用户名: 密码: 验证码:
基于地统计学方法和Scorpan模型的土壤有机质空间模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤有机质是植物养分的主要来源,也是地球碳库中参与全球碳循环的一个重要组成部分。准确地估计土壤有机质空间变异性对于土壤质量评价和固碳潜力评估很重要,这对于农业管理和环境研究具有重要意义。土壤有机质具有空间变异性,它受土壤自身差异、地形和植被等的影响。近年来采用空间辅助信息来提高土壤属性预测的精度已成为计量土壤学的热点,而把遥感数据、地形数据等环境因素加入到土壤属性空间模拟中更是研究的一个发展方向。尽管借助辅助数据对于土壤有机质的空间变异性研究已有若干,但多是对于地形平坦的区域,而对于在区域尺度上地形较为复杂的土壤属性的空间分布特征的研究不多见,而对遥感数据和地形数据及其衍生数据进行数据挖掘,获取更多辅助信息从而提高对土壤属性模拟精度,也正是目前数字土壤研究的重点。因此本文结合3S技术,分别采用不同分辨率的DEM和较高分辨率的多光谱遥感影像,提取相关地形因子与遥感指数,分析土壤有机质与这些环境因子之间的关系,并选取协同克里金、回归克里金进行土壤有机质空间分布模拟,并与普通克里金进行比较研究,以寻求提高土壤属性空间变异预测精度的方法。
     论文先就DEM对土壤有机质空间模拟的影响进行了分析。选取分辨率为30m和90m的DEM,借助GIS生成坡度、坡向、地形湿度指数等衍生属性。然后提取采样点对应的地形属性值,并分析其与土壤有机质之间的相关性。经过分析发现地形湿度指数与有机质之间具有最高的相关系数,而采用多流向算法得到的地形湿度指数与有机质的相关性比采用单流向算法得到的地形湿度指数与有机质的相关性强。在此基础上,论文将基于不同算法的地形湿度指数分别作为辅助数据在回归克里金和协同克里金方法中加以应用,对研究区域的土壤有机质进行空间模拟,并将模拟结果与采用普通克里金方法得到结果进行对比研究。
     本文还分析了TM影像对土壤有机质空间模拟的影响研究。论文首先选取了研究区域2006年8月19日的TM影像,经过辐射校正、大气校正、投影转换后,进行穗帽变换,并提取植被指数。然后提取采样点对应的遥感信息,分析其与有机质含量之间的相关性。通过分析发现波段5反射率与有机质之间具有较强的相关性。论文采用协同克里金方法,以波段5反射率为辅助信息,模拟研究区土壤有机质空间分布,并采用验证数据集进行精度验证,最后与普通克里金的结果进行比较。
     本文的主要结论如下:(1)地形湿度指数与有机质之间具有较强的相关性,而地形湿度指数与有机质之间的相关性因DEM分辨率不同而不同,基于较高精度的DEM生成的辅助信息对提高预测精度效果明显。(2)当辅助变量与土壤属性之间相关性不强时,协同克里金的效果要比回归克里金效果要好。(3)以TM影像的波段信息,反映了地表植被的生长状况,在一定程度上能够间接地反映了土壤有机质状况。(4)以遥感信息为辅助变量的协同克里金方法对区域土壤有机质空间模拟效果要好于普通克里金,表明遥感数据作为辅助变量能够提高土壤有机质预测精度和可靠性。
     本文的主要创新点:(1)基于单流向算法和多流向算法的地形湿度指数在不同克里金插值方法中应用对土壤有机质空间模拟精度的影响研究对计量土壤学具有一定的理论价值。(2)在较大尺度上采用不同的栅格大小的DEM如何影响其对土壤特性的预测还并没有定论,而研究不同栅格单元的大小对土壤属性预测的影响的研究尚不多见。因此本文的研究对于土壤空间变异理论研究提供了案例,对丰富土壤空间变异理论具有一定意义。(3)借助影像分析NDVI从而间接反映出较大区域上土壤有机质空间分布特征。该研究是在较大尺度上一次方法的探索,对于土壤属性空间变异研究具有一定的理论指导。
Soil organic matter is a major source of plant nutrients and a major reservoir in the global C-cycle. Accurate estimate of spatial variability of soil organic matter is essential to evaluate soil quality and assess the carbon sequestration potential from field to regional scales, which is important for agricultural management and environment research on terrestrial sequestration of atmospheric carbon. Soil organic matter, influenced by natural soil variability and topography, is often spatially variable. Recently utilizing spatially correlated secondary information to improve the accuracy of prediction of soil properties has received more attention in pedometrics. Although some studies have been conducted to identify the spatial pattern of soil properties distribution in low-relief areas, only little is known about spatial distribution of the soil properties in more complicated areas in Northeast China. In order to provide adequate soil information for the modeling of landscape process, such as soil erosion, soil quality evaluation and plant growth, this study investigates to what extent cheap and readily available ancillary information derived from digital elevation models and remote sensing data can be use to support soil mapping respectively, and to indicate soil characteristics on the regional scale. Therefore, the terrain attributes and remote sensing indices are derived from different resolution DEM and remote sensing image respectively by 3S technology, the correlations between soil organic matter and derived secondary variables are compared and mapping results using different kriging strategies are presented.
     In this paper, we firstly study the impact of DEM on SOM mapping by implementing different kriging methods in which DEM and derived attributes are employed as secondary variables. The DEM with the resolution of 30m and 90m are selected, and several corresponding terrain attributes are computed by GIS. And the correlations between the derived secondary variables and SOM are compared. It is found that TWI based on MFD algorithm showed a stronger correlation with SOM than TWI base on D8 algorithm. Then, to compare their performance in different SOM mapping strategies, we designated TWI based on different algorithm as exhaustive secondary variables and employed OK, RK and CK for spatial prediction.
     This study was conducted to evaluated and compare spatial estimation by kriging and cokriging with remotely sensed data to predict SOM. To predict SOM in the study area using remotely sensed data as auxiliary variables, we selected a Landsat Thematic Mapper (TM) image acquired on 18 Aug. 2006. Several vegetation indices and tasseled cap transformation were calculated after the image preprocessing. And the relationship between SOM and remotely sensed data was estimated. Strongest correlations were found between the Landsat spectral reflectance of B5 and SOM content. Then we predicted the SOM using the kriging and cokriging models based on the B5 as secondary variables. And the performance of kriging and cokriging was assessed.
     The main conclusions of this paper are as follows: (1) Stronger correlations were found between topographic wetness index and SOM, and the correlation varied with the DEM resolution. The secondary variables derived from higher resolution DEM improved the prediction accuracy obviously. (2) Cokriging performed better than regression kriging when secondary variables do not have strong enough correlations with the primary variable. (3) The vegetation condition revealde by TM images can reflect SOM distribution indirectly. (4) The result showed cokriging with remotedly sensed data was better than kriging in SOM prediction, and the cokriging approach indicated that remotely sensed data have the potential as auxiliary variables for improving the accuracy and reliability of SOM prediction.
