用户名: 密码: 验证码:
花生高油酸的分子遗传机制及其高效遗传改良体系构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
花生(Arachis hypogaea L)是世界上重要的油料和经济作物之一。提高花生及其制品的油酸含量是改进产品营养价值和保障质量安全的关键关键,高油酸育种是当前花生品质改良研究的重要方向。为此,本研究在明确高油酸花生种子脂肪酸代谢规律和高油酸性状遗传分子机制的基础上,建立了高效的花生高油酸遗传改良技术体系,对于深化花生品质育种具有重要的理论和实用价值。
     为研究和揭示花生高油酸遗传和生化基础,本研究首先系统分析了高油酸和普通油酸花生材料在种子发育、萌发过程中脂肪酸积累和降解模式的差异,比较了成熟种子不同部位的脂肪酸组成。结果表明:1)高油酸花生种子中油酸的大量积累主要发生在种子发育的后期,同时伴随着亚油酸含量的快速下降,高油酸和普通油酸材料在种子发育的早期均存在较高比例的亚麻酸。2)花生种子胚和子叶的脂肪酸组成存在显著差异,胚中油酸含量较低而含有较高比例的棕榈酸和亚油酸。3)高油酸和普通油酸的花生在种子萌发过程中子叶的脂肪酸组分比例变化差异不显著,且没有新的脂肪酸生成,说明花生无论高油酸还是普通油酸的花生种子在萌发过程中不存在优先利用某种脂肪酸的现象。
     利用3个普通油酸和高油酸的花生配制杂交组合并利用其F2分离群体,分别以卡方测验、主基因与多基因混合遗传模型分析了花生高油酸性状的遗传特性。结果表明:花生高油酸性状的遗传主要受两对隐性基因的调控,表现为两对连锁隐性主效基因的上位性+微效多基因加性修饰的特点。通过分析ahFAD2A等位基因(ahFAD2A-wt、ahFAD2A-m)在中国花生小核心种质中的分布,结合油酸含量的测定,明确了密枝亚种(普通型和龙生型变种)花生的油酸含量普遍高于疏枝亚种(珍珠豆和多粒型变种)的原因与密枝亚种材料中存在较高比例的ahFAD2A突变型基因(ahFAD2A-m)密切相关,进一步明确了ahFAD2A等位基因在调控花生种子油酸含量上的重要性。通过对重组近交系群体不同油酸含量株系材料的基因型分类和表型鉴定,明确并验证了花生油酸含量受两个隐性主效基因调控的分子机制。
     本研究建立了一种以油脂折光指数鉴定高油酸材料的新方法,可定量或定性地检测和判断高油酸的花生材料,可高效地用于花生高油酸育种研究。在明确花生高油酸性状的遗传和分子机制并建立高通量的简便筛选技术的基础上,提出了一套完整的花生高油酸育种技术体系,其核心是基于杂交F2基因型判断的早期世代选择,关键技术包括:1)亲本基因型的选择;2)高效的高油酸鉴定方法;3)利用F2单株上的F3种子的混合样的油酸含量表型判断F2单株的基因型。利用这套技术体系可在杂交后的F2代高效地鉴定出具有纯合双隐性基因型(ol1ol1ol2ol2)的杂交后代(ol1ol1ol2ol2)。在花生高油酸育种实践中证实上述技术体系可靠性高,方法简便实用,可显著提高育种效率。
Peanut (Arachis hypogaea L.) is widely used as an oilseed and cash crop around the world and as a source of edible oil and protein in the developing countries. Properties of peanut oil are determined by the fatty acid composition. Increasing the oleic acid content in peanut seed and its products has been one of the most important goals for improving the peanut quality. Based on investigating of the fatty acid accumulation pattern in developing seeds and the molecular mechanism of high oleic acid, it would be of important value to establish a cost-effective system for gegentic improvement of high oleic acid in peanut.
     Comparison of fatty acid accumulation pattern in seed development of the high oleic and normal oleic acid peanut genotypes revealed that oleic acid accumulated during the latter seed development stage while more linolenic acid appeared in the early developing stage. Higher palmitic and linoleic acid was found in the embryo of the matured peanut seeds than in the cotyledon. During the germination of the high oleic acid genotype, there was no significant change of the fatty acid, which implied that high oleic character did not affect the seed germination.
     The inheritance of the high oleic content was reconfirmed by the F2 segerating progenies of normal and high oleic acid cross combinations. Two main-effects with recessive-linked-additional genes plus additional poly-minor-effect gene were found to determine the oleic acid content in the peanut seeds. We characterized two homeologous genes that directly control oleic acid content in the oil, ahFAD2A, ahFAD2B, and these two genes have two alleles (ahFAD2A-wt ahFAD2A-m; ahFAD2B-wt, ahFAD2B-m) in various peanut germplasm accessions. We further confirmed that there was only ahFAD2B-wt allele and no ahFAD2B-m in the Chinese germplasm collection. At the same time, ahFAD2A-wt and ahFAD2A-m were found in the most accessions in the Chinese mini-core collection, the mutant allele ahFAD2A-m was frequent among subspecies hypogaea accessions but absent from subspecies fastigiata accessions. A highly positive correlation between present of the ahFAD2A-m and the higher oleic acid content was observed.
