用户名: 密码: 验证码:
羰基官能团化聚己内酯共聚物合成、表征及其体外释药行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自20世纪90年代以来,聚己内酯(PCL)以其优越的生物可降解性,良好的生物相容性和药物通透性,受到人们的广泛关注。尤其是近几年来,随着高分子自组装技术的飞速发展,疏水性聚己内酯与亲水性聚合物形成两亲性共聚物在药物控释领域的研究越来越广泛。目前,制备具有生物相容、生物可降解性及智能响应性的药物载体是当前的研究热点和发展趋势。基于这一研究背景及发展趋势,本论文以4-羰基己内酯(OPD)为研究起点,将其与ε-己内酯(ε-CL)共聚,合成侧基悬挂羰基反应性官能团的聚己内酯共聚物(P(OPD-co-CL),并对其进行功能化改性得到含亲水性链段的嵌段和接枝共聚物。这些两亲性共聚物在选择性溶剂中能自发形成核-壳结构的聚合物胶束,利用其内核的特性,包载疏水性药物阿霉素(DOX)、油酸改性的Fe304纳米粒子以及5-氟尿嘧啶(5-Fu)。研究聚合物的自组装行为和体外释药行为。主要研究内容和结果如下:
     1.通过经典的Baeyer-Villiger氧化反应将1,4-环己二酮转化为4-羰基己内酯,进而在甲氧基聚乙二醇(MPEG)为引发剂,异辛酸亚锡(Sn(Oct)2)为催化剂的条件下,与ε-CL开环聚合,合成了两亲性悬挂侧羰基反应性官能团的聚己内酯嵌段共聚物甲氧基聚乙二醇-b-聚(4-羰基己内酯-co-己内酯)(MPEG-b-P(OPD-co-CL))。探讨了本体聚合和溶液聚合两种聚合方法对聚合物结构的影响。利用核磁共振波谱(1HNMR)、差示扫描量热法(DSC)、热重分析法(TGA)和表面接触角研究了共聚物的结构和性能。实验结果表明采用溶液聚合可以成功地合成MPEG-b-(OPD-co-CL),而本体聚合由于其反应温度较高,所得到聚合物容易发生热降解。
     2.采用透析的方法,制备了侧基悬挂羰基官能团的聚己内酯嵌段共聚物(MPEG-b-P(OPD-co-CL))胶束及其包载DOX的聚合物载药胶束。探讨了胶束的制备条件和OPD含量对聚合物的临界胶束浓度(CMC)和胶束粒径大小的影响。聚合物胶束粒径大小均一,单分散性好,呈规整的球形。羰基官能团的存在增加了聚合物胶束的稳定性和聚合物载药胶束在人体生理环境(pH7.4)中的缓释效果。
     3.通过透析的方法,将油酸改性过的Fe304纳米粒子载入侧基悬挂羰基官能团的MPEG-b-(OPD-co-CL)胶束中,制备了大小均一、形态呈规整球状、具有良好磁响应性和稳定性的磁性聚合物胶束,并研究了包载DOX的磁性聚合载药胶束的药物释放行为。用磁滞回线、X-射线衍射(XRD)和TGA等手段对磁性聚合物胶束和磁性载药聚合物胶束进行了表征,发现聚合物胶束对磁性粒子和DOX药物的包埋导致它们的结晶性发生改变,确证了磁性纳米粒子和DOX载入胶束核中;磁性聚合物胶束的磁含量随羰基含量的增加而增加;DOX药物的载入对磁性聚合物胶束的磁含量没有太大影响;而磁性纳米粒子的载入对聚合物载药胶束的载药量和包封率影响也不大,且有利于增加聚合物载药胶束在人体生理环境(pH7.4)中的缓释效果。
     4.以羟乙肼为桥,p-氯甲酸对硝基苯酯为偶联剂,合成了主链为聚己内酯(PCL),侧链为温敏性聚(N-异丙基丙烯酰胺)(PNIPAM)的接枝共聚物PCL-g-PNIPAM.用’HNMR、红外光谱(FTIR)和凝胶渗透光谱(GPC)确证了聚合物的结构。通过透射电镜(TEM),动态光散射(DLS),荧光光谱和紫外-可见光光谱及冷冻干燥后聚合物胶束在D20中的1H NMR波谱等研究了聚合物的自组装行为,结果表明该聚合物胶束具有温度和pH敏感性。另外,包载5-Fu药物的聚合物载药胶束在药物释放体系中表现出温度和pH敏感性的释放特征。
Poly(ε-caprolactone) (PCL) have drawn considerable attention due to its excellent biodegradability, biocompatibility and drug permeability since 1990s. Especially, over the last several years, with the rapid development of nano self-assembly techniques, amphiphilic copolymer composed of hydrophobic poly(ε-caprolactone) (PCL) and hydrophilic polymers have been extensively studied in the field of drug delivery. Nowadays, the preparation of biocompatible, biodegradable and intelligent stimulus responsive drug delivery system is the current research focus and development trends. Base on this back ground and development trends, a functional poly(e-caprolactone) copolymer bearing reactive ketone groups (P(OPD-co-CL)) was developed using 2-oxepane-1,5-dione (OPD) as research starting point, and block copolymer and graft copolymer contain hydrophilic chain were also synthesized by further functional modification. All the amphiphilic polymers underwent self-assemble to form micelles and their loaded hydrophobic drug doxorubicin (DOX), oleic acid modified Fe3O4 nanoparticles and 5-fluorouracil (5-Fu) micelles were prepared by utilizing the charateristics of core. In addition, the drug release behavior of drug-loaded polymer micelles was also studied. Four sections of work were carried out as follows:
     1. A amphiphilic functional block poly(ε-caprolactone) copolymer bearing ketone groups (MPEG-b-P(OPD-co-CL)) was synthesized.2-oxepane-1,5-dione (OPD) synthesized by Baeyer-Villiger oxidation of 1,4-cyclohexaedione was copolymerized withε-caprolatone (ε-CL) in which methoxy poly(ethylene glycol) (MPEG) and stannous octoate were used as initiator and catalyst, respectively. Both bulk and solution polymerization were adopted to investigate the effect of temperature on the structure of the copolymers. All the polymers were characterized by 1H-NMR, DSC, TGA and contact angle measurement. It demonstrated that the amphiphilic block copolymer with functional groups (MPEG-b-P(OPD-co-CL)) were successfully synthesized by solution polymerization. In constrast, the copolymers obtained by bulk polymerization were inclined to degrade due to the high reaction temperature.
     2. Blank and DOX-loaded micelles of (MPEG-b-P(OPD-co-CL)) were prepared by a dialysis method. The effects of micelle preparation conditions and content of OPD on the critical micelle concentration (CMC) and size of polymer micelles were investigated. The polymer micelles showed uniform manodispersed spherical. The presence of ketone groups on PCL bolck is favorable to increase the thermodynamic stability of polymer micelles and sustained-release effect of drug-loaded polymer micelles in physiological environment (pH7.4).