     The main innovation of this study is as follows: (1) the study which incorporated TWIs base on SFD and MFD algorithms into different kriging methods to predict SOM has a theoretic value, few studies have characterized explicitly the impact of different TWI algorithms on SOM mapping. (2) How to influence the performance of SOM prediction with different resolution DEM as secondary variable is not conclusive in larger scale, and the research of comparing the SOM prediction performance with different resolution DEM is few. Thus it provided a case study on the theory of soil attributes spatial variability, and it is significant to the development of theory about soil characteristics spatial variability. (3) The NDVI can indirectly the spatial variability of soil organic matter. It is a method exploration in a large scale. The result provides guidance for soil spatial variability study.
引文
1.白由路,金继运,杨俐苹.不同尺度的土壤养分变异特征与管理.精准农业与土壤养分管理[M].北京:中国大地出版社,2001.
    2.曹慧,臧波.太湖流域丘陵地区土城养分的空间变异[J].土壤,2002,34(4):201-205.
    3.陈立平.精准农业变量施肥理论与试验研究[陈立平博士学位论文].北京:中国农业大学,2003.
    4.程先富,史学正,于东升,等.基于GIS的土壤全氮空间分布估算[J].地理研究, 2007, 26(1):110-116.
    5.程先富,史学正,于东升,等.江西省兴国县土壤全氮和有机质的空间变异及其分布格局[J].应用与环境生物学报.2004,10(1):64-67.
    6.程先富,史学正.江西省兴国县土壤全氮和有机质的空间变异及其分布格局[J].应用与环境生物学报,2004,10(l):64-67.
    7.党安荣,王晓栋,陈晓峰,张建宝编著.ERDAS IMAGINE遥感图像处理方法[M].北京:清华大学出版社,2003.
    8.高志海,魏怀东,丁峰.TM影像VI提取植被信息技术研究[J].干旱区资源与环境,1998,
    13(4):98-104.
    9.龚元石,廖超子,李保国.土壤含水量和容重的空间变异及其分形特征[J].土壤学报,1998,35(1):10-15.
    10.郭旭东,傅伯杰,马克明等.基于GIS和地统计学的土壤养分空间变异特征研究—以河北省遵化市为例[J].应用生态学报,2000,11(4):557-563.
    11.何凯涛,辜华良.地质统计滂中的估值技术和条件模拟[J].世界地质,1997,16(3):83-100.
    12.何勇,张淑娟,方慧.基于人工神经网络的田间信息插值方法研究[J].农业工程学报,2004,20(3):120-123.
    13.胡大伟,卞新民,李思米,等.基于神经网络的农田土壤重金属空间分布分析[J].农业环境科学学报,2007,26(1):216-223.
    14.胡克林,李保国,陈德立,等.农田土壤水分和盐分的空间变异性及其协同克立格估值[J].水科学进展,2001,12(4):460- 466.
    15.胡克林,李保国,林启美,等.农田土壤养分的空间变异性特征[J].农业工程学报,1999,15(3):33-38.
    16.黄绍文,金继运.县级区域粮田土壤养分空间变异与分区管理技术研究[J].土壤学报,2003,40:79-88.
    17.黄绍文,金继运.县级区域土壤养分空间变异与分区管理技术研究,精准农业与土壤养分管理[M].北京:中国大地出版社,2001a,227-240.
    18.黄绍文,金继运.乡(镇)级区域土壤养分空间变异与分区管理技术研究,精准农业与土壤养分管理[M].北京:中国大地出版社,200lb,248-259.
    19.姜城,杨俐苹,金继运,等.土壤养分变异与合理取样数量[J].植物营养与肥料学报, 2001,7(3): 262-270.
    20.姜勇,李琪,张晓珂,等.利用辅助变量对污染土壤锌分布的克里格估值[J].应用生态学报, 2006, 17(1): 97-101.
    21.姜勇,梁文举,李琪.利用与回归模型相结合的克里格方法对农田土壤有机碳的估值及制图[J].水土保持学报.2005,19(5):97-126.
    22.姜勇,梁文举,闻大中.沈阳郊区农业土壤中微量元素[M].北京:中国农业科学技术出版社,2003.
    23.雷能忠,王心源,蒋锦刚,等.基于BP神经网络插值的土壤全氮空间变异[J].农业工程学报,2008,24(11) :130-134.
    24.李艳,史舟,王人潮,等.海涂土壤剖面电导率的协同克立格法估值及不同取样数目的比较研究[J].土壤学报,2004,41 (3):434- 443.
    25.李保国,李卫东,石元春.冲积平原上区域土壤质地层次的某些分布特征[J].土壤学报,1998,35(4):433-440.
    26.李哈滨,伍业刚.景观生态学的数量研究方法,当代生态学博论(刘建国主编)[M].北京:中国科学技术出版社,1992.
    27.李菊梅,李生秀.几种营养元素在土壤中的空间变异[J].干旱地区农业研究,1998,16(2):58-64.
    28.李丽霞,郜艳晖,周舒冬,等.广义加性模型及其应用[J].中国卫生统计,2007,24(3):243-244.
    29.李世清,高亚军,李生秀.土壤养分的空间变异性及确定样本容量的研究[J].土壤与环境,2000,9(l):56-59.
    30.李翔,潘瑜春,赵春江,等.利用不同方法估测土壤有机质及其对采样数的敏感性分析[J].地理科学,2007,27(5):689-694.
    31.李晓燕,张树文.吉林省德惠市土壤速效钾的空间分析及不同插值方法的比较[J].水土保持学报,2004,18(4):97-100.
    32.李艳,史舟,程街亮,等.辅助时序数据用于土壤盐分空间预测及采样研究[J].农业工程学报,2006,22(6):49-55.
    33.李艳,史舟,程街亮,等.辅助时序数据用于土壤盐分空间预测及采样研究[J].农业工程学报,2006,22(6):49-55.
    34.李艳,史舟,吴次芳,等.基于模糊聚类分析的田间精确管理分区研究[J].中国农业科学,2007,40(1).
    35.李志林,朱庆.数字高程模型(第二版)[M].武汉:武汉大学出版社,2003,96-97.
    36.连纲,郭旭东,傅伯杰等.黄土高原小流域土壤养分空间变异特征及预测[J].生态学报,2008,28(3):946-954.
    37.梁春祥,姚贤良.华中丘陵红壤物理性质空间变异性的研究[J].土壤学报,1993,30(1):69-78.
    38.刘付程,郭衍游,闫晓波.土壤属性空间预测的广义回归神经网络方法研究[J].淮海工学院学报(自然科学版),2008,17(3):68-71.
