用户名: 密码: 验证码:
基于点入渗参数计算土渠床渗漏损失的方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,我国农田灌溉仍以传统的地面灌溉为主,由明渠输水的灌溉面积占总灌溉面积的75%以上,每年由灌溉渠道损失的水量为占我国总用水量的33%。据山西省的估算,全省每年从渠道渗漏掉的水量约为20亿m3。渠道输水渗漏量的研究一直是农田水利工程领域重要的研究课题之一。
     本论文基于系统的非饱和土壤有压入渗试验,探索了非饱和土壤有压入渗的入渗特性、主导驱动力和影响非饱和土壤有压入渗特性的主要因素;在考斯加科夫(Kostiakov)公式的基础上,建立了非饱和土壤有压入渗的三阶段经验模型;建立了以土壤物理参数和积水入渗水头预测土壤入渗能力和入渗参数的模型,提出了预测渠道土壤入渗过程的方法;在分析典型渠道渗漏过程的基础上,提出了以渠床点入渗参数估算渠道输水渗漏量的方法;借助数值模拟的方法,建立了均质渠道二维入渗的土壤水分运动数学模型。研究结果表明:
     ⑴非饱和土壤水分有压入渗过程可用三阶段经验入渗模型表达。土水势梯度是土壤一维有压入渗的主导驱动力。压力势梯度则是有压入渗的主导驱动力之一。
     ⑵土壤水分有压入渗条件下,除了土壤质地、干容重、含水量这些常规影响因素外,积水入渗水头也是影响土壤水分入渗的主要因素之一。在影响非饱和土渠床入渗能力的四个因素中,干容重的影响最为明显,土壤质地的影响次之,积水入渗水头最弱。
     ⑶采用多元线性回归模型用常规物理参数对非饱和土壤入渗能力进行预报是可行的。以土壤物理性粘粒含量(小于0.02mm)、干容重、含水量和积水入渗水头作为预测量的变量可获得较好的预测结果。预测误差小于18%。
     ⑷当土壤质地、结构、含水量一定的情况下,根据建立的非饱和土壤入渗参数模型,入渗参数可以表达为积水入渗水头的一元线性函数。利用沿断面湿周积分的方法可求得渠道断面的入渗量随时间的关系函数,从而求得渠道的渗漏量。并借鉴现有经验公式中自由渗漏量与顶托渗漏量、防渗渠道渗漏量的关系式,可获得顶托和防渗渠道的渗漏量。
     ⑸借助土壤水动力学理论,建立了均质渠道二维入渗的定解问题,采用交替方向隐式差分格式(ADI格式)进行求解,应用土壤剖面含水率、土壤水湿润峰运移值和累积入渗量及入渗速率等指标的实测值与模型值对模型进行了验证。结果表明,两者具有较好的一致性,相对误差在15%以内。说明所建模型能比较真实地反映渠道土壤的水分运动情况。
     主要创新点:
     (1)基于考斯加科夫入渗模型建立了有压入渗三阶段经验模型,该模型更好地反映了有压入渗过程中入渗率变化特性,计算的累积入渗量误差在5%以内,与考斯加科夫三参数模型相比,可获得更高的模拟精度。
     (2)提出了点入渗参数与积水入渗水头间的函数关系,创建了利用点入渗参数,通过沿过水断面积分估算渠道输水损失量的方法。该计算模型通过入渗模型参数全面反映了渠道土质、干容重、含水量和水深对渗漏量的影响。与考斯加科夫公式计算结果相比较,计算结果可更真实地反映渠道渗漏量随时间的变化过程,并具有更高的精度。
     (3)借助土壤水动力学理论,构建了土渠床输水断面水分入渗的定解问题,实现了采用交替方向隐式差分格式(ADI格式)对定解问题进行求解。通过土壤剖面含水率、土壤水湿润峰运移值等指标的实测值与模型值计算值的比较,相对误差在15%以内。
     (4)建立了影响非饱和土壤水分有压入渗参数与各影响因素间的定量数学关系。分析得出:在影响非饱和土渠床入渗能力的四个因素中,干容重的影响最为明显,土壤质地的影响次之,积水入渗水头最弱。
     (5)采用多元线性回归模型用常规物理参数对非饱和土壤入渗能力进行预报是可行的。以土壤物理性粘粒含量(小于0.02mm)、干容重、含水量和积水入渗水头作为预测量的变量可获得较好的预测结果,初步实现了非饱和土壤水分有压入渗参数的预报。
     本研究以建立渠道渗漏量计算模型为目标,进行了土壤一维有压入渗量测定装置的研制,对非饱和土壤有压入渗条件下的入渗特性和主要影响因素进行了较为全面深入的研究,提出了以点入渗参数计算渠道输水损失的方法,但由于问题的复杂性和方法手段的有限性,许多方面的问题还未得到解决或者还停留在定性研究的水平上,还需要进一步进行更深入的研究。
At the present time, traditional surface irrigation method is still the most popular one in our country, and open channel are used for more than 75% of all surface irrigated area. The channel seepage losses accounts for 33% of water consumption each year, and it is estimated that the water amount of the channel seepage losses is 2 billion m3 in Shanxi Province each year. Therefore, the research on channel seepage has always been a significant topic in water-conservation measure in agriculture.