     3. With uniform size, regularly spherical shape, good magnetic responsiveness and stability of loaded oleic acid modified nano-Fe3O4 MPEG-b-(OPD-co-CL) micelles and loaded nano-Fe3O4 and DOX MPEG-b-(OPD-co-CL) micelles were carried out by a dialysis method. The drug release behavior of magnetic DOX-loaded polymer micelles was investigated. The magnetic polymer micelles and magnetic DOX-loaded polymer micelles were characterized by hysteresis loop, XRD and TGA. It was found that the polymer micelles containning oleic acid modified nano-Fe3O4 and DOX package leaded to a change in their crystalline, this result confirmed that the nano-Fe3O4 and DOX were loaded in the core of micelles; The content of nano-Fe3O4 increased with that of ketone groups increased in the hydrophobic chain, but the polymer micelles containning DOX package had little effect on the content of nano-Fe3O4. In addition, the polymer micelles containning oleic acid modified nano-Fe3O4 package also had no impact on the DLC and DEE, but are benificial to increase sustained-release effect of DOX-loaded polymer micelles in physiological environment (pH7.4).
     4. The amphiphilic graft copolymers containing PCL as the hydrophobic main chain and poly(N-isopropylacrylamide) (PNIPAM) as the temperature-sensitive side chain on the side were synthesized. We use hydroxyethyl hydrazine and p-nitrophenyl chloroformate as space molecule and couping agent, respectively. The structure of copolymers was confirmed by 1H NMR, FTIR and GPC. The self-assembly of graft copolymer in the selective solvent was also investigated by 1H NMR in D2O, TEM, DLS, fluorescence spectroscopy and UV-Vis spectrometer. The micelles exhibited thermo-and pH-sensitivity. In addition, the 5-Fu-loaded micelles also showed thermo-and pH-sensitive release characteristics in the drug release system.
引文
[1]戈进杰.生物降解高分子材料及其应用.北京:化学工业出版社,2002:3-4.
    [2]郎美东.官能团化脂肪族聚酯.2005年全国高分子学术论文报告会.2005年10月9日-13日,北京,H-O-1227.
    [3]Bahari K, Mitomo H, Enjoji T, Hasegawa S, Yoshii F, Makuuchi K. Radiation-induced graft polymerization of styrene onto poly (3-hydroxybutyrate) and its copolymer with 3-hydroxyvalerate. Die Angewandte Makromolekulare Chemmie.1997,250:31-44.
    [4]Nugroho P, Mitomo H, Yoshii F, Kume T. Degradation of poly(L-lactic acid) by y-irradiation. Polym Degrad Stab.2001,72:337-343.
    [5]Mitomo H, Kaneda A, Quynh T M, Nagasawa N, Yoshii F. Improvement of heat stability of poly(L-lactic acid) by radiation-induced crosslinking. Polymer.2005,46:4695-4703.
    [6]Vert M, Lenz R W. Preparation and properties of poly-beta-malic acid:a functional polyester of potential biomedical importance. ACS Symp Polym Prepr.1979,20:608-6011.
    [7]Trollsas M, Lee V Y, Mecerreyes D, Lowenhielm P, Moller M, Miller R D, Hedrick J L. Hydrophilic aliphatic polyesters:design, synthesis, and ring-opening polymerization of functional cyclic esters. Macromolecules.2000,33:4619-4627.
    [8]Lecomte P, Daloia V, Mazza M, Halleux O, Gautier S, Detrembleur C, Jerome R. Polym Prepr (Am Chem Soc, Div Polym Chem).2000,41:1534-1535.
    [9]Mahmud A, Xiong X B, Lavasanifar A. Novel self-associating poly(ethylene oxide)-block-poly(ε-caprolactone) block copolymers with functional side groups on the polyester block for drug delivery. Macromolecules.2006,39:9419-9428.
    [10]Mahmud A, Xiong X B, Lavasanifar A. Development of novel polymeric micellar drug-conjugates and nano-containers with hydrolyzable core structure for doxorubicin delivery. European Journal of Pharmaceutics and Biopharmaceutics.2008,69:923-934.
    [11]戴炜枫,何月英,黄浩燕,郎美东.官能团化聚己内酯的合成与表征.高分子学报.2009,4:358-362.
    [12]黄浩艳,孙琰,上官遨宇,郎美东.新型己内酯单体及共聚物的合成.2005年全国高分子学术论文报告会.2005年10月9日-13日,北京,p669(H-P-1237).
    [13]孙琰,戴炜枫,张清淳,张琰,郎美东.含侧羧基官能团的聚(ε-己内酯)降解性能的研究.化学学报.2009,67:1259-1264.
    [14]Wang K, Zhang Y, Lang M D. Synthesis and self-assembly of novel poly(ethylene glycol)-block-poly(ε-caprolactone) copolymers with functional pendant groups, Preprints of 5th East-Asian Polymer Conference. China,2008, June,3-6, p288.
    [15]Stigers D J, Tew G N. Poly(3-hydroxyalkanoate)s functionalized with carboxylic acid groups in the side chain. Biomacromolecules.2003,4:193-195.
    [16]Yao F, Bai Y, Zhou Y, Liu C, Wang H, Yao K. Synthesis and characterization of multiblock copolymers based on L-lactic acid, citric acid, and poly(ethylene glycol). J Polym Sci A:Polym Chem.2003,41:2073-2081.
    [17]Jarm V, Fles D. Polymerization and properties of optically active a-(p-substituted benzenesulfonamido)-β-lactones. J Polym Sci A:Polym Chem.1977,15:1061-1071.
    [18]Geblin M E, Kohn J. Synthesis and polymerization of N-Z-L-Serine-β-lactone and serine hydroxybenzotriazole active esters. J Am Chem Soc.1992,114:3962-3965.
    [19]Won C Y, Chu C C, Yu T J. Novel amine-containing biodegradable polyester via copolymerization of aspartic anhydride and 1,4-cyclohexanedimethanol. Macromol Rapid Commun.1996,17:653-659.
    [20]Won C Y, Chu C C, Lee J D. Novel biodegradable copolymers containing pendant amine functional groups based on aspartic acid and poly(ethylene glycol). Polymer.1998,39: 6677-6681.
    [21]Rossignol H, Boustta M, Vert M. Synthetic poly(β-hydroxyalkanoates) with carboxylic acid or primary amine pendent groups and their complexes. Int J Biol Macromol.1999,25: 255-264.
    [22]Putnam D, Langer R. Poly(4-hydroxy-L-proline ester):low-temperature polyconden-sation and plasmid DNA complexation. Macromolecules.1999,32:3658-3662.
    [23]Lim Y B, Choi Y H, Park J S. A self-destroying polycationic polymer:biodegradable poly(4-hydroxy-L-proline ester). J Am Chem Soc.1999,121:5633-5639.
    [24]严金良,张一,张琰,郎美东*.新型聚己内酯聚合物的合成与表征,2009年全国高分子学术讨论报告会,天津,2009年8月18日~22日.18(A-O-03).