     A cost-effective refractive index (RI) method was developed to identify the high oleic acid materials, which is useful for high oleic breeding in peanut. Based on the understanding of the molecular mechanism of high oleic acid character, a new system for the high oleic in peanut was developed. The parental lines in breeding should be genotyped to estimate the ratio of the high oleic acid in the F2 population. An easy method using RI was established to identify high oleic phenotypes among F2:3 lines with two recessive genes (ol1ol1ol2ol2).
引文
1. Allman-Farinelli M A, Gomes K, Favaloro E J, Petocz P A. diet rich in high-oleic-acid sunflower oil favorably alters low-density lipoprotein cholesterol, triglycerides, and factor VII coagulant activity. J Am Diet Assoc,2005,105(7):1071-1079.
    2. Alper C M, Mattes R D. Peanut consumption improves indices of cardiovascular disease risk in healthy adults. J Am Coll Nutr,2003,22(2):133-141.
    3. Alt J L, Walter R F, Grace A W and Devinder S. Phenotypic and Molecular Analysis of Oleate Content in the Mutant Soybean Line M23. Crop Science,2005,45:1997-2000.
    4. Amiri R M, Yur'eva N O. Expression of acyl-lipid Delta 12-desaturase gene in prokaryotic and eukaryotic cells and its effect on cold stress tolerance of potato. J. Integr Plant Biol, 2010,52(3):289-297.
    5. Andersen P C, Gorbet D W. Influence of year and planting date on fatty acid chemistry of high oleic acid and normal peanut genotypes. J. Agric. Food. Chem,2002,50(5):1298-1305.
    6. Andersen P C, Hill K, Gorbet D W, Brodbeck B V. Fatty Acid and Amino Acid Profiles of Selected Peanut Cultivars and Breeding Lines. J Food Comp Anal,1998,11(2):100-111.
    7. Ashri A. Mutagenic studies and breeding of peanut (Arachis hypogaea) and sesame (Sesame indicum). In:Improvement of grain legume production using induced mutations. International Atomic Energy Agency,1988, Paris, pp509-511.
    8. Belo A, Zheng P. Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Mol Genet Genomics,2008,279(1):1-10.
    9. Boudet A.M., Grima P.J. Lipid genetic engineering. Molecular Breeding,1996,2:25-39.
    10. Bourgis F, Kader J C, Barret P, Renard M, Robinson D, Robinson C, Delseny M, Roscoe T J. A plastidial lysophosphatidic acid acyltransferase from oilseed rape. Plant Physiol,1999, 120(3):913-922.
    11. Braddoc J C, Sims C A, O'Keefe S F. Flavor and oxidative stability of roasted high oleic acid peanuts. J Food Sci,2006,60 (3):489-493.
    12. Brenna J T, Kothapalli K S. Alternative transcripts of fatty acid desaturase (FADS) genes. Prostaglandins Leukot Essent Fatty Acids 82(4-6):281-285.
    13. Broadwater J A, Whittle E, Shanklin J. Desaturation and Hydroxylation-residues 148 and 324 of arabidopsis fad2, in addition to substrate chain length, exert a major influence in partitioning of catalytic specificity. The journal of biological chemistry,2002,277: 15613-15620.
    14. C, Jung S, Abbott A Q, Powell G L. The naturally occurring high oleate oil character in some peanut varieties results from reduced oleoyl-PC desaturase activity from mutation of Aspartate 150 to Asparagine. Crop Science,2001,41:522-526.
    15. Cahoon E B, Mills L A. Modification of the fatty acid composition of Escherichia coli by coexpression of a plant acyl-acyl carrier protein desaturase and ferredoxin. J Bacteriol,1996, 178(3):936-939.
    16. Carlsson A S, Labrie S T, Kinney A J, Von W K, Browse J. A KAS2 cDNA complements the phenotypes of the Arabidopsis fab1 mutant that differs in a single residue bordering the substrate binding pocket. Plant J,2002,29(6):761-770.
    17. Cater, N B, Heller H J. Comparison of the effects of medium-chain triacylglycerols, palm oil, and high oleic acid sunflower oil on plasma triacylglycerol fatty acids and lipid and lipoprotein concentrations in humans. Am J Clin Nutr,1997,65(1):41-45.
    18. Chen W, Li J F. [Obtaining new germplasm of Brassica napus with high oleic acid content by RNA interference and marker-free transformation of Fad2 gene]. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao,2006,32(6):665-671.
    19. Chung SY, Soheila M, ElaineT. high-oleic peanuts are not different from normal peanuts in allergenic properties. J. Agric. Food Chem.2002,50,878-882.