     Based on the the pressured water infiltration experiments of unsaturated soil, the basic features, driving forces and influencing factors of pressure infiltration of Unsaturated earth channel were analyzed. Based on the Kostiakov infiltration formula,a empirical model with three subsection formulas used for simulating the course of the pressured water Infiltration into unsaturated soil was offered. A predicting model that predicts irrigation capability of water and parameters of predicting model by soil physical parameters of channel and water head was set up and a method of predicting irrigation process was put forward. Meanwhile a calculation model of channel seepage losses was set up by analyzing process of a classic trapezoid-transect channel. With numerical simulation, A soil water movement model of homogeneous channels of two-dimensional infiltration was established. Research results indicate:
     (1) The unsaturated soil pressure infiltration process accord with an empirical model with three subsection formulas. Soil-water potential gradient is the dominant drive force for pressure infiltration, while the pressure potential gradient is one of the major drive forces for pressure infiltration.
     (2) The infiltration capacity of Unsaturated earth channel is influenced not only by these basic physics characteristics such as soil texture, soil density and soil moisture, but also by the water head in channel. Among these main factors, the influence of soil density is the most obvious one, the influence of soil texture comes the second, and the influence of water head is the weakest.
     (3) Infiltration capability and infiltration model parameters can be predicted by multivariate linear regression model. Taking soil texture, soil density and soil moisture, and water head as predicting variables, the predicted results are satisfactory. The relative error between simulated and measured values is less than 18%.
     (4) When soil texture, soil density and soil moisture are given, the parameters of the infiltration empirical mode are functions of water head. The relationship between channel seepage losses and time can be obtained by utilizing integration, and then seepage losses of the irrigation channel can be calculated by the relationship among free leakage, backwater leakage and impermeable channel leakage in exiting empirical formulas. And the channel seepage losses of backwater and lined channel can be obtained too.
     (5) With soil water dynamics theory, a solution of two-dimensional infiltration of homogeneous channel was established,and was solved by using alternating direction implicit difference scheme (ADI format). By means of computer simulation, results of simulation were verified by the measurement of soil moisture content, water front, cumulative infiltration and infiltration rate in laboratory test. The results showed that the simulation results agreed well with measurement values. The relative error between simulated and measured values is less than 15% and so the predictability of the model is acceptable.
     Main innovation:
     1) A pressure infiltration empirical model with three subsection was established based on Kaosijiakefu infiltration model. The model can goodly reflects the infiltration rate of change in infiltration characteristics of the course of the pressured water Infiltration into unsaturated soil, the calculated cumulative infiltration error is less than 5%, compared with Kaosijiakefu three-parameter model, this model has higher simulation accuracy.
     2) The functional relationship between point infiltration parameters and water infiltration head was offered. By utilizing integration , A channel estimation method using the point infiltration parameters of water loss was created. This calculation model fully reflects the effect on leakage affected by channel soil texture, dry bulk density, water content and water depth. The results can be more truly reflect the channel leakage process of change with time and has higher accuracy compared with the results calculated by the Kostiakov formula.