    [25]Pitt C G, Gu Z W, Ingram P, Hendren R W. The synthesis of biodegradable polymers with functional side chains. J Polym Sci:Polym Chem Ed.1987,25:955-966.
    [26]Tian D, Dubois P, Grandfils C, Jerome R. Ring-opening polymerization of 1,4,8-trioxaspiro[4.6]-9-undecanone:a new route to aliphatic polyesters bearing functional pendent groups. Macromolecules.1997,30:406-409.
    [27]Tian D, Dubois Ph, Jerome R. Macromolecular engineering of polylactones and polylactides.23. synthesis and characterization of biodegradable and biocompatible homo-polymers and block copolymers based on 1,4,8-Trioxa[4.6] spiro-9-undecanone. Macromolecules.1997,30:1947-1954.
    [28]Tian D, Halleux O, Dubois P, Jerome R. Poly(2-oxepane-1,5-dione):a highly crystalline modified poly(ε-caprolactone) of a high melting temperature. Macromolecules.1998,31: 924-927.
    [29]Latere J P, Lecomte P, Dubois P, Jerome R.2-Oxepane-1,5-dione:a precursor of a novel class of versatile semicrystalline biodegradable (co)polyesters. Macromolecules.2002,35: 7857-7859.
    [30]Stassin F, Halleux O, Dubois P, Detrembleur C, Lecomte P, Jerome R. Ring opening copolymerization of ε-caprolactone, y-(triethylsilyloxy)-ε-caprolactone and y-ethylene ketal-ε-caprolactone:a route to hetero-graft copolyesters. Macromol Symp.2000,153:27-39.
    [31]Leemhuis M, van Nostrum C F, Kruijtzer J A W, Zhong Z Y, ten Breteler M R, Dijkstra P J, Feijen J, Hennink W E. Functionalized poly(a-hydroxy acid)s via ring-opening polymerization:toward hydrophilic polyesters with pendant hydroxyl groups. Macromolecules.2006,39:3500-3508.
    [32]Leemhuis M, Kruijtzer J A W, van Nostrum C F, Hennink W E. In vitro hydrolytic degradation of hydroxyl-functionalized poly(a-hydroxy acid)s. Biomacromolecules.2007,8: 2943-2949.
    [33]Seyednejad H, Vermonden T, Fedorovich N E, van Eijk R, van Steenbergen M J, Dhert W J A, van Nostrum C F, Hennink W E. Synthesis and characterization of hydroxyl-functionalized caprolactone copolymers and their effect on adhesion, proliferation, and differentiation of human mesenchymal stem cells. Biomacromolecules.2009,10:3048-3054.
    [34]Kline B J, Beckman E J, Russell A J. One-step biocatalytic synthesis of linear polyesters with pendant hydroxyl groups. J Am Chem Soc.1998,120:9475-9480.
    [35]Uyama H,. Klegraf E, Wada S, Kobayashi S. Regioselective polymerization of sorbitol and divinyl sebacate using lipase catalyst. Chem Lett.2000,800-801.
    [36]Vert M. Aliphatic polyesters:great degradable polymers that cannot do everything. Biomacromolecules.2005,6:538-546.
    [37]Saulnier B, Ponsart S, Coudane J, Garreau H, Vert M. Lactic acid-based functionalized polymers via copolymerization and chemical modification. Macromol Biosci.2004,4: 232-237.-
    [38]Renard E, Poux A, Timbart L, Langlois V, Guerin P. Preparation of a novel artificial bacterial polyester modified with pendant hydroxyl groups. Biomacromolecules.2005,6: 891-896.
    [39]Yang X Q, Chen Y H, Yuan R X, Chen G H, Blanco E, Gao J M, Shuai X T. Folate-encoded and Fe3O4-loaded polymeric micelles for dual targeting of cancer cells. Polymer.2008,49:3477-3485.
    [40]Zein I, Hutmacher D W, Tan K C, Teoh S H. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials.2002,23:1169-1185.
    [41]艾合麦提·玉素甫,王振斌,朱良.可生物降解材料聚己内酯在医学上的应用进展.国外医学生物医学工程分册.2005,28:19-23.
    [42]王永亮,易国斌,康正,熊富华,周平,崔异华.聚己内酯的合成与应用研究进展. 化学与生物工程.2006,23:1-3.
    [43]戴炜枫,茹敏良,何月英,郎美东.新型官能团化聚己内酯的研究进展,高分子通报.2008,9:1-10.
    [44]Yoo H S, Park T G. Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA-PEG block copolymer. J Controlled Release.2001,70:63-70.
    [45]Yoo H S, Park T G. Folate receptor targeted biodegradable polymeric doxorubicin micelles. J Controlled Release,2004,96:273-283.
    [46]Xiong X B, Mahmud A, Uludag H, Lavasanifar A. Conjugation of arginine-glycine-aspartic acid peptides to poly(ethylene oxide)-b-poly(ε-caprolactone) micelles for enhanced intracellular drug delivery to metastatic tumor cells. Biomacromolecules.2007,8: 874-884.
    [47]Xiong X B, Mahmud A, Uludag H, Lavasanifar A. Multifunctional polymeric micelles for enhanced intracellular delivery of doxorubicin to metastatic cancer cells. Pharmaceutical Research.2008,25:2555-2566.
    [48]Li J S, Zhang Y, Chen J, Wang C H, Lang M D. Preparation, characterization and drug release behavior of 5-fluorouracil loaded carboxylic poly(ε-caprolactone) nanoparticles. Journal of Macromolecular Science Part A:Pure and Applied Chemistry.2009,46:1103-1113.
    [49]李家诗,张琰,陈杰,王朝华,郎美东.功能化纳米粒子作为药物载体的研究.化学学报.2009,17:2205-2209.
    [50]Taniguchi I, Mayes A M. A chemoselective approach to grafting biodegradable polyesters. Macromolecules.2005,38:216-219.
    [51]Prime E L, Cooper-White J J, Qiao G G. Coupling hydrophilic amine-containing molecules to the backbone of poly(ε-caprolactone). Aust J Chem.2006,59:534-538.
    [52]Wang J S, Matyjaszewski K. Controlled/"living"radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J Am Chem Soc. 995, 117:5614-5615.
    [53]苏鑫,冯玉军,陈志,鲁智勇,夏雨.原子转移自由基聚合在制备水溶性聚合物中的应用.高分子通报.2007,12:61-66.
    [54]Mecerreyes D, Atthoff B, Boduch K A, Trollsas M, Hedrick J L. Unimolecular combination of an atom transfer radical polymerization initiator and a lactone monomer as a route to new graft copolymers. Macromolecules.1999,32:5175-5182.
    [55]Lenoir S, Riva R, Lou X, Detrembleur C, Jerome R, Lecomte P. Ring-opening polymerization of a-chloro-ε-caprolactone and chemical modification of poly(a-chloro-ε-caprolactone) by atom transfer radical processes. Macromolecules.2004,37:4055-4061.