    20. ChuY, Ramos M L, Holbrook C, and Ozias-Akins. Frequency of a Loss-of-Function Mutation in oleoyl-PC desaturase (ahFAD2A) in the mini-core collection of the U.S. peanut germplasm collection. Crop Sci.2007,47:2372-2378.
    21. ChuY, Holbrook C and Ozias-Akins. Two Alleles of ahFAD2B Control the High Oleic Acid Trait in Cultivated Peanut. Crop Sci.2009,49:2029-2036.
    22. Clemente T E, Cahoon E B. Soybean Oil:Genetic Approaches for Modification of Functionality and Total Content. Plant Physiol,2009,151:1030-1040.
    23. Cook D, Grierson D. Modification of fatty acid composition in tomato (Lycopersicon esculentum) by expression of a borage delta6-desaturase. Molelulat Biotechnology,2002, 21(2):123-128.
    24. Craig W, Lenzi P. Transplastomic tobacco plants expressing a fatty acid desaturase gene exhibit altered fatty acid profiles and improved cold tolerance. Transgenic Research,2008, 17(5):769-782.
    25. Davis J P, Sanders TH. Liquid to Semisolid Rheological Transitions of Normal and High-oleic Peanut Oils upon Cooling to Refrigeration Temperatures. J Am Oil Chem Soc, 2007,84:979-987.
    26. Davis J P, Sanders TH. Physical and Chemical Characterizations of Normaland High-Oleic Oils from Nine Commercial Cultivars of Peanut. J Am Oil Chem Soc,2008,85:235-243.
    27. Dormann P, Kridl J C, Ohlrogge J B. Cloning and expression in Escherichia coli of a cDNA coding for the oleoyl-acyl carrier protein thioesterase from coriander (Coriandrum sativum L.). Biochim Biophys Acta,1994,1212(1):134-136.
    28. Dyer J M, Chapital D C, Kuan J C, Mullen R T, Turner C, Mckeon T A, Pepperman A B. Molecular analysis of a bifunctional fatty acid conjugase/desaturase from tung. Implications for the evolution of plant fatty acid diversity. Plant Physiol,2002,130(4):2027~2038.
    29. Ericson M L, Rodin J, Lenman M, Glimelius K, Josefsson L G, Rask L. Structure of the rapeseed 1.7 S storage protein, napin, and its precursor. J Biol Chem,1986,261(31): 14576-14581.
    30. Esteban A B, Sicardo M D, Mancha M, Martinez-Rivas JM. Growth temperature control of the linoleic acid content in safflower (Carthamus tinctorius) seed oil. J Agric Food Chem. 2004,52(2):332-336.
    31. Fehr W R. Breeding for Modified Fatty Acid Composition in Soybean. Crop Sci,2007, 47(S3):S72-S87.
    32. Flowers M T, Ntambi J M. Role of stearoyl-coenzyme A desaturase in regulating lipid metabolism. Curr Opin Lipidol,2008,19(3):248-256.
    33. Fofana B, Cloutier S, Duguid S, Ching J, Rampitsch C. Gene expression of stearoyl-ACP desaturase and delta 12 fatty acid desaturase 2 is modulated during seed development of flax (Linum usitatissimum). Lipids,2006,41(7):705~712.
    34. Gorbet D W, Knauft, D A. SunOleic 97R peanut. Fla. Agric. Exp. Stn. Circ.1997, No. S-400.
    35. Graef G., LaVallee B J. A high-oleic-acid and low-palmitic-acid soybean:agronomic performance and evaluation as a feedstock for biodiesel. Plant Biotechnol J,2009,7(5): 411-421.
    36. Grosso N R, Nepote V. Chemical composition of some wild peanut species (Arachis L.) seeds. J Agric Food Chem,2000,48(3):806-809.
    37. Hamada T, Kodama H. Modification of fatty acid composition by over- and antisense expression of a microsomal omega-3 fatty acid desaturase gene in transgenic tobacco. Transgenic Res,1996,5(2):115-121.
    38. Hamdan Y A S, Perez-Vich B, Velasco L, Fernandez-Martinez J M. Inheritance of high oleic acid content in safflower. Euphytica,2009,168(1):61-69.
    39. Haritatos E, Medville R, Turgeon R. Minor vein structure and sugar transport in Arabidopsis thaliana. Planta,2000,211(1):105-111.
    40. Heath R J, Rock C O. Roles of the FabA and FabZ beta-hydroxyacyl-acyl carrier protein dehydratases in Escherichia coli fatty acid biosynthesis. J Biol Chem,1996,271(44): 27795-27801.
    41. Hernandez M L, Mancha M, Martinez-rivas J M. Molecular cloning and characterization of genes encoding two microsomal oleate desaturases (FAD2) from olive. Phytochemistry,2005, 66(12):1417~1426.