     3) Based on soil water dynamics theory, a solution of two-dimensional infiltration of homogeneous channel was definited,and definite solution of the problem was realized through alternating direction implicit difference scheme(ADIformat).Through the comparison between the field data of soil moisture content or soil moisture peak migration and model calculation data , relative error ban be within 15%.
     4) The quantitative mathematical relationships about the influence of pressured water infiltration parameters and the factors affecting in unsaturated soil was established.
     5) Pressured water infiltration parameters prediction of the unsaturated soil was preliminarily realized.
     Aimed at setting up the calculation model of channel seepage losses, the instrument which is used for measuring the one-dimensional pressured water infiltration has been worked out. The infiltration characteristics and major influence factors pressure infiltration of Unsaturated Soil were systematically explored in conditions of pressure infiltration. The method of calculating channel seepage loss through point parameters has been suggested. However, because of the complexity of the infiltration problem and limitation of means, various problems still haven’t been resolved or remain at the level of qualitative research . further intensive researches are needed.
引文
[1]郭元裕.农田水利学(第3版)[M].北京:中国水利水电出版社,1997.
    [2]李安国,建功,曲强.渠道防渗工程技术[M].北京:中国水利水电出版社,1998.
    [3]张蔚臻.灌溉渠道的渗漏及其对灌区地下水动态的影响[A].张蔚臻.张蔚臻论文集[C].武汉:武汉大学出版社, 2002. 12.
    [4] Bouwer H. Theory of Seepage from Open Channels, In A dvancs in Hudroscience[M]. New York:A cademic Press, 1996. 5.
    [5]薛禹群.地下水动力学原理[M].北京:地质出版社,1986.
    [6]张蔚榛.地下水与土壤水动力学[M].北京:中国水利电力出版社,1996.
    [7]雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社,1988.
    [8]克拉茨D B著,何丕承译.灌溉渠道衬砌[M].北京:水利电力出版社,1980.
    [9]罗玉峰,崔远来、郑祖金.河渠渗漏量计算方法研究进展[J].水科学进展,2005,16(3):444-449.
    [10]金永堂.渠道渗漏量计算与实验方法[C].北京:水利水电科学研究院,1986.
    [11]惠士博,谢森传,纪瑞森等.京密引渠渠渗漏对对南南邵乡地下水补给分析[J].北京水利,1994,3:21-26.
    [12]田士豪,李林荣,方彦军,等.静水法渠道测渗计算[J].农田水利与小水电,1995(8):14-17.
    [13]王少丽,Thielen R,李祥福等.渠道渗漏量的试验及分析方法[J].灌溉排水,1998,(2):39-42.
    [14] Rantz S E.Measurement and eomputation of stream flow,Measurement of stage and discharge[C].Geological Survey Water Supply Paper2175,1982,1:284.
    [15]陈亚新,冀北平,吴同顺,等.渠床土壤二维稳定入及渗漏损失计算[J].灌溉排水.1991 ,10(4):13-18.
    [16]荣丰涛,孟国霞,荣榕.关于渠道动水法测渗结果可信度的思考[J].中国农村水利水电,2003(3):28-30.
    [17]赵东辉.静水法渠道渗漏测试分析[J].防渗技术,1997,3(2):17-20.
    [18]段雷振.静水法试验测定托卡依干渠渗漏强度[J].水利科技与经济.2008,14(11):872-873.
    [19]王文焰,张建丰.田间土壤入渗试验装置的研究.《水土保持学报》, 1991, (4)
    [20]冶运涛,伍靖伟,王兴奎.双套环测定土壤渗透系数数值模拟分析[J].灌溉排水学报.2007,26(3):14-18.
    [21]雷声隆,罗强,张瑜芳,等.防渗渠道输水损失的估算[J].灌溉排水学报,2003,22(6):7—10
    [22]门宝辉.渠道流量损失及水利用系数公式的探讨[J].中国农村水利水电,2OO0(2):33—34.
    [23]谢崇宝,J M Lano,崔远来,等.大中型灌区干渠输配水渗漏损失经验公式探讨[J].中国农村水利水电,2003(2):20-22.