    39.刘付程,郭衍游,闫晓波.土壤属性空间预测的广义回归神经网络方法研究[J].淮海工学院学报(自然科学版),2008,17(1):68-71.
    40.刘付程,史学正,潘贤章,等.苏南典型地区土壤颗粒的空间变异特征[J].土壤通报,2003,(34)4:246-249.
    41.刘志华,常禹,贺红士,陈宏伟.基于辅助变量的森林半腐层厚度空间插值精度[J].应用生态学报,2009,20(1):77-83.
    42.卢纹岱. SPSS for Windows统计分析(第三版)[M].北京:电子工业出版社,2007.
    43.马孝义,李新平,赵延凤.土壤含水量的Kriging和Cokriging估值研究[J].水土保持通报,2001,21(3):59-62.
    44.梅安新,彭望禄,秦其明,等.遥感导论[M].北京:高等教育出版社,2001.
    45.戚家忠,高荣久.复垦重构土壤中全氮与有机质的协同克里格估值[J].矿山测量. 2006, (3): 79-80.
    46.秦耀东.土壤空间变异研究中的半方差问题[J].农业工程学报,1998,(12):42-47.
    47.秦承志,朱阿兴,李宝林,等.基于栅格DEM的多流向算法评述[J].地学前缘,2006,13(3):
    91-97.
    48.沈思渊.土壤空间变异研究中地统计学的应用及其展望[J].土壤学进展,1989,17(3):11-25.
    49.沈掌泉,施洁斌,王珂,等.应用集成BP神经网络进行田间土壤空间变异研究[J].农业工程学报,2004a,20(3):35-39.
    50.沈掌泉,周斌,孔繁胜,等.应用广义回归神经网络进行土壤空间变异研究.土壤学报,2004b,41(3):471-475.
    51.司炳成,褚达华.田间土壤某些特性的空间变异分析与Kriging和Cokriging分析——Ⅰ.空间变异分析[J].河北农业大学学报,1990,13(1):22-28.
    52.司炳成,褚达华.田间土壤某些特性的空间变异分析与Kriging和Cokriging分析——Ⅱ.Kriging分析[J].河北农业大学学报,1991,14(2):15-19.
    53.宋海燕.基于光谱技术的土壤、作物信息获取及其相互关系的研究.[博士学位论文].杭州:浙江大学,2006.
    54.孙波,赵其国,闾国年.低丘红壤肥力的时空变异[J].土壤学报,2002,(2):190-198.
    55.孙孝林,赵玉国,秦承志,等.DEM栅格分辨率对多元线性土壤-景观模型及其制图应用的影响[J].土壤学报,2008,45(5):971-977.
    56.谭万能,李志安,邹碧,等.地统计学方法在土壤学中的应用[J].热带地理,2005, 25(4):307-311.
    57.田庆久,闵祥军.植被指数研究发展[J].地球科学发展,1998,13(4):327-333.
    58.王红娟.我国北方粮食主产区土壤养分分布特征研究[王红娟博士学位论文],北京:中国农业科学院,2007.
    59.王福民,黄敬峰,王秀珍.基于穗帽变换的TM影像水稻面积提取[J].中国水稻科学,2008,22(5):297-301.
    60.王珂,沈掌权,John S Bailey,等.精确农业田间土壤空间变异鱼采样方式研究[J].农业工程学报,2001,17(2):33-36.
    61.王学锋,章衡.土壤有机质的空间变异性[J].土壤,1995,27(2):85-89.
    62.王政权.地统计学及在生态学中的应用[M].北京:科学出版社,1999.
    63.王正兴,刘闯,HUETE Alfredo.植被指数研究进展:从AVHRR-NDVI到MODIS-EVI [M].生态学报,2003,23(5):979-987.
    64.邬伦,刘瑜,张品,等.地理信息系统原理方法和应用[M].北京:科学出版社,2001.
    65.吴林,张鸿辉,王慎敏,等.基于栅格数据空间分析的土地整理生态评价[J].中国土地科学,2005,19 (3):24-28.
    66.谢高地,陈沈斌,齐文虎,等.环境的空间连续变异与精准农业[M].北京:气象出版社,2005.
    67.徐金鸿,徐瑞松,夏斌,等.土壤遥感监测研究进展[J].水土保持研究,2006,13(2): 17-20.
    68.许红卫,高玉蓉,王珂,等.基于水稻冠层光谱信息的稻田土壤速效N的Cokriging插值研究[J].农业工程学报,2007,23(3):13-17.
    69.薛正平,杨星卫,段项锁等.土壤养分空间变异及合理取样数研究[J].农业工程学报,2002,18(4):6-9.
    70.杨劲松,姚荣江.黄河三角洲地区土壤水盐空间变异特征研究[J].地理科学,2007,27 (3): 348-353.
    71.杨俐苹.不同地形及种植条件下土壤养分变异及合理取样研究[杨俐苹硕士学位论文].北京:中国农业科学院研究生院,1998.
    72.杨琳,朱阿兴,李宝林,等.应用模糊C均值聚类模型获取土壤制图所需土壤-环境关系知识的方法研究[J].土壤学报,2007,44(5):784-791.
    73.杨琳,朱阿兴,秦承志,等.运用模糊隶属度进行土壤属性制图的研究-以黑龙江鹤山农场研究区为例[J].土壤学报,2009,46(1):9-15.
    74.姚丽贤,周修冲,蔡永发,等.香蕉园土壤养分空间变异性及适宜样本容量研究[J].土壤通报,2005,36(2):169-171.
    75.于婧.基于GIS和地统计学方法的土壤养分空间变异及应用研究[于婧博士学位论文].武汉:华中农业大学,2007.
    76.张彩霞,杨勤科,李锐.基于DEM的地形湿度指数及其应用该研究进展[J].地理科学进展,2005,24(6):116-123.
    77.张华,张甘霖,龚子同.土壤-景观定量模型研究进展[J].土壤通报,2004,35(3):339-346.
    78.张乃明,李保国,胡克林.太原污灌区土壤重金属与盐分含量的空间变异特征[J].环境科学学报,2001,21(3):349-353.
    79.张有山,林启美等.大比例尺区域土壤养分空间变异定量分析[J].华北农学报,1998,13(1):122-128.
    80.赵量,赵玉国,李德成,等.基于模糊集理论提取土壤-地形定量关系及制图用用[J].土壤学报,2007,44(6).
    81.赵永存,史学正,于东升,等.不同方法预测河北省土壤有机碳密度空间分布特征的研究[J].土壤学报,2005,42(3):379-385.
    82.赵鹏大主编.定量地学方法及应用[M].北京:高等教育出版社,2004.
    83.周慧珍,龚子同.土壤空间变异性研究[J].土壤学报,1996,33(3):232-241.
    84.周启鸣,刘学军.空间数据的增值—以数字地形分析为例[J].地理信息世界,2006,4(3).