    42. Hills M J. Control of storage-product synthesis in seeds. Curr Opin Plant Biol,2004,7(3): 302~308.
    43. Hinds M J. Fatty acid composition of Caribbean-grown peanuts (Arachis hypogaea L.) at three maturity stages. Food Chem,1995,53:7-14.
    44. Hitz W D, Carlson T J, Booth J R, Kinney A J, Stecca K L, Yadav N S. Cloning of a higher-plant plastid omega-6 fatty acid desaturase cDNA and its expression in a
    cyanobacterium. Plant Physiol,1994,105(2):635~641.
    45. Hitz W D, Yadaw N S, Reiter R S. Reducing polyunsaturation in oils of transgenic canola and soybean. Kader J.C., Mazliak P. Plant Lipid Metabolism. Wilmington; Kluwer Academic Pulishers,1995,506-508.
    46. Holmer G, Aaes-Jorgensen E. Essential fatty acid-deficient rats. II. On the fatty acid composition of partially hydrogenated arachis, soybean and herring oils and of normal, refined arachis oil. Lipids,1969,4(6):507-514.
    47. http://faostat.fao.org/
    48. Hu X, Sullivan-Gilbert M. Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.). Theor Appl Genet,2006,113(3):497-507.
    49. Iba K, Gibson S, Nishiuchi T, Fuse T, Nishimura M, Arondel V, Hugly S, Somerville C. A gene encoding a chloroplast omega-3 fatty acid desaturase complements alterations in fatty acid desaturation and chloroplast copy number of the fad7 mutant of Arabidopsis thaliana. J Biol Chem,1993,268(32):24099-24105.
    50. Isleib T G, Pattee H E. Compositional and sensory comparisons between normal- and high-oleic peanuts. J Agric Food Chem,2006a,54(5):1759-1763.
    51. Isleib T G, Wilson R F, Novitzky W P. Partial dominance, Pleiotropism, and Epistasis in the Inheritance of the High-Oleate Trait in Peanut. Crop science,2006b.46:1331-1335.
    52. Jadhav A, Katavic V. Increased levels of erucic acid in Brassica carinata by co-suppression and antisense repression of the endogenous FAD2 gene. Metabolic Engineering,2005,7(3): 215-220.
    53. Jain R K, Coffey M, Lai K, Kumar A, Mackenzie S L. Enhancement of seed oil content by expression of glycerol-3-phosphate acyltransferase genes. Biochem Soc Trans,2000,28(6): 958-961.
    54. Jako C, Kumar A, Wei Y, Zou J, Barton D L, Giblin E M, Covello P S, Taylor D C. Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. Plant Physiol,2001,126(2): 861-874.
    55. Jessica A S, Iryna F V-S, Shweta D, Jing Y, Majesta S, Bruce A R, Shannon D S, Brian E S and Randy C S. The FAD2 Gene Family of Soybean. Crop Science,2007,47:S-14-S-26.
    56. Jung S, Powell C, Moore K, Abbott A. The high oleate trait in the cultivated peanut (Arachis hypogaea L.)Ⅱ.Molecular basis and genetics of the trait.Mol Gen Genet,2000b,263(5):806-811.
    57. Jung S, Swift D, Sengoku E. The high oleate trait in the cultivated peanut (A. hypogaea L.). Ⅰ.Isolation and characterization of two genes encoding microsomal oleoyl-PC desaturases. Mol Gen Genet,2000a,263:796-805.
    58. Jung, S, Tate P L. The phylogenetic relationship of possible progenitors of the cultivated
    peanut. J Hered,2003,94(4):334-40.
    59. Kargiotidou A, Deli D. Low temperature and light regulate delta 12 fatty acid desaturases (FAD2) at a transcriptional level in cotton (Gossypium hirsutum). J Exp Bot,2008,59(8): 2043-2056.
    60. Khan A R, Emery D A, Singleton J A.1974. Refractive index as basis for assessing fatty acid composition in segregating populations derived from intraspecific crosses of cultivated peanut. Crop Sci.14:464-468.
    61. Khosla P, Hayes K C. Dietary palmitic acid raises plasma LDL cholesterol relative to oleic acid only at a high intake of cholesterol. Biochim Biophys Acta,1993,1210(1):13-22.
    62. Kim M J, Kim H, Shin J S, Chung C H, Ohlrogge J B, Suh M C. Seed-specific expression of sesame microsomal oleic acid desaturase is controlled by combinatorial properties between negative cis-regulatory elements in the SeFAD2 promoter and enhancers in the 5'-UTR intron. Mol Genet Genomics,2006,276(4):351-368.
    63. Kinney A J, Cahoon E B, Hitz W D. Manipulating desaturase activities in transgenic crop plants. Biochem Soc Trans,2002,30:1099~1103.
    64. Kinney A J. Development of genetically engineered soybean oils for food applications. Journal of Food Lipids,1996,3:273-292.