    [24]白美健,谢崇宝.渠道输水损失计算公式中用平均流量代替净流量的误差分析[J].中国农村水利水电,2001(6):33—34.
    [25]李俊杰.浅谈农田渠道设计中输水损失量计算方法[J].广东水利水电.2009,6:25-26.
    [26] Ernst L F.The Calculation of Ground Water Flow Between Parallel Open Conduits[A] . Proc . and Information , Committee for HydrologicalRes[C].TNO,1963,8,48—68.
    [27]江崇安,高华,范守伟,等.对渠道渗漏量计算方法的探讨[J].节水灌溉,2005(5):28-32.
    [28]王少丽,瞿兴业.防渗渠道顶托渗漏量计算方法的理论探讨[J].水利学报,2008,39(4):476-482
    [29]雷志栋,胡和平,杨诗秀.土壤水研究进展与评述[J].水科学进展,1999,10(3):311-318.
    [30]雷志栋,杨诗秀.非饱和土壤水一维流动的数值计算[J].土壤学报.1982,19(2):141-153.
    [31]杨诗秀,雷志栋,谢森传.均质土壤一维非饱和流动通用程序[J].土壤学报.1985,22(2):24-35.
    [32]任理,袁福生,张福锁.土壤中硝态氮淋洗的传递函数模拟和预报[J].水利学报.2001,4:21-27.
    [33]池宝亮,黄学芳,张冬梅,等.点源地下滴灌土壤水分运动数值模拟及验证[J],农业工程学报,2005,21(3):56-59.
    [34]王超,顾斌杰.非饱和土壤溶质迁移转化模型参数优化估算[J].水科学进展.2002,13(2):184-190.
    [35]余艳玲,熊耀湘,文俊.降雨条件下旱地土壤水分运动的数值模拟[J].中国农村水利水电.2003,11:19-21.
    [36]赵梦玲,张德生,窦建坤,李渊,等.二维非饱和土壤水分运动的数值模拟[J].纺织高校基础科学学报.2005,18(3):254-257.
    [37]李焕荣,罗振东,谢正辉,等.朱江非饱和土壤水流问题的广义差分法及其数值模拟[J].计算数学,2006,28(3):321-336.
    [38]吕岁菊,乔英,刘国林.一维非饱和土壤溶质运移的有限体积法数值模拟[J].水土保持研究.2008,15(4):33-36.
    [39]郭维东,李宝筏,纪志军.坐水播种时耕层土壤水分入渗的二维数值模拟[J].农业工程学报,2001,17(2):24-27.
    [40]郝哲,郭仁东,王来贵,等.非饱和土壤渗透自适应网格法数值计算[J].辽宁工程技术大学学报.2008,3:40-42.
    [41]苏永红,朱高峰,冯起,等.蒸发条件下一维垂向非饱和土壤水分运动的数值模拟——以额济纳荒漠河岸胡杨林为例[J].中国沙漠.2009,2:46-50.
    [42]高新科,康绍忠,张富仓.入渗条件下非饱和土壤水分运动的数值模拟[J],西北水资源与水工程,1995,6(4):11-17.
    [43]谢正辉,曾庆存,戴永久,等.有限元集中质量法在非饱和土壤水流中的应用[J].气候与环境研究.1998,1:74-82.
    [44]杨红娟,倪广恒,胡和平,刘新兵.渠道渗漏的数值模拟分析[J].中国农村水利水电, 2005,8:7-8.
    [45]高建勇;陈艳霞.一维非饱和土壤水分运动的数值模拟[J].安徽农业科学.2008,10:274-354.
    [46]袁建平,蒋定生.黄土丘陵沟壑区小流域降雨入渗产流点面转化[J].地理科学.2001,3:71-75.
    [47]魏忠义,王治国,段喜明,等.河沟流域水分入渗的数学模型[J].水土保持研究,2000,4:34-37.
    [48]李裕元,邵明安.土壤翻耕对坡地水分转化与产流产沙特征的影响[J].农业工程学报,2003,1:46-50.
