.不同天气条件下小叶锦鸡儿茎流及耗水特性.应用生态学报,2007,18(10):2173-2178.
    [109]李春萍,河套灌区新疆杨农田防护林耗水特性及耗水量的研究.研究生学位论文,内蒙古农业大学,2003.
    [110]张小由,康尔泗,张智慧,等.沙枣树干液流的动态研究.中国沙漠,2006,26(1):146-151.
    [111]Wullchleger S, Meinzer F C, Vertessy R A. A Review of whole-plant water use studies in trees. Tree Physiology,1998,18:499-512.
    [112]王安志,裴铁璠.森林蒸散测算方法研究进展与展望.应用生态学报,2001,12(6):933-937.
    [113]Hossein DehghaniSanij, Tahei Yamamoto, Velu Rasiah, Assessment of evapotranspiration estimation models for use in semi-arid environments. Agricultural Water Management.2004,64(2):91-106.
    [114]张劲松,孟平,尹昌君.植物蒸散耗水量计算方法综述.世界林业研究,2001,14(2):23-28.
    [115]孙慧珍,周晓峰,康绍忠.应用热技术研究树干液流进展.应用生态学报.2004,15(6):1074-1078.
    [116]Kostner B, Granier A, Cermak J. Sap flow measurements in forest stands:methods and uncertainties. Annu. Forest Sci.1998,55:13-27.
    [117]徐先英,孙保平,丁国栋,等.干旱荒漠区典型固沙灌木液流动态变化及其对环境因子的响应.生态学报,2008,28(3):895-905.
    [118]岳广阳,张铜会,赵哈林,等.科尔沁沙地黄柳和小叶锦鸡儿茎流及蒸腾特征.生态学报,2006,26(10):49-57.
    [119]金红喜,徐先英,唐进年,等.花棒液流变化规律及其对环境因子的响应.西北植物学报,2006, 26(2):354-361.
    [120]李海涛,陈灵芝.应用热脉冲技术对棘皮桦和五角枫树干液流的研究.北京林业大学学报,1998,20(1):1-6.
    [121]Giorio P, Giorio G. Sap flow of severalolive trees estimated with the heat-pulse technique by continuous monit oring of a single gauge. Env.i Exp.Bot,2003,49:9-20.
    [122]Cienciala E, Kucerab J, Malmer A. Tree sap slow and stand transpiration of two Acacia mangium plantations in Sabah, Borneo. Journal of Hydrology,2000,236:109-120.
    [123]Cermak J, Cienciala E, Kucera J, et al. Individual variation of sap-flow rate in large pine and spruce trees and stand transpiration:a pilot study at the central NOPEX site. Journal of Hydrology,1995,168:17-27.
    [124]常学向,赵文智,赵爱芬.黑河中游二白杨叶面积指数动态变化及其与耗水量的关系,冰川冻土,2006,28(1):85-90.
    [125]高强,孙守家.玉兰蒸腾规律及移植过程中茎流变化研究.西南林学院学报,2007,27(5):25-29.
    [126]常学向,赵文智,张智慧.荒漠区固沙植物梭梭(Haloxylon ammodendron)耗水特征,生态学报,2007,27(5):1826-1837.
    [127]屈艳萍,康绍忠,夏桂敏,等.甘肃石羊河流域人工种植长穗柽柳树干液流量变化规律研究,西北植物学报,2005,25(11):2259-2265.
    [128]马玲,赵平,饶兴权,等.乔木蒸腾作用的主要测定方法.生态学杂志,2005,24(1):88-96.
    [129]Raschi A, Tognetti R, Ridder H W, et al. Water in the stems of sessile oak(Quercus petraea) assessed by computer tomography with concurrent measurements of sap velocity and ultrasound emsission. Plant, Cell and Environment,1995,18(5):545-554.
    [130]Vertessy R A, Hatton T J, Reece P, et al. Estimating stand water use of large mountain ash trees and validation of the sap flow measurement technique. Tree Physical,1997,17(12):747-756.
    [131]Jimenez M S, Nadezhdina N, Cermak J, et al. Radial variation in sap flow in five laurel forest tree species in Tenerife, Canary Islands. Tree Physical,2000,20(17):1149-1156.
    [132]Wullschleger S D, Hanson P J, Todd D E. Transpiration from a multi-species deciduous forest as estimated by xylem sap flow techniques. For Ecol Manage,2001,143(1/3):205-213.
    [133]段玉玺,秦景,贺康宁,等.白榆、新疆杨液流动态比较研究.中国沙漠,2008,28(6):1136-1144.