    85.朱阿兴等.精细数字土壤普查模型与方法[M].北京:科学技术出版社,2008.
    86.祝锦霞,许红卫,周斌,等.基于SPOT5影响的稻田土壤养分的Co-kriging插值研究[J].土壤通报,2008,39(6):1321-1325.
    87. Alexandra N Kravchenko,and Donald G Bullock.Correlation of corn and soybean grain yield with topography and soil properties[J].Agronomy Journal,2000,92(1):75-83.
    88. Anderson K E, Furley P A. An assessment of the relationship between surface properties of chalk soils and slope form using principal component analysis [J]. Journal of Soil Science, 1975, 26:130– 143.
    89. Arrouays D, Daroussin J, Kicin J L,et al.Improving topsoil carbon storage prediction using a digital elevation model in temperate forest soils of France:Soil Science,1998,163(2):103-108.
    90. Atkinson P M. Co-kriging with airborne MSS imagery [J].Remote Sens Environ, 1994, 50:335-345.
    91. Bahman Eghball,James S Schepers.Spatial and temporal variability of soil nitrate and corn yield[J].Agronomy Journal,2003,95(2):339-346.
    92. Barshad, I. Factors affecting clay formation. 6th National Conference on Clays and Clay Mineralogy, 1958, 110– 132.
    93. Baxter S J, Oliver M A. The spatial prediction of mineral N and potentially available N using elevation [J]. Geoderma, 2005, (128): 325-339.
    94. Bell, J.C., Grigal, D.F., Bates, P.C. A soil-terrain model for estimation spatial patterns of soil organic carbon. In: Wilson, J.P., Gallant, J.C. (Eds.), Terrain Analysis: Principles and Applications. John Wiley & Sons, Inc., NY, USA, 2000, pp. 295–309.
    95. Ben-Dor E., A.Banin. Visible and near-infrared (0.4-1.1um) analysis of arid and semiarid soils. Remote Sens. Environment. 1994, 48: 261-274.
    96. Ben-Dor E., A. Banin. Nera-infrared analysisi as a rapid method to simultaneously evaluate several soil properties. Soil Sci. Soc. Am. J. 1995, 59: 364-372.
    97. Bertolo, F. Catchment Delineation and Characterization: A Review (Tech. Rep. EUR 19563 EN) Joint Res. Cent. Eur. Commun., Ispra, Italy, 2000. Available online at:.http://agrienv.jrc.it/publications/pdfs/CatchRev.pdf (accessed February 01, 2008).
    98. Beven, K.J., Kirkby, M.J. A physically based variable contributing area model of basin hydrology. Hydrology Science Bulletin, 1979, 24, 43-69.
    99. Bhatti, A.U., D.J. Mulla, B.E. Frazier. Estimation of soil properties and wheat yields on complex eroded hills using geostatistics and thematic mapper images [J]. Remote Sens. Environment. 1991, 37: 181-191.
    100. Bishop T F A, McBratney A B. A comparison of prediction methods for the creation of field-extent soil property maps [J]. Geoderma, 2001, 103: 149-160.
    101. Bouma J,Finke P A.Origin and nature of soil resource variability[M].Soil specific crop management,P.C.R.bert,R.H.Rust,W.E.Larson,(Eds),Madison,Wisconsin,ASA,CSSA,SSSA,1993,3-14.
    102. Bourennane H, King D, Chery P, Bruand A. Improving the kriging of a soil variable using slope gradient as external drift [J]. European Journal of Soil Science, 1996, 47:473-483.
    103. Boyer D G,Wright R J,Feldhake C M,Bligh D P.Soil spatial variability in steeply sloping acid soil environment[J].Soil Sci.,1991,161:278-287.
    104. Bui E N, Moran C J. Disaggregation of polygons of surficial geology and soil maps using spatial modeling and legacy data [J]. Geoderma, 2001, 103: 149-160.
    105. Burgess T M, Webster R. Optimal interpolation and isarithmic mapping of soil properties: I. The semivariogram and punctual kriging [J]. Journal of Soil Science, 1980a, 31:315-331.
    106. Burgess, T M, Webster R. Optimal interpolation and isarithmic mapping of soil properties: II. Block kriging [J]. Journal of Soil Science, 1980b, 31:333– 341.
    107. Burrough P A.Soil variability:a late 20th century view.Soil and Fertilizers,1993,56(5):529-562.
    108. Cahn M D,Hummel J W,Brouer B H.Spatial analysis of soil fertility for site-specific crop management [J].Soil Sci Soc Am J,1994,58:1240-1248.
    109. Campbell J B.Spatial variation of sand content and pH within a single contiguous delineation of two soil mapping units [J].Soil Science Society of America Journal,1978,42:460-464.
    110. Cattle S R,Koppi A J,McBratney A B.The effect of cultivation on the properties of a rhodoxeralf from the wheat/sheep belt of New South Wales [J].Geoderma,1994,63:215-225.
    111. Cambardella C A,Moorman T B,Novak JM,Parkin T B,Karlen D L,Turco R F,Konopka A E.Field-scale variability of soil properties in central Iowa soils. Soil Science Society America Journal,1994,(58):1501-1511.
    112. Chang D H, Islam S. Estimation of soil physical properties using remote sensing and artificial neural network [J]. Remote Sensing of Environment, 2000, 74: 534-544.
    113. Chen F., D.E.Kissel, L.T. West W.Adkins. Field-scale mapping of surface soil organic carbon using remotely sensed imagery. Soil Sci. Soc. Am. J. 2000, 64: 746-753.
    114. Chen, F., D.E. Kissel, L.T. West, W.Adkins, D.Rickman, and J.C.Luvall. Mapping soil organic carbon concentration for multiple fileds with image similarity analysis. Soil Sci. Soc. Am. J. 2008, 72: 186-193.
    115. Cheng X F, Shi X Z, Yu D S,et al. Using GIS spatial distribution to predict soil organic carbon in subtropical China [J].Pedosphere,2004, 14(4):425-431.
    116. Cihlar J, Latifovic R, Chen J, Beaubien J, Li Z, Magnussen S. Selecting representative high resolution sample images for land cover studies. Part 2: Application to estimating land cover composition [J]. Remote Sensing Environ, 2000, 72: 127-138.
    117. Clark L A, Pregibon D. Tree-based models. In: Chambers J M, Hastie T J. (Eds.), Statistical Models. S. Wadsworth and Brooks, California, USA, 1992, 377- 420.
    118. Clevers J G P W, van Leeuwen H J C. Combined use of optical and microwave remote sensing data for crop growth monitoring [J]. Remote Sensing of the Environment, 1996, 56: 42-51.
    119. Conrad, O. SAGA—Program Structure and Current State of Implementation. In: Bohner, J., McCloy, K. R., Strobl, J. (Eds.), SAGA—Analysis and Modeling Applications. 2006, Vol. 115.Verlag Erich Goltze GmbH, 39-52.