    65. Kinney, A.J.,& Fader, G.M. U.S. Patent,2002, No.6,362,399. Washington, DC:US Patent and Trademark Office.
    66. Kirsch C, Hahlbrock K, Somssich I E. Rapid and transient induction of a parsley microsomal delta 12 fatty acid desaturase mRNA by fungal elicitor. Plant Physiol,1997,115(1):283~ 289.
    67. Kishore K, Sinha S K, Kumar R, Gupta N C, Dubey N, Sachdev A. Isolation and characterization of microsomal omega-6-desaturase gene (fad2-1) from soybean. Indian J Exp Biol,2007,45(4):390-397.
    68. Knauft D A, Gorbet D W, Norden A J. SunOleic 95R peanut. Fla. Agric. Exp. Stn. Circ.1995, No. S-398.
    69. Knauft D A, Moore K M, Gorbet D W. Further studies on the inheritance of fatty acid composition in peanut. Peanut Sci.1993,20,74-76.
    70. Knowles P F. The plant geneticist' contribution toward changing lipid and amino acid composition of safflower. J AOCS,1972,49 (1):27-29.
    71. Knutzon D S, Thompson G A. Modification of brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene.Proc Natl Acad Sci USA,1992,89:2624.
    72. Lacombe S, Souyris I, Berville A J. An insertion of oleate desaturase homologous sequence silences via siRNA the functional gene leading to high oleic acid content in sunflower seed oil. Mol Genet Genomics,2009,281(1):43-54.
    73. Lee M S, Guerra D J. Biochemical characterization of temperature-induced changes in lipid metabolism in a high oleic acid mutant of Brassica rapa. Arch Biochem Biophys,1994,
    315(1):203-211.
    74. Li L, Wang X. Isolation and characterization of a seed-specific isoform of microsomal omega-6 fatty acid desaturase gene (FAD2-1B) from soybean. DNA Seq,2008,19(1):28-36.
    75. Lindqvist Y, Huang W, Schneider G, Shanklin J. Crystal structure of delta9 stearoyl-acyl carrier protein desaturase from castor seed and its relationship to other di-iron proteins. EMBO J,1996,15(16):4081~4092.
    76. Liu Q, Singh S P, Green A G. High-steric and oleic cottonseed oils produced by hairpin RNA-mediated post-transcriptional gene silencing. Plant Physiology,2002,129:1-12.
    77. Liu X, Schumacher F R. Trans-fatty acid intake and increased risk of advanced prostate cancer:modification by RNASEL R462Q variant. Carcinogenesis,2007,28(6):1232-1236.
    78. Lopez Y, Nadaf H L,Smith O D. Expressed variants of△12-fatty acid desaturase for the high oleate trait in Spanish market-type peanut 1 lines. Molecular reeding,2002,9:183-190.
    79. Lopez Y, Nadaf H L, Smith O D. Isolation and characterization of the △12-fatty acid desaturase in peanut (Arachis hypogaea L.) and search for polymorphisms for the high oleate trait in Spanish market-type lines. Theor Appl Genet,2000,101:1131-1138.
    80. Lopez Y, Smith O D, Senseman S A, Rooney W L. Genetic factors influencing high oleic acid content in spanish market-type peanut cultivars. Crop Sci,2001,41:51-56.
    81. Mandal M N, Santha I M, Lodha M L, Mehta S L. Cloning of acyl-acyl carrier protein (ACP) thioesterase gene from Brassica juncea. Biochem Soc Trans,2000,28(6):967-969.
    82. Martinez-Rivas LM, Gracia-Diaz MT, Mancha M (2000) Temperature and oxygen regulation of microsomal oleat desaturase (FAD2) from sunflower. Biochemichal Society,28:890-892.
    83. Mensink R P, Katan M B. Effect of dietary fatty acids on high-density and low-density lipoprotein cholesterol levels in healthy subjects. N Engl J M,1990,323(7):439-445.
    84. Mercer L C, Wynne J C, Young C T. Inheritance of fatty acid content in peanut oil. Peanut Sci,1990,17(1):17-21.
    85. Moore K M, Knauft D A.The inheritance of high oleic acid in peanut. J. Hered.1989,80: 252-253.
    86. Mugendi J B, Sims C A, Gorget D W, O'Keefe S F. Flavor stability of high-oleic peanuts stored at low humidity. J Am Oil Chem Soc,1998,75:21-25.
    87. Musa O M. Some nutritional characteristics of kernel and oil of peanut (Arachis hypogaea L.). J Oleo Sci,2010,59(1):1-5.
    88. Myer R O, Johnson D D. Effect of feeding high-oleic-acid peanuts to growing-finishing swine on resulting carcass fatty acid profile and on carcass and meat quality characteristics. J Anim Sci,1992,70(12):3734-3741.
    89. Naested H, Frandsen G I, Jauh G Y, Hernandez-pinzon I, Nielsen H B, Murphy D J, Rogers J C, Mundy J C. Ca2+-binding proteins associated with lipid bodies. Plant Mol Biol,2000, 44(4):463-476.