    [49]张耀峰,张德生,武新乾.一维非饱和土壤水分运动的数值模拟[J].纺织高校基础科学学报,2004,17(2):123-127.
    [50]张宏仁.有限差分法的改进[J].水文地质工程地质,1994,2:27-30.
    [51]张思聪,惠示博,雷志栋,等.水平非饱和土壤水二维运动的准解析解[J].水利学报,1986,17(3):54-60.
    [52]袁镒吾.水平非饱和土壤水二维运动的近似解析解[J].四川工业学院学报,1990,9(1~2):92-98.
    [53]李洪,黄国强,李鑫钢.自然条件下土壤不饱和区中水含量分布模拟[J].农业环境科学学报,2004,6:193-195.
    [54]康绍忠,张书函,张富仑等.积水入渗条件下土壤水分动态变化的野外观测与分析[J].水土保持通报,1992,17(1).7-12.
    [55]张光辉,邵明安.用土壤物理特性推求Green-Ampt入渗模型中吸力参数Sf[J].土壤学报,2000,37(4):553-557.
    [56]李援农,费良军.土壤空气压力影响下的非饱和入渗格林一安姆特模型[J].水利学报,2005.36(6):733-736.
    [57]王文焰,汪志荣,王全九,等.黄土中Green-Ampt入渗模型的改进与验证[J].水利学报,2003,(5):30-33.
    [58]马娟娟,孙西欢,李占斌.入渗水头对土壤入渗参数的影响[J].灌溉排水学报,2004,5:55-57.
    [59]王全九,来剑斌,李毅.Green-Ampt模型与Philip入渗模型的对比分析[J].农业工程学报,2002,18(2):13-16.
    [60]邵明安,王全九.推求土壤水分运动参数的简单入渗法Ⅰ理论分析[J].土壤学报.2000,37(1):1-7.
    [61]邵明安,王全九.推求土壤水分运动参数的简单入渗法Ⅰ实验实验验证[J].土壤学报.2000,37(2):217-224.
    [62]黄元仿,李韵珠.土壤水力性质的估算——土壤转换函数[J].土壤学报.2002,39(4):517-523.
    [63]朱安宁,张佳宝,程竹华.轻质土壤水分特征曲线估计的简便方法[J].土壤通报,2003,4:14-19.
    [64]刘建立,徐绍辉.非相似介质方法在估计土壤水分特征曲线中的应用[J].水利学报,2003,4:82-86.
    [65]刘继龙,马孝义,张振华.土壤入渗特性的空间变异性及土壤转换函数[J].水科学进展,2010,2:72-79.
    [66]陈晓燕,陆桂华,秦福兴.土壤传递函数法在确定田间持水量中的应用[J].河海大学学报,2005,2:55-57.
    [67] Osman Y Z.Modeling stream-aquifer seepage in an alluvial aquifer:an improved loosing-stream package for MODFLOW[J] . Journal of Hy-drology,2002,264:69—86.
    [68] Mohamed Fawzy Bakry and Ahmed Abd EL-Megeed Awad .Practical Estimation of Seepage Losses Along Earthen Canals in Egypt[J]. Water Resources Management,1997,197–206.
    [69] Eric Zechner,Walter J. Frielingsdorf,Evaluating the use of canal seepage and solute concentration observations for aquifer parameter estimation,Journal of Hydrology,2004,289:62-77.
    [70]樊贵盛,郑秀清,潘光在.地下水埋深对冻融土壤水分入渗特性影响的试验研究[J].水利学报,1999,3(3):21-26.
    [71] Osman Y Z.Modeling stream-aquifer seepage in an alluvial aquifer:an improved loosing-stream package for MODFLOW[J] . Journal of Hy-drology,2002,264:69—86.
    [72] ICID.Controlling Seepage losses from irrigation canal:Worldwide survey[C].New Delhi,1967.
    [73] Doorenbos J A.Literature survey of seepage in canal,PreliminaryReport[A] . International Institute fro Land Reclamation and Improvement[C].Wageningen,the Netherlands,1963.
    [74]荣丰涛.关于如何用动水法测渠道渗漏的具体意见[J].山西水利科技,2008,2:1-3.