    120. Cook S E , Corner R J , Grealish G, Gessler P E , Chartres C J . A rule-based system to map soil properties [J]. Soil. Sci. Soc. Am.J., 1996, 60, 1893-1900.
    121. Cressie, N.Statistics for spatial data,revised edition. Wiley, New York, 1993.
    122. D J Timlin,Ya Pachepaky,VA Snyder,et al.Spatial and temporal variability of corn grain yield on a hill slope[J].Soil Science Society of America Journal,1998,62(3):764-773.
    123. Davies B E, Gamm S A. Trend surface analysis applied to soil reaction values from Kent, England [J]. Geoderma, 1969, 3: 223-231.
    124. De Bruin S, Stein A. Soil–landscape modeling using fuzzy c-means clustering of attribute data derived from a Digital Elevation Model (DEM) [J]. Geoderma, 1998, 83: 17-33.
    125. Diaz O A et al. Soil nutrient variability and soil sampling in the Everglandes agricultural area [J]. Commu. Of Soil Sci. and Plant Analy.. 1992, 23(17-20): 2313-2337.
    126. Dobermann A, Oberthur T. Fuzzy mapping of soil fertility—a case study on irrigated riceland in the Phlippines [J]. Geoderma, 1997, 77: 317-339.
    127. Dobos E,Micheli E,and Montanarella L.The population of a 500m resolution soil organic matter spatial information system for Hungary,Chapter 36.Digital Soil Mapping An Introductory Perspective,Developments in Soil Science,volume 31.
    128. Donatelli M, Stockle C, Constantini E A, Nelson R. SOILR: a model to estimate soil moisture and temperature regimes, 2002. http://www.inea.it/isci/mdon/research/ bottom_model_soil.htm.
    129. Dree L R,Wilding L P.Elemental variability within a sampling unit.Soil Sc.Soc Am Proc.,1973,37:82-87.
    130. E Arge,M Dahlen and A Tveito.Approximation of Scattered Data Using Smooth Grid Functions [J]. Computational and Applied Math,1995,59:191-205.
    131. Edmonds W J, Campbell J B. Spatial estimates of soil temperature [J]. Soil Science, 1984, 138:203-208.
    132. Endre Dobos, Luca Montanarella, Thierry Negre, et al. A regional scale soil mapping approach using integrated AVHRR and DEM data [J]. International Journal of Applied Earth Observation and Geoinformation. 2001, 3(1): 30-42.
    133. Fairfield, J., Leymarie, P. Drainage networks from grid digital elevation models. Water Resources Research, 1991,27, 709-717.
    134. Freeman, T.G. Calculating catchment area with divergent flow based on a regular grid. Computers & Geosciences, 1991, 17, 413-422.
    135. Friedman J H. Multivariate adaptive regression splines (with discussion) [J]. Annals of Statistics, 1991, 19: 1-67.
    136. Furley P A. Soil formation and slope development: 2. the relationship between soil formation and gradient angle in the Oxford area. Zeitschrift fur Geomorphologie, 1968, 12: 25- 42.
    137. Gershenfeld N. The Nature of Mathematical Modelling [M]. Cambridge Univ. Press, Cambridge, UK, 1999.
    138. Gert Versatracten,Jean Poesen.Regional scale variability in sediment and nutrient delivery from small agricultural watersheds[J].Journal of environmental quality,2002,31:870-879.
    139. Gessler P E , Chadwick O A , Chamran F , Althouse L , Holmes , K. Modeling soil - landscape and ecosystem properties using terrain attributes[J] . Soil. Sci. Soc. Am. J., 2000, 64: 2046-2056.
    140. Gessler P E, McKenzie N J, Hutchinson M. Progress in soil-landscape modelling and spatial prediction of soil attributes for environmental models. 1996. Source: http:// www. bbg. ncgia.ucsb.edu/ SANTA-FE-CD-ROM/ main.html
    141. Gessler P E, Moore A W, McKenzie N J, Ryan P J. Soil-landscape modeling and spatial prediction of soil attributes [J]. Int. J. Geogr. Inf. Syst., 1995, 4, 421-432.
    142. Goovaerts, P. Using elevation to aid the geostatistical mapping of rainfall erosivity [J]. CATENA, 1999, 34(3-4): 227-242.
    143. Goulard M, Voltz M. Linear co-regionalization model: tools for estimation and choice of cross-variogram matrix [J]. Mathematical Geology, 1992, 24:269-286.
    144. Gupta R K, Vijayan D, Prasad T S. New hyperspectral vegetation characterization parameters [J]. Advances in Space Research, 2001, 28: 201-206.
    145. Hastie T J, Tibshirani R J. Generalized Additive Models. Chapman & Hall, London, UK, 1990.
    146. Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference and prediction. Springer Series in Statistics. Springer-Verlag, New York, 2001.
    147. Hastie T J, Pregibon D. Generalized linear models. In: Chambers, J.M., Hastie, T.J. (Eds.), Statistical Models. S. Wadsworth and Brooks, California, USA, 1992, 195-248.
    148. Hay R L. Rate of clay formation and mineral alteration in a 4000-years-old volcanic ash soil on St. Vincent, B.W.I [J]. American Journal of Science, 1960, 258: 354-368.
    149. Hengl T,Heuvelink G B M,Stein A.A genetic framework for spatial prediction of soil variables based on regression-kriging [J].Geoderma, 2004, (120): 75-93.
    150. Hengl, T., Heuvelink, G.B.M., Rossiter, D.G. About regression-kriging: from equations to case studies [J]. Computers & Geosciences, 2007, 33, 1301-1315.
    151. Heuvelink G B M,Webster R.Modelling soil variation:past,present,and future[J].Geoderma,2001,100(3-4):269-301.
    152. Holmgrenp Peter.Multiple flow direction algorithms for run-off modeling in grid-based elevation models:an empirical evaluation[J].Hydrological Processes,1994,8(4):327-334.
    153. Hudson G, Wackernagel H. Mapping temperature using kriging with external drift: Theory and an example from Scotland [J]. International Journal of Climatology, 1994, 14(1): 77-91.
    154. Hummel J.W., K.A. Sudduth, S.E. Hollinger. Soil moisture and organic matter prediction of surface and subsurface soils using an NIR soil sensor [J]. Comput. Electron. Agric. 2001, 32: 149-165.
    155. Inakwu O A Odeh, Mark Crawford, A B McBratney. Chapter 32 Digital mapping of soil attributes for regional and catchment modeling, using ancillary covariates, statistical and geostatistical techniques. Developments in Soil Science, Volume 31, 2006, Pages 437-453, 622.