    90. Nepote V, Olmedo R H, Mestrallet M G, Grosso N R.A study of the relationships among consumer acceptance, oxidation chemical indicators, and sensory attributes in high-oleic and normal peanuts. J Food Sci,2008,74(1):S1-S8.
    91. Norden A J, Gorbet D W, Knauft D A, Young C T. Variability in oil quality among peanut genotypes in the Florida breeding program. Peanut Sci,1987,14:7-11.
    92. O'Bryne D J, Knauft D A, Shireman R B. Low fat-monounsaturated rich diets containing high-oleic peanuts improve serum lipoprotein profiles. Lipids,1997,32(7):687-695.
    93. Ohlrogge J, Browse J. lipid biosynthesis. The Plant Cell,1995,7:957-970.
    94. O'Keefe S F, Wiley V A, Knauft D A. Comparison of Oxidative Stability of High- and Normal-Oleic. J Am Oil Chem Soc,1993,70(5):489-492.
    95. Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J. Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell,1994, 6(1):147-158.
    96. Park W J, Kothapalli K S D, Reardon H T, Kim L Y, Brenna J T.Novel fatty acid desaturase 3 (FADS3) transcripts generated by alternative splicing. Gene,2009,446(1):28-34.
    97. Patel M, Jung S, Moore K, Powell G, Ainsworth C, Abbott A. High-oleate peanut mutants result from a MITE insertion into the FAD2 gene. Theor Appl Genet,2004,108(8): 1492-1502.
    98. Pattee H E, Isleib T G, Moore K M, Gorbet D W, Giesbrecht F G. Effect of high-oleic trait and paste storage variables on sensory attribute stability of roasted peanuts. J Agric Food Chem,2002,50(25):7366-7370.
    99. Pattee, H. E., T. G. Isleib. Effect of the high-oleic trait on roasted peanut flavor in backcross derived breeding lines. J Agric Food Chem,2002,50(25):7362-7365.
    100. Pirtle I L, Kongcharoensuntorn W, Nampaisansuk M, Knesek J E, Chapman K D, Pirtle R M. Molecular cloning and functional expression of the gene for a cotton Delta-12 fatty acid desaturase (FAD2). Biochim Biophys Acta,2001,1522(2):122-129.
    101. Powell G L, Jung S, Bruner A C, Swartzbeck J L, Abbott A G. Molecular properties of the oleoyl-phosphatidylcholine desaturase from Arachis hypogaea L. Biochem Soc Trans,2000, 28(6):625-627.
    102. Poxleitner M, Rogers S W, Lacey S A, Browse J, Rogers J C. A role for caleosin in degradation of oil-body storage lipid during seed germination. Plant J,2006,47(6):917-933.
    103. Prathiba K M, Reddy M U. Nutrient composition of groundnut cultures (Arachis hypogaea L.) in relation to their kernel size. Plant Foods Hum Nutr,1994,45(4):365-3659.
    104. Puyaubert J, Dieryck W, Costaglioli P, Chevalier S, Breton A, Lessire R. Temporal gene expression of 3-ketoacyl-CoA reductase is different in high and in low erucic acid Brassica napus cultivars during seed development. Biochim Biophys Acta,2005,1687(1-3):152-163.
    105. Rawsthorne S. Carbon flux and fatty acid synthesis in plants. Progress in lipid research,2002, 41(2):182-196.
    106. Ray T K, Holly S P, Knauft D A, Abbott A G, Powell G L. The primary defect in developing seed from the high oleate variety of peanut (Arachis hypogaea L.) is the absence of Δ12-desaturase activity. Plant science,1993,91(1):15-21.
    107. Reed D W, Schafer U A, Covello P S. Characterization of the Brassica napus extraplastidial linoleate desaturase by expression in Saccharomyces cerevisiae. Plant Physiol,2000,122(3): 715-720.
    108. Reed K A, Sims C A, Gorbet D W, O'keefe SF. Storage water activity affects flavor fade in high and normal oleic peanuts. Food Research International,2002,35:769-774.
    109. Saito J, Yamada M, Watanabe T, Iida M, Kitagawa H, Takahata S, Ozawa T, Takeuchi Y, Ohsawa F. Crystal structure of enoyl-acyl carrier protein reductase (FabK) from Streptococcus pneumoniae reveals the binding mode of an inhibitor. Protein Sci,2008,17(4): 691-699.
    110. Salas J J, Ohlrogge J B. Characterization of substrate specificity of plant FatA and FatB acyl-ACP thioesterases. Arch Biochem Biophys,2002,403(1):25-34.
    111. Sasaki Y,Nagano Y. Plant acetyl-CoA carboxylase:structure, biosynthesis,regulation, and gene manipulation for plant breeding. Biosci Biotechnol Biochem,2004,68(6):1175~1184.