    [56]Riva R, Rieger J, Jerome R, Lecomte P. Heterograft copolymers of poly(ε-caprolactone) prepared by combination of ATRA "grafting onto" and ATRP "grafting from" processes. J Polym Sci Part A:Polym Chem.2006,44:6015-6024.
    [57]Kolb H C, Finn M G, Sharpless K B. Click chemistry:diverse chemical function from a few good reactions. Angew Chem Int Ed.2001,40:2004-2021.
    [58]Riva R, Schmeits S, Jerome C, Jerome R, Lecomte P. Combination of ring-opening polymerization and "click chemistry":toward functionalization and grafting of poly(ε-caprolactone). Macromolecules.2007,40:796-803.
    [59]Xu N, Wang R, Du F S, Li Z C. Synthesis of amphiphilic biodegradable glycoco-polymers based on Poly(ε-caprolactone) by ring-opening polymerization and click chemistry. J Polym Sci Part A:Polym Chem.2009,47:3583-3594.
    [60]Vroman B, Mazza M, Fernandez M R, Jerome R, Preat V. Copolymers of ε-caprolactone and quaternized ε-caprolactone as gene carriers. J controlled release.2007,118:136-144.
    [61]Dai W F, Zhu J Y, Shangguan A, Lang M D. Synthesis, characterization and degradability of the comb-type poly(4-hydroxyl-ε-caprolactone-co-ε-caprolactone)-g-poly(L-lactide). Euro-pean Polymer Journal.2009,45:1659-1667.
    [62]Zhang L, Eisenberg A. Multiple morphologies of crew-cut aggregates of polystyrene-b-poly(acrylic acid) block-copolymers. Science.1995,268:1728-1731.
    [63]Zhang L, Yu K, Eisenberg A. Ion-induced morphological changes in "crew-cut" aggregates of amphiphilic block copolymers. Science.1996,272:1777-1779.
    [64]Torchilin V. Structure and design of polymeric surfactant based drug delivery systems. J Controlled Release.2001,73:137-172.
    [65]Nakayama M, Okano T, Miyazaki T, Kohori F, Sakai K, Yokoyama M. Molecular design of biodegradable polymeric micelles for temperature-responsive drug release. J Controlled Release.2006,115:46-56.
    [66]Rapoport N. Stabilization and acoustic activation of pluronic micelles for tumor-targeted drug delivery. Colloids Surf B:Biointerfaces.1999,3:93-111.
    [67]Pruitt J D, Husseini G, Rapoport N, Pitt W G Stabilization of pluronic P105 micelles with an interpenetrating network of N, N-diethylacrylamide. Macromolecules.2000,33: 9306-9309.
    [68]Bae K H, Choi S H, Park S Y, Lee Y, Park T G. Thermosensitive pluronic micelles stabilized by shell cross-linking with gold nanoparticles. Langmuir.2006,22:6380-6384.
    [69]Luo S, Xu J, Zhu Z, Wu C, Liu S Y. Phase transition behavior of unimolecular micelles with thermoresponsive poly(N-isopropylacrylamide) coronas. J Phys Chem B.2006,110: 9132-9139.
    [70]Toti U S, Moon S H, Kim H Y, Jun Y J, Kim B M, Park Y M, Jeong B, Sohn Y S. Thermosensitive and biocompatible cyclotriphosphazene micelles. J Controlled Release.2007, 119:34-40.
    [71]Ulbrich K, Subr V. Polymeric anticancer drugs with pH-controlled activation. Advanced drug delivery reviews.2004,56:1023-1050.
    [72]Gillies E R, Frechet J M. A new approach towards acid sensitive copolymer micelles for drug delivery. Chem Commun.2003,14:1640-1641.
    [73]Lee E, Shin H, Na K, Bae Y. Poly(L-histidine)-PEG block copolymer micelles and pH-induced destabilization. J Controlled Release.2003,90:363-374.
    [74]Sethuraman V A, Bae Y H. Tat peptide-based micelle system for potential active targeting of anti-cancer agents to acidic solid tumors. J Controlled Release.2007,118: 216-224.
    [75]Jiang J, Tong X, Zhao Y. A new design for light-breakable polymer micelles. J Am Chem Soc.2005,127:8290-8291.
    [76]Lee H I, Wu W, Oh J K, Mueller L, Sherwood G, Peteanu L, Kowalewski T, Matyjaszewski K. Light-induced reversible formation of polymeric micelles. Angew Chem Int Ed Engl.2007,46:2453-2457.
    [77]Nishiyama N, Iriyama A, Jang W, Miyata K, Itaka K, Inoue Y, Takahashi H, Yanagi, Tamaki Y, Koyama H, Kataoka K. Light-induced gene transfer from packaged DNA enveloped in a dendrimeric photosensitizer. Nat Mater.2005,4:934-941.
    [78]Rapoport N, Marin A, Christensen D. Ultrasound-activated drug delivery. Drug Deliv Systems Sci.2002,2:37-46.
    [79]Matsumura Y, Hamaguchi T, Ura T, Muro K, Yamada Y, Shimada Y, Shirao K, Okusaka T, Ueno H, Ikeda M, Watanabe N. Phase I clinical trial and pharmacokinetic evaluation of NK911, micelle-encapsulated doxorubicin. Br J Cancer.2004,91:1775-1781.
    [80]Rapoport N. Controlled drug delivery to drug-sensitive and multidrug resistant cells: effects of pluronic micelles and ultrasound. In:Dinh S M, Liu P, editors. Advances in controlled drug delivery, vol.846. Washington, DC:ACS.2003. p85-101.
    [81]Rapoport N. Factors affecting ultrasound interactions with polymeric micelles and viable cells. In:Swenson S, editor. Carrier-based drug delivery, vol.879. Washington, DC:ACS.-2004.p161-173.
    [82]Yokoyama M, Kwon G S, Okano T, Sakurai Y, Seto T, Kataoka K. Preparation of micelle-forming polymer-drug conjugates. Bioconjug Chem.1992,3:295-301.
    [83]Rapoport N. Combined cancer therapy by micellar-encapsulated drug and ultrasound. Int JPharm.2004,277:155-162.
    [84]Shuai X, Merdan T, Schaper A K, Xi F, Kissel T. Core-cross-linked polymeric micelles as paclitaxel carriers. Bioconjug Chem.2004,15:441-448.
    [85]Liggins R T, Burt H M. Polyether-polyester diblock copolymers for the preparation of paclitaxel loaded polymeric micelle formulations. Adv Drug Deliv Rev.2002,54:191-202.
    [86]Nishiyama N, Okazaki S, Cabral H, Miyamoto M, Kato Y, Sugiyama Y, Nishio K, Matsumura Y, Kataoka K. Novel cisplatin-incorporated polymeric micelles can eradicate solid tumors in mice. Cancer Res.2003,63:8977-8983.