    [75]周录文.渠系渗漏计算中若千问题的探讨[J].甘肃水利水电技术,2003,39(2):105-109.
    [76]任可,王红雨.灌区输水渠道渗漏损失测算与分析[J].中国农村水利水电,2006,12:16-20.
    [77]贾宏伟,卞祖铭,赵晓波.渠道渗漏的静水测试法[J].节水灌溉,2007,8:43-44.
    [78]娄宗科,张慧莉,李宗利,等.田间灌溉渠道防渗效果试验研究[J].水土保持研究,2002,9(2):23-25.
    [79]崔远来,谭芳,王建漳.不同尺度首尾法及动水法测算灌溉水利用系数对比研究[J].灌溉排水学报.2010,29(1):5-10.
    [80]张新民,王根绪,胡想全.优化技术在土壤入渗参数计算中的应用[J].灌溉排水学报,2004,23(6):52-54.
    [81]樊贵盛.《冻融土壤水分入渗规律与冬灌灌水过程研究》.中国农业大学博士论文.2001
    [82]华孟,王坚,土壤物理学,北京:北京农业大学出版社,1993.
    [83]王富庆,沈荣开.新型智能土壤入渗特性试验仪[J].中国农村水利水电,1998.9:10-11.
    [84]解文艳,樊贵盛.土壤质地对土壤入渗能力的影响[J].太原理工大学学报,2004,35(5):537-540.
    [85]王文焰,张建丰,等.砂层在黄土中的减渗作用及其计算[J].水利学报,2005,36(6):650-655.
    [86]刘奉银,张昭增.湿路径对非饱和土水气渗透系数的影晌研究[J].水利学报,2008,39(8):934-939.
    [87]樊贵盛,贾宏骥,李海燕.影响冻融土壤水分入渗特性主要因素的试验研究[J].农业工程学报,1999,15(4):88-94.
    [88]陆垂裕,杨金忠.入渗条件下地表积水问题的理论分析及应用[J].水动力学研究与进展,2004,19(1):65-70..
    [89]荣丰涛.议论考斯加可夫经验公式[J].山西水利科技,2004(2):7-10.
    [90] Luo Y F,Khan S,Cui Y L,et a1.Understanding transienflosses from irrigation supply systems in the Yelow River Basin Using a surface—groundwater interaction model[A].Proceedings of MODSIM 2003一International Congress on Modeling and Simulation , Townsvile ,Queensland[C].Australia.2003,242—247.
    [91] S.G.Gikoumakis & G.P.Tsakiris.Quick estimation of hydraulic conductivity in unsaturated sandy loam soil. Irrigation and Drainage Systems.1999,13: 349-359
    [92]李文斌,樊贵盛,李雪转,等.地面灌溉优化及实用手册[M].北京:中国水利水电出版社,2007.
    [93]张振华,谢恒星,刘继龙,等.基于图形特性的Green-Ampt入渗模型关键参数Sf和Ks的简化求解[J].土壤学报,2006,43(2):203-207.
    [94]解文艳,樊贵盛.土壤含水量对土壤入渗能力的影响[J].太原理工大学学报,2004 ,35 (3) :272-275.
    [95] Rastogi A K,Prasad B. FEM modelling to investigate seepage losses from the lined Nadiad branch canal[J]. Journal of Hydrology ,1992,138:153-168.
    [96] Wachyan E,Rushton K R. Water losses from irrigation canals[J]. Journal of Hydrology,1987,92:275-288.
    [97]樊贵盛.大田土壤冻融条件下入渗特性的试验研究[J] .土壤侵蚀与水土保持学报,1997 ,3(3) :31-37.
    [98]樊贵盛.季节性冻融土壤的冻融特性和减渗特性的研究[J].土壤学报,2000,37(1) :14-32.
    [99]樊贵盛.土壤质地对间歇入渗减渗效果的影响[J].农业工程学报,1997,14(2) :250-252.
    [100] N Foround ,Gerge E St ,entz T. Determination of infiltration ratefrom border irrigation advance and recession trajectories[J]. Agricultural Water Management ,1996 ,30 :133-142.