    156. Ishida T., H. Ando. Use of disjunctive cokriging to estimate soil organic matter from LandsatThematic Mapper image [J]. Int.J.Remotes Sens. 1999, 20: 1549-1565.
    157. Jang J S R. ANFIS: adaptive-network-based fuzzy inference systems. IEEE Transactions on Systems, Man, and Cybernetics, 1993, 23: 665-685.
    158. Jang J S R. Classification and regression trees. In: Jang J S R, Sun C T, Mizutani E (Eds.), Neuro-Fuzzy and soft computing. A computational approach to learning and machine intelligence. Prentice-Hall, Upper Saddle River, 1997, 403-422.
    159. Janzen, H.H., Ellert, B.H., Anderson, D.W. Organic matter in the landscape. In: Lal, R. (Ed.), Encyclopedia of Soil Science. Marcel Dekker, New York, USA. 2002, Online[available]:.http://www.dekker.com/sdek/abstract~content=a713620531~db=enc (July 21, 2008).
    160. Jenny H,Hilgard E W.The birth of modern soil science [M].Berkeley:Farallo Publication,1961.
    161. Jenny H.Factors of soil formation:a system of quantitative pedology [M].New York:McGraw-Hill,1941.
    162. Jones M J.The organic matter content of the savanna soils of West Africa[J].Journal of Soil Science.1973,24:42-53.
    163. Journel, A.G., Huijbregts, C.J. Mining Geostatistics [M]. Academic Press, New York, 1978.
    164. Kay Sumfleth,Rainer Duttmann.Prediction of soil property distribution in paddy soil landscapes using terrain data and satellite information as indicators[J].Ecological Indicators,2008(8):
    485-501.
    165. King D, Bourrennane H, Isambert M, Macaire J J. Relationship of the presence of a non - calcareous clay - loam horizon to DEM attributes in a gently sloping area [J]. Geoderma, 1999. 89:
    95-111.
    166. Knotters M, Brus D J, Oude Voshaar J H. A comparison of kriging, co-kriging and kriging combined with regression for spatial interpolation of horizon depth with censored observations [J]. Geoderma, 1995, 67:227-246.
    167. Kongapai P. Application of remote sensing and geographici information system for estimation of soil organic matter in Nakhon Pathom Province. M.S.Diss., Mahidol Univ., Nakhon Pathom, Thailand. 2007.
    168. Lane P W. Generalized linear models in soil science [J]. European Journal of Soil Science, 2002, 53:241-251.
    169. Lapen D R, Topp G C, Gregorich E G, Hayhoe H N, Curnoe W E. Divisive field-scale associations between corn yields, management, and soil information [J]. Soil and Tillage Research, 2001, 58:193-206.
    170. Legros J P, Bonneric, P. Modelisation informatique de la repartition des sols dans le Parc Naturel Re′gional du Pilat. Annales de l’Universite′de Savoie, Tome 4, Sciences, 1979, 63-68.
    171. Li F, Lyons T J. Remote estimation of regional evapotranspiration [J]. Environmental Modelling and Software, 2002, 17:61-75.
    172. Li Yan,Shi Zhou,Li Feng,Li Hong-Yi.Delineation of site-specific management zones using fuzzy clustering analysis in coastal saline land[J].Computers and Electronics in Agriculuture.2007,56:174-186.
    173. Lobell D B, Asner G P, Ortiz-Monasterio J I, Benning T L. Remote sensing of regional crop production in the Yaqui Valley, Mexico: estimates and uncertainties[J]. Agriculture, Ecosystems and Environment, 2003, 94: 205-220.
    174. Luca, C., Si, B.C., Farrell, R.E. Upslope length improves spatial estimation of soil organic carbon content [J]. Canadian Journal of Soil Science, 2007, 87, 291-300.
    175. Martinez, C. A. Multivariate geostatistical analysis of evapo-transpiration and precipitation in mountainous terrain [J]. J. Hydrol. 1996, 174: 19-35.
    176. Matthias A.D., A Fimbres, E.E.Sano, D.F.Post, L.Accioly, A.K. Batchily, L.G. Ferreira. Surface roughness effects on soil albedo. Soil Sci. Soc. Am. J. 2000, 64: 1035-1041.
    177. Maulik U, Bandyopadhyay S. Genetic algorithm-based clustering technique. Pattern Recognition [J], 2000, 33: 1455-1465.
    178. McBratney A B, Minasny B, Cattle S, Vervoort R W. From pedotransfer functions to soil inference systems [J]. Geoderma, 2002, 109:41-73.
    179. McBratney A B, Mendonca Santos M L, Minasny B. On digital soil mapping [J]. Geoderma, 2003,
    117(1-2): 3-52.
    180. McBratney A B, Webster R. Optimal interpolation and isarithmic mapping of soil properties: V. Co-regionalization and multiple sampling strategiy [J]. Journal of Soil Science, 1983, 34: 137-162.
    181. McBratney A B,Odeh I O A,Bishop T F A,Dunbar M S,Shatar T M.An overview of pedometric techniques for use in soil survey[J].Geoderma,2000,97:293-297.
    182. McCullagh P, Nelder J A. Generalized Linear Models [M]. Cambridge Univ. Press, Cambridge, UK, 1983.
    183. McGrath, D., C. Zhang, et al. Geostatistical analyses and hazard assessment on soil lead in Silvermines area, Ireland [J]. Environmental Pollution, 2004, 127(2): 239-248.
    184. McKenzie N J, Gessler P E, Ryan P J, O’Connel D. The role of terrain analysis in soil mapping. In: Wilson J P, Gallant J C. (Eds.), Terrain Analysis—Principles and Applications. Wiley, New York, 2000. 245-265.
    185. McKenzie N J, Ryan P J. Spatial prediction of soil properties using environmental correlation [J]. Geoderma, 1999, 89:67-94.
    186. McKenzie N J, Austin M P. A quantitative Australian approach to medium and small scale surveys based on soil stratigraphy and environmental correlation[J]. Geoderma, 1993, 57: 329-355.
    187. McSweeney K, Gessler P E, Slater B, Hammer D, Bell J, Peterson GW. Towards a new framework for modeling the soil–landscape continuum [A]. In R. Amundson and J. W. Harden, eds. Factors of soil formation: A fiftieth anniversary retrospective[C]. SSSA Spec. Publ. 33. SSSA, Madison, WI, 1994. 127-145.
    188. Miller P M,Singer M J,Nielsen D R.Spatial variability of wheat yield and soil properties oncomplex hills[J].Soil Sci Soc Am J,1988,52:1133-1141.
    189. Milne G. Some suggested units of classification and mapping particularly for East African soils [J]. Soil Research, 1935, 4:183-198.
    190. Minasny B, McBratney A B. The neuro-m method for fitting neural network parametric pedotransfer functions [J]. Soil Science Society of America Journal, 2002,66: 352-361.