    [87]Lavasanifar A, Samuel J, Sattari S, Kwon G S. Block copolymer micelles for the encapsulation and delivery of amphotericin B. Pharm Res.2002,19:418-422.
    [88]Lin W J, Juang L W, Lin C C. Stability and release performance of a series of pegylated copolymeric micelles. Pharm Res.2003,20:668-673.
    [89]Djordjevic J, Barch M, Uhrich K E. Polymeric micelles based on amphiphilic scorpion-like macromolecules:novel carriers for water-insoluble drugs. Pharm Res.2005,22: 24-32.
    [90]van Nostrum C F. Polymeric micelles to deliver photosensitizers for photodynamic therapy. Adv Drug Deliv Rev.2004,56:9-16.
    [91]Zhang G D, Harada A, Nishiyama N, Jiang D L, Koyama H, AidaT, Kataoka K. Polyion complex micelles entrapping cationic dendrimer porphyrin:effective photosensitizer for photodynamic therapy of cancer. J Control Release.2003,93:141-150.
    [92]Le Garrec D, Taillefer J, Van Lier J E, Lenaerts V, Leroux J C. Optimizing pH-responsive polymeric micelles for drug delivery in a cancer photodynamic therapy model. J Drug Target. 2002,10:429-437.
    [93]Yokoyama M, Satoh A, SakuraiY, Okano T, MatsumuraY, Kakizoe T, Kataoka K. Incorporation of water-insoluble anticancer drug into polymeric micelles and control of their particle size. J Controlled Release.1998,55:219-229.
    [94]Matsumura Y, Yokoyama M, Kataoka K, Okano T, Sakurai Y, Kawaguchi T, Kakizoe T. Reduction of the side effects of an antitumor agent, KRN5500, by incorporation of the drug into polymeric micelles. J Cancer Res.1999,90:122-128.
    [95]Kwon G, Naito M, Yokoyama M. Physical entrapment of adriamycin in AB block copolymer micelles. Pharm Res.1995,12:192-195.
    [96]Kataoka K, Matsumoto T, Sakurai Y, Fukushima S, Okamoto K, Kwon G S. Doxorubicin-loaded poly(ethylene glycol) poly(B-benzyl-L-aspartate) copolymer micelles: their pharmaceutical characteristics and biological significance. J Controlled Release.2000, 64:143-153.
    [97]Liu J, Xiao Y, Allen C. Polymer-drug compatibility:a guide to the development of delivery systems for the anticancer agent, ellipticine. J Pharm Sci.2004,93:132-143.
    [98]Yuan W, Yuan J Y, Zhang F B, Xie X M. Syntheses, characterization, and in vitro degradation of ethyl cellulose-graft-poly(epsilon-caprolactone)-block-poly(L-lactide) copoly-mers by sequential ring-opening polymerization. Biomacromolecules.2007,8(4):1101-1108.
    [99]Lang M D, Bei J Z, Wang S G. Synthesis and characterization of polycaprolactone /poly(ethylene oxide)/polylactide tri-component copolymers. J Biomaier Sci Polymer Edn. 1999,10:501-512.
    [100]Yu H Y, Matthew H W, Wooley P H, Yang S Y. Effect of porosity and pore size on microstructures and mechanical properties of poly-ε-caprolactone-hydroxyapatite composites. J Biomed Mater Res Part B:Appl Biomater.2008,86B:541-547.
    [101]易国斌,王永亮,康正,崔亦华,崔英德.交联剂对PVP/PCL共聚凝胶性能的影 响.高分子材料科学与工程,2008,24:72-75.
    [102]Hua C, Dong C M. Synthesis, characterization, effect of architecture oncrystallization of biodegradable poly(ε-caprolactone)-b-poly(ethylene oxide) copolymers with different arms and nanoparticles thereof. J Biomed Mater Res.2007,82A:689-700.
    [103]Lang M D, Chu C C. Synthesis and chemical structural analysis of nitroxyl-radical-incorporated poly(acrylic acid/lactide/ε-caprolactone) copolymers. J Polym Sci:Polym Chem. 2001,39,4214-4226.
    [104]夏浙安,陈建定,Yvan C, Amar Z.反应挤出合成带不饱和官能团端基的聚己内酯.功能高分子学报.2005,18:394-398.
    [105]Lou X D, Jerome C, Detrembleur C, Jerome R. Electrografting of preformed aliphatic polyesters ontometallic surfaces. Langmuir.2002,18:2785-2788.
    [106]Mecerreyes D, Miller R D, Hedrick J L, Detrembleur C, Jerome R. Ring-opening polymerization of 6-hydroxynon-8-enoic acid lactone:novel biodegradable copolymers containing allyl pendent groups. J Polym Sci, Part A:Polym Chem.2000,38:870-875.
    [107]Detrembleur C, Mazza M, Halleux O, Lecomte P, Mecerreyes D, Hedrick J L, Jerome R. Ring-opening polymerization of y-bromo-ε-caprolactone:a novel route to functionalized aliphatic polyesters. Macromolecules.2000; 33:14-18.
    [108]Riva R, Lenoir S, Jerome R, Lecomte P. Functionalization of poly(ε-caprolactone) by pendant hydroxyl, carboxylic acid and epoxide groups by atom transfer radical addition. Polymer.2005,46:8511-8518.
    [109]Brooke A, Horn V, Iha R K, wooley K L. Sequential and single-step, one-pot strategies for the transformation of hydrolytically degradable polyesters into multifunctional systems. Macromolecules.2008,41:1618-1626.
    [110]Latere Dwan'Isa J P, Lecomte P, Dubois P, Jerome R. Synthesis and characterization of random copolyesters of ε-caprolactone and 2-oxepane-1,5-dione. Macromolecules.2003,36: 2609-2615.
    [111]Nottelet B, Ghzaoui A E, Coudane J, Vert M. Novel amphiphilic poly(epsilon-caprolactone)-g-poly(L-lysine) degradable copolymers. Biomacromolecules.2007,8: 2594-2601.
    [112]Bougard F, Giacomelli C, Mespouille L, Borsali R, Dubois P, Lazzaroni R. Influence of the macromolecular architecture on the self-assembly of amphiphilic copolymers based on poly(N, N-dimethylamino-2-ethylmethacrylate) and poly (epsilon-caprolactone). Langmuir. 2008,24 (15):8272-8279.
    [113]邓联东,孙多先,霍建中,靳建洲,董岸杰.聚乙二醇/聚己内酯两亲性三嵌段共聚物纳米胶束.高分子材料科学与工程.2004,20:217-224.
    [114]赵辉鹏,张琰,查刘生,府寿宽.用NMR分析可生物降解的两亲性嵌段共聚物的 相对分子质量和组成.分析测试学报.2006,25:6-10.
    [115]Stenzel M H. RAFT polymerization:an avenue to functional polymeric micelles for drug delivery. Chem Commun.2008,30:3486-3503.