    [101]樊贵盛,郑秀清,潘光在.地下水埋深对冻融土壤水分入渗特性影响的试验研究[J].水利学报,1999 ,3 (3) :21-26.
    [102]陆垂裕,杨金忠.入渗条件下地表积水问题的理论分析及应用[J].水动力学研究与进展,2004,19(1):65-70.
    [103] SIMUNEK, J . VOGELT. and VANGENUCHTENMTH. The SWMS-2D Code for Simulating Water Flow and Solute Transport in Two - Dimensional Variably Saturated Media Version 1. 21 [R] . U.S. Salinity Laboratory , Research Report NO. 132 , February 1994. 9-11.
    [104] JAYAWARDANE N S , BLACKWELL J , COOK, F. J , NICOLLG and WALLETTD. Final Report on Pollutant Removal by The FILTETR System during The Period November 1994 to November 1996 [R] . CSIRO Land and Water , Consultancy Report NO. 97-80.
    [105]郑秀清,樊贵盛,邢述彦.水分在季节性非饱和冻融土壤中的运动[M].北京:地质出版社,2002.
    [106]樊贵盛,郑秀清,贾宏骥.季节性冻融土壤的冻融过程和入渗特性的试验研究.土壤学报, 2000,37(1).
    [107]樊贵盛,贾宏骥,李海燕.影响冻融土壤水分入渗特性主要因素的试验研究,农业工程学报,1999,16(4).
    [108] D Swamendruber.Derivation of a two-term inflitration equation hom the Green-Ampt model[J].Journal 0f Hydrology,20OO.236: 247—251.
    [109] Shhmo P,Neuman.Wetting Front Pressure Head in the Infiltration Model of Green and Ampt[J].Water ResourcesResearch,1976,12 (3):564—566.
    [110] JolIll S,Selker ete.Green and Ampt infdtration into Soil of Variable Pore Size with Depth [J].Water Resources Research,1999,35(5):l685—1688.
    [111]张建丰,王文焰,汪志荣等.具有砂质夹层的土壤入渗计算[J].农业工程学报,2004,20(2):27-30.
    [112]王文焰,张建丰.汪志荣.等.砂层在黄土中的阻水性及减渗性的研究IJ].农业工程学报.1995.11(1):104一l10.
    [113]邢述彦.灌溉水温对冻融土入渗规律的影响[J].农业工程学报,2002,18(2):41-44.
    [114]冯锦萍,樊贵盛.土壤水分入渗年变化特性的试验研究[J].太原理工大学学报.2003,34(1):16-19.
    [115]王红闪,黄明斌,董翠云.用philip模型参数推求湿润锋平均基质吸力Sf准确性[J].水土保持通报,2004,24(2):41-45.
    [116]董艳慧,杨路华,卜卿,等. Green-Ampt两阶段模型的平移及衔接[J],中国农村水利水电,2007,12:5-8.
    [117]毛丽丽,张心平,雷延武,等.用水平土柱与Green-Ampt模型方法测量土壤入渗性能的原理与误差[J].农业工程学报.2007,23(12):6-10.
    [118]汪荣鑫,数理统计,西安:西安交通大学出版社,1986.
    [119] Kincaid,D.C.,Heerman,D.F. and kruse,E.G.,Hydrodynamics of Border Irrigation,Transaction of the ASAE,1972,Vol.15,No.IR4.
    [120] Nikolass D.,Datopodes and Theodor Strelkoff, Dimensionless Solution of Border Irrigation Advance. J. of the Irrigation and Drainage Div. , 1977,ASCE,Vol.103,No.IR4.
    [121]王慧芳,邵明安.含碎石土壤水分入渗试验研究[J].水科学进展,2006,17(5):604-609.
    [122]胡克林,肖新华,李保国.不同类型下边界条件对模拟灌溉农田水分渗漏的影响[J].水科学进展,2006,17(5):665-670.
    [123] GIAKOUMAKIS SG , TSAKIRIS GP . Quick estimation of hydraulic conductivity in unsaturated sandy loam soil[J]. Irrigation and Drainage Systems.1999,13(4): 349-359.