    191. Moore I D, Gessler P E, Nielsen G A, Peterson G A. Soil attributes prediction using terrain analysis[J]. Soil Science Society of America Journal, 1993, 57, 443-452.
    192. Mulla D J.Soil spatial variability and methods of analysis.In:Renard CM et al eds.Soil,crop,and water management systems for rainfed agriculture in the Sudano-Sahelian Zone :Proc.Int.Workshop.Niamey,Niger. Patancheru,Andhra Pradesh,India:ICRISAT,1989.241-252.
    193. Mueller, T.G., Pierce, F.J. Soil carbon maps: enhancing spatial estimates with simple terrain attributes at multiple scales [J]. Soil Science Society of America Journal, 2003, 67, 258-267.
    194. N Kravchenko,D G Bullock.Spatial variability of soybean quality data as a function of field topography:I.Spatial data analysis[J].Crop Science,2002,42(3):804-815.
    195. Neill R V,Krummel J R,Gardner R H.Indices of landscape pattern[J].Landscape Ecology,1988,1:153-162.
    196. Neil J M,Philip J R.Spatial prediction of soil properties using environmental correlation [J].Geoderma,1999,89:67-94.
    197. Nolin M C,Guertin S P,Wang C.Within field spatial variability of soil nutrients and corn yield in a Montreal lowlands clay soil.In:Rebert P C ed.,Proc.of the third international conference on precision agriculture.Minneapolis,MN.June 1996.ASA,CSSA,and SSSA,Madison,WL.1996,257-270.
    198. Noy-Meir I.Multivariate analysis of the semiarid vegetation in south-eastern Australia:II.Vegetation catena and environmental gradients[J].Australian Journal of Botany.1974,22: 115-140.
    199. Nye P H, Greenland D J.The Soil under Shifting Cultivation [M].Commonwealth Bureau of Soils, Harpenden,UK,1960.
    200. Odeh I O A, McBratney A B, Chittleborough D J. Soil pattern recognition with fuzzy-c-means: application to classification and soil–landform interrelationships [J]. Soil Science Society of America Journal, 1992, 56:505-516.
    201. Odeh I O A. Further result on prediction of soil properties from terrain attributes: heterotopic cokriging and regression-kriging [J]. Geoderma, 1995, 67: 215-226.
    202. Odeh I O A, McBratney A B, Slater B K. Predicting soil properties from ancillary information: non-spatial models compared with geostatistical and combined methods. 5th International Geostatistics Congress, Wollongong, 1997. 22-27.
    203. Odeh I O A, McBratney A B, Chittleborough D J. Further results on prediction of soil properties from terrain attributes: heterotopic cokriging and regression-kriging [J]. Geoderma, 1995,67:215-225.
    204. Odeh I O A, McBratney A B, Chittleborough D J. Spatial prediction of soil properties from landform attributes derived from a digital elevation model [J]. Geoderma, 1994, 63: 197-214.
    205. O’Callaghan, J.F., Mark, D.M. The extraction of drainage networks from digital elevation data [J]. Computer Vision, Graphics and Image Processing, 1984, 28(3): 323-344.
    206. Pachepsky Y A, Timlin D J, Rawls W J. Soil water retention as related to topographic variables [J]. Soil Science Society of America Journal, 2001, 65: 1787-1795.
    207. Pal S K, Bandyopadhyay S, Murthy C A. Algorithms for generation of class boundaries. IEEE Transactions on System, Man and Cybernetics, 1998, 28: 816-828.
    208. Pal S K, Bandyopadhyay S, Murthy C A. Genetic classifiers for remotely sensed images: comparison with standard methods [J]. International Journal of Remote Sensing, 2001, 22: 2545-2569.
    209. Park S J, Vlek L G. Prediction of three-dimensional soil spatial variability: a comparison of three environmental correlation techniques [J]. Geoderma, 2002,109, 117-140.
    210. Pei, T., C.-Z. Qin, et al. Mapping soil organic matter using the topographic wetness index: A comparative study based on different flow-direction algorithms and kriging methods [J]. Ecological Indicators, 2010, 10(3): 610-619.
    211. Petersen R G,Calvin L D.Sampling.In:Klute A ed.Methods os soil analysis.Part 1.2nd ed.Agron.Monogr.9.ASA and SSSA,Madison,WL.1986,33-51.
    212. Qi J, Chehebouni A, Huete A R, Kerr Y H, Sorooshian S. Modified soil adjusted vegetation index (MSAVI) [J]. Remote Sensing of Environment, 1994, 48:119-126.
    213. Quinn, P., Beven, K., Chevalier, P., Planchon, O. The prediction of hillslope flow paths for distributed hydrological modeling using digital terrain models [J]. Hydrological Processes 1991, 5 (1): 59–79.
    214. Quinn, P., Beven, K.J., Lamb, R. The ln (a/tan ?) index: how to calculate it and how to use it within the TOPMODEL framework [J]. Hydrological Process, 1995, 9, 161-182.
    215. Raspa, G., Tucci, M., Bruno, R. Reconstruction of rainfall fields by combining ground raingauges data with radar maps using external drift method. In: Baafi, E.Y., Schofield, N.A. (Eds.), Geostatistics Wollongong’96. Kluwer Academic, Dordrecht, 1997, 941-950.
    216. Ritters K H,Neill R V,Hunsaker C T,et al.A factor analysis of landscape and structure metrics[J].Landscape Ecology,1995,10:23-29.
    217. Ritz K,McNicol J W,Nunan N,Grayston S,Millard P,Atkinson D,Gollotte A,Habeshaw D,Boag B,Clegg C D. Spatial structure in soil chemical and microbiological properties in an upland grassland [J].FEMS Microbiology Ecology,2004,49(2):191-205.
    218. Ryan P J, McKenzie N J, O’Connell D, Loughhead A N, Leppert P M, Jacquier D, Ashton L. Integrating forest soils information across scales: spatial prediction of soil properties under Australian forests [J]. Forest Ecology and Management, 2000, 138:139-157.
    219. Sabit Ersahin and A Resit Brohi.Spatial variation of soil water content in topsoil and subsoil of aTypic Ustifulvent[J].Agricultural Water Management,2006,83(1-2):79-86.
    220. Schulze D.G., J.L.Nagel, G.E. van Scoyoc, T.L.Henderson, M.F. Baumgardner, D.E.Stott. Significance of organic matter in determining soil colors. 1993. In J.M.Bigham and E.J.Ciolkose Soil color. SSSA, Madison, WI.
    221. Shatar T M, McBratney A B. Empirical modelling of relationships between sorghum yield and soil properties [J]. Precision Agriculture, 1999, 1: 249-276.
    222. Shen Z Q,Shi J B,Wang K,et a1.Neural network ensemble residual Kriging application for spatial variability of soil properties[J].Pedosphere,2004,14(3):289-296.