    [116]Sheng Y, Liu C S, Yuan Y, Tao X Y, Yang F, Shan X Q, Zhou H J, Xu F. Long-circulating polymeric nanoparticles bearing a combinatorial coating of PEG and water-soluble chitosan. Biomaterials.2009,30:2340-2348.
    [117]Sun T M, Du J Z, Yan L F, Mao H Q, Wang J. Self-assembled biodegradable micellar nanoparticles of amphiphilic and cationic block copolymer for siRNA delivery. Biomaterials. 2008,29:4348-4355.
    [118]Lo C L, Huang C K, Lin K M, Hsiue G H. Mixed micelles formed from graft and diblock copolymers for application in intracellular drug delivery. Biomaterials.2007,28: 1225-1235.
    [119]Son Y J, Jang J S, Cho Y W, Chung H, Park R W, Kwon I C, Kim I S, Park J Y, Seo S B, Park C R, Jeong S Y. Biodistribution and anti-tumor efficacy of doxorubicin loaded glycol-chitosan nanoaggregates by EPR effect. J Controlled Release.2003,91:135-145.
    [120]Shuai X T, Ai H, Nasongkl N, Kim S, Gao J M. Micellar carriers based on block copolymers of poly(ε-caprolactone) and poly(ethylene glycol) for doxorubicin delivery. J Controlled Release.2004,98:415-426.
    [121]Canciello M, Maglio G, Nese G, Palumbo R, Poly(ε-caprolactone)-poly(oxyethylene) multiblock copolymers bearing along the chain regularly spaced pendant amino groups. Macromol Biosci.2007,7:491-499.
    [122]Taniguchi I, Kuhlman W A, Mayes A M, Griffith L G. Functional modification of biodegradable polyesters through a chemoselective approach:application to biomaterial surfaces. Polym Int.2006,55:1385-1397.
    [123]Hu X L, Liu S, Chen X S, Mo G J, Xie Z G, Jing X B. Biodegradable amphiphilic block copolymers bearing protected hydroxyl groups:synthesis and characterization. Biomacromolecules.2008,9:553-560.
    [124]Hu X L, Chen X S, Xie Z G, Liu S, Jing X B. Synthesis and characterization of amphiphilic block copolymers with allyl side-groups. J Polym Sci Part A:Polym Chem.2007, 45:5518-5528.
    [125]Wang L, Jia X H, Liu X H, Yuan Z, Huang J X. Synthesis and characterization of a functionalized amphiphilic diblock copolymer:MePEG-b-poly(DL-lactide-co-RS-β-malic acid). Colloid Polym Sci.2006,285:273-281.
    [126]Tian Y, Ravi P, Bromberg L, Hatton T A, Tam K C. Synthesis and aggregation behavior of pluronic F87/poly(acrylic acid) block copolymer in the presence of doxorubicin. Langmuir.2007,23:2638-2646.
    [127]Li G Y, Song S, Guo L, Ma S M. Self-assembly of thermo-and pH-responsive poly(acrylic acid)-b-poly(N-isopropylacrylamide) micelles for drug delivery. J Polym Sci Part A:Polym Chem.2008,46:5028-5035.
    [128]Yin H Q, Bae Y H. Physicochemical aspects of doxorubicin-loaded pH-sensitive polymeric micelle formulations from a mixture of poly(L-histidine)-b-poly(L-lactide)-b-poly(ethylene glycol). European Journal of Pharmaceutics and Biopharmaceutics.2009,71: 223-230.
    [129]Ye Y Q, Chen F Y, Wu Q A, Hu F Q, Du Y Z, Yuan H, Yui H Y. Enhanced cytotoxicity of core modified chitosan based polymeric micelles for doxorubicin delivery. J Pharm Sci.2009,98:704-712.
    [130]Lu D X, Wen X T, Liang J, Gu Z W, Zhang X D, Fan Y J. A pH-sensitive nano drug delivery system derived from pullulan/doxorubicin conjugate. J Biomed Mater Res Part B: Appl Biomater.2009,89B:177-183.
    [131]Bae Y, Diezi T A, Zhao A, Kwon G S. Mixed polymeric micelles for combination cancer chemotherapy through the concurrent delivery of multiple chemotherapeutic agents. J Controlled Release.2007,122:324-330.
    [132]Kim D G, Lee E S, Oh K T, Gao Z G, Bae Y H. Doxorubicin-loaded polymeric micelle overcomes multidrug resistance of cancer by double-targeting folate receptor and early endosomal pH. Small.2008,4:2043-2050.
    [133]Sethuraman V A, Lee M C, Bae Y H. A Biodegradable pH-sensitive micelle system for targeting acidic solid tumors. Pharmaceutical Research.2008,25:657-666.
    [134]Huang C K, Lo C L, Chen H H, Hsiue G H. multifunctional micelles for cancer cell targeting, distribution imaging, and anticancer drug delivery. Adv Funct Mater.2007,17: 2291-2297.
    [135]Lin J P, Zhu J Q, Chen T, Lin S L, Cai C H, Zhang L S, Zhuang Y, Wang X S. Drug releasing behavior of hybrid micelles containing polypeptide triblock copolymer. Biomaterials.2009,30:108-117.
    [136]Jia Z F, Wong L J, Davis T P, Bulmus V. One-pot conversion of RAFT-generated multifunctional block copolymers of HPMA to doxorubicin conjugated acid-and reductant-sensitive crosslinked micelles. Biomacromolecules.2008,9:3106-3113.
    [137]Chytil P, Etrych T, Konak C, Sirova M, Mrkvan T, Boucek J, Rihova B, Ulbrich K. New HPMA copolymer-based drug carriers with covalently bound hydrophobic substituents for solid tumour targeting. J Controlled Release.2008,127:121-130.
    [138]Lee Y H, Park S Y, Mok H J, Park T G. Synthesis, characterization, antitumor activity of pluronic mimicking copolymer micelles conjugated with doxorubicin via acid-cleavable linkage. Bioconjugate Chem.2008,19:525-531.
    [139]Yokoyama M, Fukushima S, Uehara R, Okamoto K, Kataoka K, Sakurai Y, Okano T. Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor. J Controlled Release.1998,50: 79-92.
    [140]Fairley N, Hoang B, Allen C. Morphological control of poly(ethylene glycol)-block-poly(ε-caprolactone) copolymer aggregates in aqueous solution. Biomacromolecules.2008,9: 2283-2291.
    [141]Kharakoz D P. Partial molar volumes of molecules of arbitrary shape and the efffect of hydrogen bonding with water. Journal of Solution Chemistry.1992,21:569-595.
    [142]Meot-Ner (Mautner) M, Scheiner S, Yu W O. Ionic hydrogen bonds in bioenergetics.3. proton transport in membranes, modeled by ketone/water clusters. J Am Chem Soc.1998,120: 6980-6990.
    [143]Katz J J, Ballschmiter K, Garcia-Morin M, Strain H H, Uphaus R A. Electron papamagnetic resonance of chlorophyll-water aggregates. Pans.1968,60:100-107.