    [134]王瑞辉,马履一,奚如春,等.元宝枫生长旺季树干液流动态及影响因素.生态学杂志,2006,25(3): 231-237.
    [135]马玲,赵平,饶兴权,等.马占相思树干液流特征及其与环境因子的关系.生态学报,2005,25(9):2145-2151.
    [136]臧春鑫,杨劫,袁劫,等.毛乌素沙地中间锦鸡儿整株丛的蒸腾特征.植物生态学报,2009,33(4):719-727.
    [137]臧春鑫,杨劫,袁劫,张雷,宋炳煜.黄土丘陵沟壑区中间锦鸡儿整株丛树干液流特征与环境因子的关系.生态学杂志,2010,29(3):420-426.
    [138]Ingram. A.P. Ecohydrology of Scottish Peatlands. Transactions of the Royal Society of Edinburgh:Earth Science,1987,78(4):287-296.
    [139]Zalewski M, Janauer G A, et al. Ecohydrology:A new paradigm for the sustainable use of aquatic resources. Paris. UNESCO,1997,1-56.
    [140]高富.生态水文学的学科研究动态及在中国的发展方向.西部林业科学,2009,38(4):104-108.
    [141]王清华.植被变化的生态水文效应分析.硕士研究生论文,西安理工大学,2004.
    [142]黄奕龙,傅伯杰,陈利顶.生态水文过程研究进展.生态学报,2003,23(3):580-587.
    [143]赵文智,程国栋.生态水文学—揭示生态格局和生态过程水文学机制的科学.冰川冻土,2001,23(4):450-457.
    [144]王永明,韩国栋,赵萌莉,等.草地生态水文过程研究若干进展.中国草地学报,2007,29(3):98-103.
    [145]Wolanski E, Chicharo L, Chicharo MA, et al. An ecohydrology Model of the Guadiana Estuary (South Portugal). Estuarine, Coastal and Shelf Science,2006,70(1-2):132-143.
    [146]李新荣,张志山,王新平,等.干旱区土壤植被系统恢复的生态水文学研究进展.中国沙漠,2009,29(5):845-852.
    [147]Schlesinger W H, Reynolds J F, Cunningham G L, et al. Biological feedbacks in global desertification. Science,1990,247:104-1048.
    [148]DawsonT E, Pate J S. Seasonal water uptake and movement in root systems of Australian phraeatophytic plants of dimorphic root morphology:A stable isotope investigation. Oecologia,1995,107:13-20.
    [149]White JW C, Rundel PW, Ehleringer J R, et al. Stable hydrogen isotope ratios in plants:a review of current theory and some potential application. Stable Isotopes in Ecological Research,1988,142-162.
    [150]Rodriguez-Iturbe I, Porporato A, Liao F, et al. Plants in water-controlled ecosystems:active role in hydrologic processes and response to water stress I. Scope and general outline. Advances in Water Resources,2001,24:695-705.
    [151]Porporato A, Rodriguez-Iturbe I. Ecohydrology-a challenging multidisciplinary research perspective. Hydrological Science Journal,2002,47(5):811-821.
    [152]Van der Maarel E. Vegetation dynamics:Patterns of change in time and space. Vegetation,1988,77:1-9.
    [153]Baird A J, Willby R L. Ecohydrology-Plant and water in terrestrial and aquatic environments. London: Routledge,1999,1-50.
    [154]徐先英.石羊河下游绿洲—荒漠过渡带典型固沙植被生态水文效应研究.博士研究生论文,北京林业大学,2008.
    [155]孙长忠,黄宝龙.黄土高原“林分自创性”有效水分供给体系的研究.生态学报,1999,19(5):614-621.
    [156]王力,邵明安,张青峰.陕北黄土高原土壤干层的分布和分异特征.应用生态报,2004,15(3):436-442.
    [157]黄明斌,杨新民,李玉山.黄土高原生物利用型土壤干层的水文生态效应研究.中国生态农业学报,2003,11(3):113-116.
    [158]李军,陈兵,李小芳,等.黄土高原不同植被类型区人工林地深层土壤干燥化效应.生态学报,2008,28(4):1429-1445.
    [159]卫三平,王力,吴发启.土壤干化的水文生态效应.水土保持学报,2007,21(5):123-127.
    [160]王孟本,李宏建.人工柠条林地土壤水分生态环境特征研究.中国水土保持,1989,(5):22-25.
    [161]王志强,刘宝元,王晓兰.黄土高原半干旱区天然锦鸡儿灌丛对土壤水分的影响.地理研究,2005,(1):113-120.