    223. Simonett D S.Soil genesis in basalt in North Queensland.Transactions of the 7th International Congress of Soil Science,Madison,Wisconsin,1960,238-243.
    224. Solie J B,Raun W R,Stone M L.Submeter spatial variability of selected soil and bermudagrass production variables[J].Soil Sci Soc Am J,1999,63:1724-1733.
    225. Starr, G.C., Lal, R., Malone, R., Hothem, D., Owens, L., Kimble, J. Modeling soil carbon transported by water erosion processes [J]. Land Degradation & Development, 2000, 11, 83-91.
    226. Stein A., L.C.A. Corsten. Universal kriging and cokriging as regression procedure [J]. Biometrecs. 1991, 47: 575-587.
    227. Sudduth K.A., J.W. Hummel. Evaluation of reflectance methods for soil organic-matter sensing. Trans [J]. ASAE. 1991, 34: 1900-1909.
    228. Sullivan D G, Shaw J N, Rickman D. IKONOS imagery to estimate surface soil property variability in two Alabama Physicographies [J]. Soil Science Society of American Journal, 2005, 69: 1789-1798.
    229. Sullivan D.G., J.N.Shaw, D. Rickman, R.L.Mask, J.C. Luvall. Using remote sensing data to evaluate surface soil properties in Alabama ultisols [J]. Soil Sci. 2005, 170: 954-968.
    230. Sumfleth, K., R. Duttmann. Prediction of soil property distribution in paddy soil landscapes using terrain data and satellite information as indicators. Ecological Indicators, 2008, 8(5): 485-501.
    231. Thierry Blu. Complete Parameterization of Piecewise-Polynomial Interpolation Kernels [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2003,12:34-36.
    232. Triantafilis J, Ward W T, Odeh I O A, McBratney A B. Creation and interpolation of continuous soil layer classes in the lower Namoi valley [J]. Soil Science Society of America Journal, 2001, 65: 403-413.
    233. Traintafilis J., I.O.A. Odeh, A.B.McBratney. Five geostatistical models to predict soil salinity from electromagnetic induction data across irrigated cotton [J]. Soil Sci. Soc. Am. J. 2001, 65: 869-878.
    234. Tsai C C, Chen Z S, Duh C T, Horong F W. Prediction of soil depth using a soil - landscape regression model: a case study on forest soils in southern Taiwan [J]. Proc. Natl. Sci. Counc. ROC (B), 2001, 25:34 - 39.
    235. Vauclin M, Vieira S R, Vachaud G, Nielsen DR. The use of cokriging with limited field soil observations [J]. Soil Science Society of America Journal, 1983, 47:175-184.
    236. Venables W N, Ripley B D. Modern Applied Statistics with S-PLUS [M]. Springer-Verlag, NewYork, USA, 1994.
    237. Walker P H, Hall G F, Protz R. Relation between landform parameters and soil properties . Soil Science Society of America Proceedings, 1968, 32:101-104.
    238. Webster R , Cuanalo H E Soil transect correlograms of north Oxfordshire and their interpretation[J].J Soil Sci,1975,26:176-194.
    239. Webster R,McBratney A B.Mapping soil fertility at Broom’s Barn by simple kriging [J].J Sci Food Agric.1987,38:97-115.
    240. Webster R,Nortcliff S.Improved estimation of micro-nutrients in hectare plots of the Sonning series[J].J Soil Sci.1984,35:667-672.
    241. Webster R.Is soil variation random [J] Geoderma,2000,97(3-4):149-163.
    242. Webster R.Quantitative spatial analysis of soil in the field [J].Advances in Soi1 Science,1985,3,Springer-Verlag,New York.
    243. Webster R, Burgess T M. Optimal interpolation and isarithmic mapping of soil properties, III. Changing drift and universal kriging [J]. Journal of Soil Science, 1980, 31:505-524.
    244. Webster, R., Oliver, M. A. Geostatistics for environmental scientists (Statistics in practice) [M]. John Wiley & Sons, 2001.
    245. Wenjiao Shi,Jiyuan Liu,Zhenping Du,et al..Surface modeling of soil pH[J].Geoderma.2009,150:113-119.
    246. Western, A.W., Grayson, R.B., Blo¨schl, G., Willgoose, G.R., McMahon, T.A. Observed spatial organization of soil moisture and its relation to terrain indices [J]. Water Resource Research, 1999, 35, 797-810.
    247. White J G,Welch R M,Norvell W A.Soil Zn map of the USA using geostatistics and geographic information systems[J].Soil Sci Soc Am J,1997,61:185-194.
    248. Wilson J P, Gallant J C. Secondary topographic attributes. In: Wilson J P, Gallant J C. (Eds.), Terrain Analysis—Principles and Applications [M]. Wiley, New York, 2000. 87-132.
    249. Wolock, D.M., Mccabe, G.J. Comparison of single and multiple flow direction algorithms for computing topographic parameters [J]. Water Resources Research, 1995, 31, 1315-1324.
    250. Wu, C., J. Wu, et al. Spatial Prediction of Soil Organic Matter Content Using Cokriging with Remotely Sensed Data [J]. Soil Sci Soc Am J, 2009, 73(4): 1202-1208.
    251. Wu J,Norvell W A,Hoplins D G,et al.Improved prediction and mapping of soil copper by kriging with auxiliary data for cation-exchange capacity[J].Soil Sci Soc Am J,2003,67:917-927.
    252. Yates, S.R., A.W. Warrick. Estimating soil water content using cokriging [J]. Soil Sci. Soc. Am. J. 1987, 51: 23-30.
    253. Yi-ju Chien,Dar-yuan Lee,horng-yuh Guo et al.Geostatistical analysis of soil properties of mid-west Taiwan soils[J].Soil Sci,1997,162(4):291-298.
    254. Yost R S,Uehara G,Fox R L.Geostatistical analysis of soil chemical properties of large land areas.I.semi-varigrams [J].Soil Sci Soc Am J,1982,46:1028-1037.
    255. Zhang, W. H., Montgomery, D. R., Digital elevation model grid size, landscape representation, andhydrologic simulation [J]. Water Resource Research, 1994, 30(4): 1019-1028.
    256. Zhang, R., P. Shouse, S.Yates. Use of pseudo-crossvarigorams and cokriging to improve estimates of soil solute concentrations [J]. Soil Sci. Soc. Am. J. 1997, 61: 1342-1347.
    257. Zhu A X, Band L E, Dutton B, Nimlos T J. Automated soil inference under fuzzy logic [J]. Ecological Modelling, 1996, 90: 123-145.
    258. Zhu A X. A similarity model for representing soil spatial information [J]. Geoderma, 1997, 77, 217-242.
    259. Zhu A X. Derivation of soil properties using a soil land inference model (SoLIM) [J]. Soil Science Society of America Journal, 1997, 61(2):523-533.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700