    112. Schierholt A, Rucker B, Becker H C. Inheritance of High Oleic Acid Mutations in Winter Oilseed Rape (Brassica napus L.). Crop science,2001,41:1444-1449.
    113. Schnurr J A, Shockey J M, Boer G J, Browse J A. Fatty Acid Export from the Chloroplast. Molecular Characterization of a Major Plastidial Acyl-Coenzyme A Synthetase from Arabidopsis. Plant Physiol,2002,129:1700-1709.
    114. Shockey J M, Gidda S K, Chapital D C, Kuan J C, Dhanoa P K, Bland J M, Rothstein S J, Mullen R T, Dyer J M. Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum. Plant Cell,2006,18(9):2294~2313.
    115. Stoujesdijk P A, Hurlstone C, Singh S P, Green A G. High-oleic Australian Brassica napes and Bjuncea varieties produced by co-suppression of endogenous △12-desaturases. Biochem Soc Trans,2000,28:938-940.
    116. Stoujesdijk P A, Singh S P, Liu Q, Hurlstone C J, Waterhouse P A, Green A G. hpRNA-mediated targeting of the Arabidopsis FAD2 gene gives highly efficient and stable silencing. Plant Physiol,2002,129:1723-1731.
    117. Sunilkumar G, Campbell L M, Hossen M, Connell J P, Hernandez E, ReddyA S, Smith C W, Rathore K S.A comprehensive study of the use of a homologous promoter in antisense cotton lines exhibiting a high seed oleic acid phenotype. Plant Biotechnol J,2005,3(3):319-330.
    118. Tai H H, Williams M, Iyengar A. Regulation of the beta-hydroxyacyl ACP dehydratase gene of Picea mariana by alternative splicing. Plant Cell Rep,2007,26(1):105-113.
    119. Tai Y P, Young C T. Genetic studies of peanut proteins and oils. J Am Oil Chem Soc,1975, 52:377-385.
    120. Talcott S T, Duncan C E, Pozo-Insfran D D, Gorbet D W. Polyphenolic and antioxidant changes during storage of normal, mid, and high oleic acid peanuts. Food Chem,2005, 89(1):77-84.
    121. Thelen J J, Ohlrogge J B. Metabolic Engineering of Fatty Acid Biosynthesis in Plants. Metabolic engineering,2002,4(1):12-21.
    122. Urie A L. Inheritance of high oleic acid in sunflower. Crop Sci,1985,25:986-989.
    123. Velasco L, Nabloussi A, Haro A D, Development of high-oleic, low-linolenic acid Ethiopian-mustard(Brassica carinata) germplasm. Theor Appl Genet,2003,107(5): 823-830.
    124. Verwoert 11, Brown A, Slabas A R, Stuitje A R. A Zea mays GTP-binding protein of the ARF family complements an Escherichia coli mutant with a temperature-sensitive malonyl-coenzyme A:acyl carrier protein transacylase. Plant Mol Biol,1995,27(3):629-633.
    125. Wang T W, Balsamo R A, Ratnayake C, Platt K A, Ting J T, Huang A H. Identification, subcellular localization, and developmental studies of oleosins in the anther of Brassica napus. Plant J,1997,11(3):475-487.
    126. Wheeler R A, Smith RL, Knauft DA. Microsomal polypeptide comparisons between high and normal oleic acid isogenic peanut lines using two-dimensional gel electrophoresis. Peanut Sci,1994,22:75-78.
    127. Worthington R E, Hammons R O. Variability in fatty acid composition among Arachis genotypes:a potential source of product improvement. J Am Oil Chem Soc,1977,54(2): 105A-108A.
    128. Wu G, Wu Y, Xiao L, Li X, Lu C. Zero erucic acid trait of rapeseed (Brassica napus L.) results from a deletion of four base pairs in the fatty acid elongase 1 gene. Theor Appl Genet, 2008,116(4):491-499.
    129. Yin D M, Cui D Q, Jia B. Construction of a high-efficient expression vector of Δ12 fatty acid desaturase in peanut and its prokaryotical expression. J Genet Genomics,2007,34(1):81-88.
    130. Yu S, Pan L. Comparison of the Δ12 fatty acid desaturase gene between high-oleic and normal-oleic peanut genotypes. J Genet Genomics,2008,35(11):679-685.
    131. Zhang D Y, Pirtle I L, Park S J, Nampaisansuk M, Neogi P, Wanjie S W, Pirtle R M, Chapman K D. Identification and expression of a new delta-12 fatty acid desaturase (FAD2-4) gene in upland cotton and its functional expression in yeast and Arabidopsis thaliana plants. Plant Physiol Biochem,2009,47(6):462-471.
    132. Zhang J T, Zhu J Q, Zhu Q, Liu H, Gao X S, Zhang H X. Fatty acid desaturase-6 (Fad6) is required for salt tolerance in Arabidopsis thaliana. Biochem Biophys Res Commun,2009, 390(3):469-474.