    [124] BHARATI L,LEE KH,ISENHART TM,et a1.Soil-water infiltration under crops, pasture, and established riparian buffer in Midwestern USA [J].Agroforestry Systems, 2002,56(3): 249-257.
    [125] BARZEGAR A R,YOUSEFI A, DARYASHENAS A.The effect of addition ofdifferent amounts and types of organic materials on soil physical properties and yield of wheat[J]. Plant and Soil,2002, 247(2): 295-301.
    [126] Mualem Y.. A new model for predicting the hydrologic conductivity of unsaturated porous media. Water Resour. Res. l2: 5l3-522,1976
    [127] Watson, K.K. An instantaneous profile method for determining the hydraulic conductivity of unsaturated porous materials. Water Resour. Res. 2: 709-7l5.
    [128]陈洪松,邵明安,王克林.土壤初始含水率对坡面降雨入渗及土壤水分再分布的影响[J].农业工程学报,2006,22(1):44-47.
    [129]王辉,王全九,邵明安.前期土壤含水量对坡面产流产沙特性影响的模拟实验[J].农业工程学报,2008,24(5):65-68.
    [130]张红梅.饱和一非饱和土中氟运移规律动态实验及数值模拟研究[D].河海大学博士学位论文,2005.
    [131]钱天伟,李书绅,武贵宾.地下水多组分反映溶质迁移模型的研究进展[J].水科学进展,2002,13(1):116-121
    [132]薛禹群,吴吉春.面临21世纪的中国地下水模拟问题[J].水文地质工程地质,1999,(5):1-3.
    [133]王金生,杨志峰,陈家军,等.包气带土壤水分滞留特征研究[J].水利学报,2000,(2):1-6.
    [134]徐绍辉,张佳宝.求土壤水力特征的一种迭代方法[[J].土壤学报,2000,37(3):271-274.
    [135]刘洁,毛昶熙.堤坝饱和非饱和渗流计算的有限单元法[J].水利水运科学研究,1997,(7):69-82.
    [136] Zhang Danrong. Measurement Scale Effects on the Determination of Sorption and Degradation Parameters for Modelling Chemical Transport in the Soil[D].Switzerland:University of Bern, 2003:35-52.
    [137]张富仓,康绍忠,潘英华.饱和一非饱和土壤中吸附性溶质水动力弥散实验研究[J].水利学报,2002(3):84-90
    [138]胡再强.黄土结构性模型及黄土渠道的浸水变形试脸与数值分析[D].西安理工大学博士学位论文,2000.
    [139]张培文.降雨条件下饱和一非饱和土径流渗流耦合数值模拟研究[D].大连理工大学博士学位论文,2002.
    [140]许秀元.河渠影响下土壤水一地下水联合运动的模拟研究[J].水利学报,1997,(12):21-29.
    [141]徐千军,张建红.确定稳定渗流自由面位置的一种简便方法[J].水动力学研究与进展,1999,14(4):418-423.
    [142]王少丽,李福祥,张友义.农田排水条件下降雨补给与地下水埋深关系的试验研究[J].灌溉排水,2000,19(3):54-57.
    [143] Vinod Kumar,C.S.Jaiswal,H.S.Chauhan. Numerical solution of 2D free surface flow to ditch drains in anisotropic soils. Journal of irrigation and drainage engineering.2000,(7):250-254.
    [144]胡克林,肖新华,李保国.不同类型下边界条件对模拟灌溉农田水分渗漏的影响[J].水科学进展,2006,17(5):665-670.
    [145]侯宪东,汪志荣,张建丰.非饱和土壤水分运动数值模拟研究综述[J].水资源与水工程学报,2006,17(4):41-45.
    [146]郭仁东,吴昊,朴芬淑.非饱和土壤渗透方程的简化差分计算[J].水文,2001,21(3):20-22.
    [147]马孝义,徐秋宁,王文娥.梯形渠道渠底土层水分溶质运移模拟研究[J],水土保持研究,2002,9(2):29-33.
    [148]程建钢等,科学运算FORTRAN子程序库,天则出版社,1987.
    [149]谭浩强等,FORTRAN77结构化程序设计,高等教育出版社,1984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700