    [162]内蒙古植物志编委会.内蒙古植物志(第2版).呼和浩特:内蒙古人民出版社,1989,234-238.
    [163]中国科学院内蒙古宁夏综合考察队.内蒙古植被.北京:科学出版社,1985,139-140.
    [164]张明理,黄永梅,康云,等.锦鸡儿属植物在鄂尔多斯高原区系和植被中的作用.植物研究,2002,22(4):497-502.
    [165]杨劫,宋炳煜,朴顺姬,等.皇甫川丘陵沟壑区小流域生态用水实验研究.自然资源学报,2003,18(5):513-521.
    [166]李代琼,吴钦孝,刘克俭,等.宁南沙棘、柠条蒸腾和土壤水分动态研究.中国水土保持,1990,(6):29-32,45.
    [167]陈世鐄,张昊,王立群,等.中国北方草地植物根系.长春:吉林大学出版社,2001,150-151.
    [168]孙凯男,郭秋菊,程建平.我国部分地区土壤氡析出率的理论模型.中华放射医学与防护杂志,2004,24(6):581-584.
    [169]刘晓春,洪绂增,纪永福,等.民勤北部天然柠条群落结构特征及其优势种群动态研究.甘肃农业大学学报.2008,12(6):113-118.
    [170]郭正刚,张自和,肖金玉,等.黄土高原丘陵沟壑区紫花苜蓿品种间根系发育能力的初步研究.应用生态学报,2002,13(8):1007-1012.
    [171]何斌,陈亚宁,李卫红,等.塔里木河下游地区胡杨蒸腾耗水规律及其对生态输水的响应.资源科学,2009,31(9):1545-1552.
    [172]张文彤.SPSS 11统计分析教程(高级篇).北京希望电子出版社.2002.
    [173]邱扬,傅伯杰,王军,等.黄土丘陵小流域土壤水分空间预测的统计模型.地理研究,2001,20(6):739-751.
    [174]乐通潮,张万昌.双参数月水量平衡模型在汉江流域上游的应用.资源科学,2004,26(6):97-103.
    [175]郭孟霞,毕华兴,刘鑫,等.树木蒸腾耗水研究进展.中国水土保持科学,2006,4(4):114-120.
    [176]杨文治,邵明安.黄土高原土壤水分研究,北京:科学出版社,2000.
    [177]郭凤台.土壤水库及其调控.华北水利水电学院学报,1996,17(2):72-801.
    [178]贺金生,王政权,方精云.全球变化下的地下生态学:问题与展望.科学通报,2004.49(13):1266-1233.
    [179]黄瑞冬.植物根系研究方法的发展.沈阳农业大学学报,1991,22(2):164-168.
    [180]Mooney HA. Further observation on the water relations of Prosopis tamarngo of the Northern Atacama Desert. Oecologia,1980,44:177-180.
    [181]Cao YL, Lu Q, Lin GH. Review and perspective on hydrogen stable isotopes techniques in tracing plant water sources researches. Acta Ecologica Sinica,22:111-117.
    [182]Dawson TE. Hydraulic lift and water use by plants:implications for water balance, performance, and plant-plant interactions. Oecologia,1993,95:565-574.
    [183]Jensen RD, Taylor SA, Wiebe HH. Negarive transport and resistance to water flow through plant. Plant Physical,1961,36:633-638.
    [184]Williams K, Caldwell MM, Richards MH. The influence of shade and clouds on soil water potential:The buffered behavior of hydraulic lift. Plant Soil,1993,157:83-95.
    [185]Phillips J G, Riha S J. Root growth, water uptake and canopy development in Eucalyptus viminalis seedlings. Aust. J. Plant Physical,1994,21:69-78.
    [186]Baker JM, Van Bavel CHM. Resistance of Plant Roots to Water Loss. Agron. J,1986,78:641-644.
    [187]夏桂敏,康绍忠,杜太生,等.甘肃石羊河流域干旱荒漠区花棒蒸腾耗水量,应用生态学报,2007, 18(6):1194-1202.
    [188]宋炳煜,梁家才,贺文君,等.中间锦鸡儿株丛的水分关系.内蒙古大学学报,1991,22(3):401-406.
    [189]李裕元,邵明安.黄土高原气候变迁、植被演替与土壤干层的形成.干旱区资源与环境,2001,15(1):72-77.
    [190]王力,邵明安,王全九,等.黄土区土壤干化研究进展.农业工程学报,2004,20(5):27-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700