    133. Zheng PZ, William B A, et al. A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nature genetics,2008,40(3):367-72.
    134. Zhou P, Florova G, Reynolds K A. Polyketide synthase acyl carrier protein (ACP) as a substrate and a catalyst for malonyl ACP biosynthesis. Chem Biol,1999,6(8):577-584.
    135. Zlatanov M D, Angelova-Romova M J, Antova G A, Dimitrova R D, Momchilova S M, Nikolova-Damyanova B M. Variations in Fatty Acids, Phospholipids and Sterols During the Seed Development of a High Oleic Sunflower Variety. J Am Oil Chem Soc,2009, 86(9):867-875.
    136.安建平,牛一川.不同品种亚麻籽粒中主要脂肪酸含量的变化.植物生理学通讯,2006,42(1):122-126.
    137.丁锦平,韩柱强,周瑞阳,高国庆,杨玉萍.花生油酸亚油酸比值(O/L)的遗传分析.中国油料作物学报,2007,29(3):233-237.
    138.董娜,林良斌,马占强.农杆菌介导反义油酸脱饱和酶基因转化甘蓝型油菜.分子植物育种,2004,2(5):655-659.
    139.冯凯.hpRNA在花生脂肪酸组份改良中的应用:[硕士学位论文].长春:东北师范大学,2006.
    140.和江明,王敬乔,陈薇,李根泽.用EMS诱变和小孢子培养快速获得甘蓝型油菜高油酸种质材料的研究.西南农业学报,2003,16(02):34-36.
    141.胡亚平.油料作物油脂合成相关基因的转录、克隆和功能比较研究:[博士学位论文].武汉:中国农业科学院,2009.
    142.姜慧芳,段乃雄,任小平.花生种质资源的综合评价.中国油料作物学报,1998,20(3):31-35.
    143.姜慧芳,任小平,黄家权.中国花生小核心种质的建立及高油酸基因源的发掘.中国油料作物学报,2008b,30(3):294-299.
    144.李晓丹,曹应龙,胡亚平,肖玲,武玉花,吴刚,卢长明.花生种子发育过程中脂肪酸累积模式研究.中国油料作物学报,2009,(2):157-162.
    145.廖伯寿.花生在中国食物安全和农业发展中作用的经济学分析.粮食与油脂,2001,10-11.
    146.刘桂梅,梁泽萍.我国花生种质资源主要品质性状鉴定.中国油料,1993,1:18-21.
    147.石东乔,周奕华,张丽华,刘桂珍,陈正华.农杆菌介导的油菜脂肪酸调控基因工程研究.高技术通讯,2001,2:1-7.
    148.谭晓风,陈鸿鹏,张党权,曾艳玲,李魏.油茶FAD2基因全长cDNA的克隆和序列分析.林业科学,2008,44(3):70-75.
    149.万书波.中国花生栽培学.2003,上海科学技术出版社.
    150.王敬乔,陈薇,曾黎琼,和江明,董云松,寸守铣,李根泽.△12-脂肪酸去饱和酶基因(fad2)突变对油菜叶片表面结构和透性的影响.植物生理与分子生物学学报,2003,29(3):192-198.
    151.王镜岩,朱圣庚,徐长法.生物化学,北京:高等教育出版社,2002.
    152.肖钢,张宏军,彭琪,官春云.甘蓝型油菜油酸去饱和酶基因(fad2)多个拷贝的发现及分析.作物学报,2008,34(9):1563-1568.
    153.谢金喜.花生脂肪酸品质改良关键基因FAD2的克隆与特异表达载体构建:[硕士学位论文].福州:福建农林大学,2006.
    154.熊兴华.甘蓝型油菜高油酸基因工程研究:[博士学位论文].长沙:湖南农业大学.
    155.徐霞.高油酸花生基因工程育种的研究:[硕士学位论文].济南:山东大学,2006.
    156.姚云游.花生油与橄榄油营养价值的比较.中国油脂,2005,30(4):26-28.
    157.殷冬梅,崔党群.不同花生基因型脂肪酸去饱和酶基因序列分析.作物学报,2006.32:1466-1471.
    158.殷冬梅,杨海棠,台国琴,杨秋云,崔党群.花生油酸脱氢酶基因遗传转化体系的建立与表达分析.中国农业科学,2009,42(5):1827-1832.
    159.袁玉春,刘铜.大豆种子不同部位的脂肪酸组成.大豆科学,1998,17(4):373-376.
    160.张宏军,肖钢,谭太龙,李栒,官春云.EMS处理甘蓝型油菜(Brassica napus)获得高油酸材料.中国农业科学,2008,41(12):4016-4022.
    161.章元明,盖钧镒,王永军.利用P1、P2和DH或RIL群体联合分离分析的拓展.遗传,2001.23(5):467-470.
    162.章元明,盖钧镒.利用DH或RIL群体检测QTL体系并估计其遗传效应.遗传学报,2000,27(7):634-640.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700