    [144]Ge H X, Hu Y, Yang S C, Jiang X Q, Yang C Z. Preparation, characterization, and drug release behaviors of drug-loaded ε-caprolactone/L-lactide copolymer nanoparticles. J Appl Polym Sci.2000,75:874-882.
    [145]Cammas S, Matsumoto T, Okano T, Sakurai Y, Kataoka K. Design of functional polymeric micelles as site-specific drug vehicles based on poly(a-hydroxy ethylene oxide-co-p-benzyl L-aspartate) block copolymers. Materials Science and Engineering C.1997,4: 241-247.
    [146]Neuberger T, Schopf B, Hofmann H, Hofmann M, Rechenberg B V. Superpara-magnetic nanoparticles for biomedical applications:possibilities and limitations of a new drug delivery system. Journal of Magnetism and Magnetic Materials.2005,293:483-496.
    [147]Tirelli N. (Bio)Responsive nanoparticles. Current Opinion-in Colloid & Interface Science.2006,11:210-216.
    [148]Rutnakornpituk M, Meerod S, Boontha B, Wichai U. Magnetic core-bilayer shell nanoparticle:A novel vehicle for entrapment of poorly water-soluble drugs. Polymer.2009, 50:3508-3515.
    [149]Zhang J, Zhang S T, Wang Y P, Zeng J Y. Composite magnetic microspheres: Preparation and characterization. Journal of Magnetism and Magnetic Materials.2007,309: 197-201.
    [150]Pollert E, Knizek K, Marysko M, Zaveta K, Lancok A, Bohacek J, Horak D, Babied M. Magnetic poly(glycidyl methacrylate) microspheres containing maghemite prepared by emulsion polymerization. Journal of Magnetism and Magnetic Materials.2006,306:241-247.
    [151]Shubayev V I, Pisanic Ⅱ T R, Jin S. Magnetic nanoparticles for theragnostics. Advanced Drug Delivery Reviews.2009,61:467-477.
    [152]Lin J J, Chen J S, Huang S J, Ko J H, Wang Y M, Chen T L, Wang L F. Folic acid-Pluronic F127 magnetic nanoparticle clusters for combined targeting, diagnosis, and therapy applications. Biomaterials.2009,30:5114-5124.
    [153]Grace Y K, Lee J, Robert L. Michael J C. Magnetic relaxation switch detection of human chorionic gonadotrophin. Bioconjugate Chem.2007,18:2024-2028.
    [154]Sonvico F, Mornet S, Vasseur S, Dubernet C, Jaillard D, Degrouard J, Hoebeke J, Duguet E, Colombo P, Couvreur P. Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators:synthesis, physicochemical characterization, and in vitro experiments. Bioconjugate Chem.2005,16: 1181-1188.
    [155]Hu S H, Liu T Y, Tsai C H, Chen S Y. Preparation and characterization of magnetic ferroscaffolds for tissue engineering. Journal of Magnetism and Magnetic Materials.2007, 310:2871-2873.
    [156]Pan C L, Hu B, Li W, Sun Y, Ye H, Zeng X X. Novel and efficient method for immobilization and stabilization of β-D-galactosidase by covalent attachment onto magnetic Fe3O4-chitosan nanoparticles. Journal of Molecular Catalysis B:Enzymatic.2009,61: 208-215.
    [157]Jun Y W, Huh Y M, Choi J S, Lee J H, Song H T, Kim S J, Yoon S, Kim K S, Shin J S, Suh J S, Cheon J. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc.2005,127:5732-5733.
    [158]Cheng F Y, Su C H, Yang Y S, Yeh C S, Tsai C Y, Wub C L, Wu M T, Shieh D B. Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications. Biomaterials.2005,26:729-738.
    [159]Tan S T, Wendorff J H, Pietzonka C, Jia Z H, Wang G Q. Biocompatible and biodegradable polymer nanofibers displaying superparamagnetic properties. Chem Phys Chem.2005,6:1461-1465.
    [160]Son S J, Reichel J, He B, Schuchman M, Lee S B. Magnetic nanotubes for magnetic-field-assisted bioseparation, biointeraction, and drug delivery. J Am Chem Soc.2005,127: 7316-7317.
    [161]Zhang J, Misra R D K. Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer:Core-shell nanoparticle carrier and drug release response. Acta Biomaterialia.2007,3:838-850.
    [162]Pankhurst Q A, Connolly J, Jones S K, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D:Appl Phys.2003,36:R167-R181.
    [163]Muthana M, Scott S D, Farrow N, Morrow F, Murdoch C, Grubb S, Brown N, Dobson J, Lewis C E. A novel magnetic approach to enhance the efficacy of cell-based gene therapies. Gene Therapy.2008,15:902-910.
    [164]Nishiyama N, Kataoka K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacology & Therapeutics. 2006,112:630-648.
    [165]Nishiyama N, Bae Y, Miyata K, Fukushima S, Kataoka K. Smart polymeric micelles for gene and drug delivery. Drug discovery today:Technologies.2005,2:21-26.
    [166]Rapoport N. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci.2007,32:962-990.
    [167]Soga O, Nostrum C F V, Fens M, Rijcken C J F, Schiffelers R M, Storm G, Hennink W E. Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery. J Controlled Release.2005,103:341-353.
    [168]Ren J, Jia M H, Ren T B, Yuan W Z, Tan Q G. Preparation and characterization of PNIPAAm-b-PLA/Fe3O4 thermo-responsive and magnetic composite micelles. Mater Lett. 2008,62:4425-4427.
    [169]Hong G B, Yuan R X, Liang B L, Shen J, Yang X Q, Shuai X T. Folate-functionalized polymeric micelle as hepatic carcinoma-targeted, MRI-ultrasensitive delivery system of antitumor drugs. Biomed Microdevices.2008,10:693-700.
    [170]Yang Z G, Ding J D. A thermosensitive and biodegradable physical gel with chemically crosslinked nanogels as the building block. Macromol Rapid Commun.2008,29:751-756.
    [171]Deng L, Shi K, Zhang Y Y, Wang H M, Zeng J Q Guo X Z, Du Z J, Zhang B L, Synthesis of well-defined poly(N-isopropylacrylamide)-b-poly(L-glutamic acid) by a versatile approach and micellization. Journal of Colloid and Interface Science.2008,323:169-174.
    [172]Giacomelli C, Lafitte G, Borsali R. Polycaprolactone-b-Poly(ethylene oxide) Biocom-patible Micelles as Drug Delivery Nanocarriers:Dynamic Light Scattering and Fluorescence Experiments. Macromolecular Symposia.2005,229:107-117.
    [173]Kuang G C, Ji Y, Jia X R, Chen E Q, Gao M, Yeh J M, Wei Y. Supramolecular self-assembly of dimeric dendrons with different aliphatic spacers. Chemistry of Materials. 2009,21:456-462.
    [174]Zhang J X, Qiu L Y, Li X D, Jin Y, Zhu K J. Versatile preparation of fluorescent particles based on polyphosphazenes:from micro-to nanoscale. Small.2007,3:2081-2093.
    [175]Zhang J X, Qiu L Y, Jin Y, Zhu K J. Thermally responsive polymeric micelles self-assembled by amphiphilic polyphosphazene with poly(N-isopropylacrylamide) and ethyl glycinate as side groups:polymer synthesis, characterization, and in vitro drug release study. J Biomed Mater Res.2006,76A:773-780.
    [176]Lo C L, Lin K M, Hsiue G H. Preparation and characterization of intelligent core-shell nanoparticles based on poly(D, L-lactide)-g-poly(N-isopropylacrylamide-co-methacrylic acid). J Controlled Release.2005,104:477-488.
    [177]Li Y Y, Zhang X Z, Cheng H, Zhu J L, Cheng S X, Zhuo R X. Self-assembled, thermosensitive PCL-g-P(NIPAAm-co-HEMA) micelles fordrug delivery. Macromol Rapid Commun.2006,27:1913-1919.
    [178]Shen Y Q, Zhan Y H, Tang J B, Xu P S, Johnson P A, Radosz M. Multifunctioning pH-Responsive nanoparticles from hierarchical self-assembly of polymer brush for cancer drug delivery, AIChE Journal 2008,54:2979-2989.
    [179]Li S, Wang A X, Jiang W Q, Guan Z Z. Pharmacokinetic characteristics and anticancer effects of 5-fluorouracil loaded nanoparticles. BMC Cancer 2008,8:103-112.
    [180]Loh X J, Wu Y L, Seow W T J, Norimzan M N I, Zhang Z X, Xu F J, Kang E T, Neoh K G, Li J. Micellization and phase transition behavior of thermosensitive poly(N-isopropyl-acrylamide)-poly(ε-caprolactone)-poly(N-isopropylacrylamide) triblock copolymers. Polymer. 2008,49:5084-5094.
    [181]Chang C, Wei H, Quan C Y, Li Y Y, Liu J, Wang Z C, Cheng S X, Zhang X Z, Zhuo R X, Fabrication of thermosensitive PCL-PNIPAAm-PCL triblock copolymeric micelles for drug delivery. J Polym Sci Part A:Polym Chem.2008,46:3048-3057.
    [182]Chen W Q, Wei H, Li S L, Feng J, Nie J, Zhang X Z, Zhuo R X. Fabrication of star-shaped, thermo-sensitive poly(N-isopropylacrylamide)-cholic acid-poly(ε-capro-lactone) copolymers and their self-assembled micelles as drug carriers. Polymer.2008,49:3965-3972.
    [183]Bae Y, Fukushima S, Harada A, Kataoka K. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery:polymeric micelles that are responsive to intracellular pH change. Angew Chem Int Ed.2003,42:4640-4643.
    [184]Wei H, Zhang X Z, Cheng H, Chen W Q, Cheng S X, Zhuo R X, Self-assembled thermo-and pH-responsive micelles of poly(1-9-undecenoicacid-b-N-isopropylacrylamide) for drug delivery. J Controlled Release.2006,116:266-274.
    [185]Gao Z G, Fain H D, Rapoport N. Controlled and targeted tumor chemotherapy by micellar-encapsulated drug and ultrasound. J Controlled Release.2005,102:203-222.
    [186]Soppimath K S, Tan D C W, Yang Y Y. pH-triggered thermally responsive polymer core-shell nanoparticles for drug delivery. Adv Mater.2005,17:318-323.
    [187]Ru M L, Dai W F, Du Z Z, Lang M D. Study on synthesis and self-assembly behaviors of random graft terpolymers. ACTA Chimica Sinica 2008,66:1884-1888.
    [188]Cammas S, Suzuki K, Sone C, Sakurai Y, Kataoka K, Okano T. Thermo-responsive polymer nanoparticles with a core-shell micelle structure as site-specific drug carriers. J Controlled Release.1997,48:157-164.
    [189]Kohori F, Sakai K, Aoyagi T, Yokoyama M, Sakurai Y, Okano T. Preparation and characterization of thermally responsive block copolymer micelles comprising poly(N-iso-propylacrylamide-b-d,l-lactide). J Controlled Release.1998,55:87-98.
    [190]Chung J E, Yokoyama M, Yamato M, Aoyagi T, Sakurai Y, Okano T. Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(N-isopropylacrylamide) and poly(butylmethacrylate). J Controlled Release.1999,62: 115-127.
    [191]Kohori F, Sakai K, Aoyagi T, Yokoyama M, Yamato M, Sakurai Y, Okano T. Control of adriamycin cytotoxic activity using thermally responsive polymeric micelles composed of poly(N-isopropylacrylamide-co-N, N-dimethylacrylamide)-b-poly(D,L-lactide). Colloids and Surf B:Biointerf.1999,16:195-205.
    [192]Nakayama M, Okano T, Miyazaki T, Kohori F, Sakai K, Yokoyama M. Molecular design of biodegradable polymeric micelles for temperature-responsive drug release. J Controlled Release.2006,115:46-56.
    [193]Yoo H S, Lee E A, Park T G. Doxorubicin-conjugated biodegradable polymeric micelles having acid-cleavable linkages. J Controlled Release.2002,82:17-27.
    [194]He C L, Zhao C W, Chen X S, Guo Z J, Zhuang X L, Jing X B. Novel pH-and temperature-responsive block copolymers with tunable pH-responsive range. Macromol Rapid Commun.2008,29:490-497.
    [195]Yoo H S, Park T G. Folate receptor targeted biodegradable polymeric doxorubicin micelles. J Controlled Release.2004,96:273-283.
    [196]Peng C L, Shieh M J, Tsai M H, Chang C C, Lai P S. Self-assembled star-shaped chlorin-core poly(e-caprolactone)-poly(ethylene glycol) diblock copolymer micelles for dual chemo-photodynamic therapies. Biomaterials.2008,29:3599-3608.
    [197]Gungor E, Durmaz H, Hizal G, Tunca U. H-shaped (ABCDE type) quintopolymer via click reaction [3+2] strategy. J Polym Sci Part A:Polym Chem.2008,46:4459-4468.
    [198]Chung J E, Yokoyama M, Aoyagi T, Sakurai Y, Okano T. Effect of molecular architecture of hydrophobically modified poly(N-isopropylacrylamide) on the formation of thermoresponsive core-shell micellar drug carriers. J Controlled Release.1998,53:119-130.
    [199]茹敏良.温度敏感和pH敏感纳米粒子的制备及载药性能的研究.硕士学位论文.2008,p47.
    [200]Liu S Q, Tong Y W, Yang Y Y. Incorporation and in vitro release of doxorubicin in thermally sensitive micelles made from poly(N-isopropylacrylamide-co-N, N-dimethylacryl-amide)-b-poly(d,l-lactide-co-glycolide) with varying compositions. Biomaterials.2005,26: 5064-5074.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700