用户名: 密码: 验证码:
去甲肾上腺素促进内皮祖细胞动员的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的
     EPCs的动员机制存在多个环节,如黏附、降解、运动、迁移等。在机体某些生理或病理状态下,外周血中EPCs的数量和功能也会发生变化。去甲肾上腺素是人体交感神经的主要的神经递质之一。其对于EPCs动员的影响仍不是十分清楚。本研究的目的是:探讨NE对肢体缺血C57小鼠EPCs动员的影响,以及对体外培养的人EPCs的增殖、迁移能力的影响;探讨MAPK信号通路介导NE的促进EPCs的作用以及beta-arrestin 2在EPCs功能调节中的作用。
     研究方法
     本课题从在体实验水平、细胞实验水平和分子调控机制等多个层面逐层深入研究NE调节EPCs动员的机制。
     (1)在体实验:采用结扎股动脉的方法制备左下肢缺血的小鼠模型,于术后的第l至5天每天给予药物腹腔注射,具体药物以下:NE 10"8mol、α阻滞剂酚妥拉明10"8mol、beta1受体阻滞剂美托洛尔10-8mol和beta2受体阻滞剂10-8mol。于术后第7天取骨髓单个核细胞、脾脏细胞和小鼠外周血单个核细胞,流式检测CD34+KDR+的细胞所占的比率。
     (2)细胞功能学研究:在体外培养人外周血EPCs的培养基中加入不同浓度的NE(0、0.01、0.1、1、10、100μM)干预72小时, MTT评价EPCs的增殖能力,Transwell小室实验评价EPCs的迁移能力。
     (3)细胞信号研究:Western-blot检测检测丝裂原激活蛋白激酶(Mitogen Activated Protein Kinase, MAPK),即细胞外信号调节激酶Erk1/2、c-Jun氨基端激酶Jnk和p38 MAPK的磷酸化水平。
     (4)细胞信号通路的蛋白调控机制研究:随机选取4名对照者和4名糖尿病患者的外周血30ml,分离PBMCs, Western-blot检测beta-arrestin 2的表达。基因沉默的方法干扰EPCs beta-arrestin 2的表达,Realtime PCR和Western-blot的方法评价沉默的效率,采用MTT何Transwell小室实验的方法研究beta-arrestin2在EPCs增殖能力和迁移能力的调控中的作用。
     结果
     (1)在体实验发现:NE能够显著地促进肢体缺血C57小鼠骨髓EPCs的增殖以及其动员进外周血的能力。注射了NE组的C57小鼠骨髓的EPCs的数量从2.0±0.4%增加到4.7±0.9%,p<0.05,动员进外周血的EPCs的数量从1.2±0.6%增加到6.2±1.9%,p<0.05,脾脏的EPCs的数量从2.54±0.8%增加到3.1±1.0%,p<0.05。而NE的这种作用能够被Q肾上腺素受体阻断剂酚妥拉明和beta2肾上腺受体阻断剂I127阻断,但是不能被beta1肾上腺素受体阻断剂阻断。
     (2)细胞功能学实验发现:NE能够浓度依赖性地促进体外培养的EPCs的增殖,其中以NE 10μM的作用最强,其增殖率为103.6±54.6%,P<0.05,NE的促进EPCs增殖作用能够被酚妥拉明和I127阻断,但是不能被美托络尔阻断。另外ERK 1/2抑制剂A6355和eNOS抑制剂L-NAME能够阻断也能够阻断NE的这种作用,P<0.05,但是JNK抑制剂SP600125、p38抑制剂PD169318、PI3K抑制剂LY294002 1μM、、p65抑制剂R0106-9920和NO供体SNP均无类似作用,P>0.05。NE能够显著地促进EPCs的迁移能力(124.1±12.2 VS 71.7±19.6,P<0.05),酚妥拉明和I127能够阻断NE的促迁移能力(57.2±14.3 VS 124.1±12.2,P<0.05和61.3±11.5 VS 124.1±12.2,P<0.05),而美托洛尔无类似作用(112.8±26.0 VS 124.1±12.2,P>0.05)。
     (3)细胞信号通路的研究发现:NE能够浓度依赖性地增加EPCs的Erk 1/2和信号分子Src的的磷酸化,P<0.05,而I127能够减轻Erk 1/2和Src的磷酸化,P<0.05,酚妥拉明和美托络尔则没有类似作用,P>0.05。
     (4)信号调控机制研究发现:基因沉默beta-arrestin 2后,EPCs对VEGF的敏感性显著地增加(33.7±6.4%VS 2.1±1.4%,P<0.05),而EPCs对NE的敏感性显著地减少(26.6±7.8%VS64.0±13.5%,P<0.05)。基因沉默beta-arrestin 2后,EPCs的迁移能力下降,对NE的敏感性下降。
     结论
     NE促进肢体缺血时骨髓EPCs的动员以及增殖、迁移能力。NE能够激活EPCs Src-MAPK信号通路,而beta-arrestin 2参与EPCs的增殖和迁移能力的调节。
Purpose
     There are several stages for the endothelial progenitor cells (EPCs) mobilization, such as adhesion, degradation, movement and migration. The number and function of EPCs would change with physiological or pathological conditions in vive. Norepinephrine (NE) is the most important transmitter of human sympathetic nerve system. Up to today, it is not clear whether the EPCs mobilization is regulated by NE. The purpose of this study was to investigate the influence of NE on EPCs mobilization in C57 mouse with limb ischemia, human EPCs proliferation and migration which is cultivated ex vive and the involvement of mitogen-activated protein kinase (MAPK) signal molecular and beta-arrestin 2 in the regulation of EPCs function by NE.
     Methods
     The regulation of EPCs mobilization by norepinephrine was investigated at molecular level, cellular level and general level.
     First, at the general levels limb ischemia mouse were prepared with left femoral artery ligation at the proximal and the distal end. Drugs such as NE 10-8mol, alpha adrenoceptor receptor blocker Phentolamine 10-8mol, beta ladrenoceptor blocker Metoprolol 10-8mol and beta 2 adrenoceptor 1127 10-8mol were intraperitoneal injected. The proportions of EPCs (double positive of CD34 and KDR) in bone marrow, spleen and peripheral circulation were analyzed with flow cytometry at the 7th day after the left femoral artery ligation.
     Second at the cellular levels, after 8 days of cultivation of human EPCs, different concentrations of NE (0、0.01、0.1、1、10、100μM) were added into the media, and the proliferation and migration potential were analyzed with MTT and Transwell chamber respectively.
     Third, at the molecular levels, the phosphorylation of Mitogen-Activated Protein Kinase (MAPK) signal molecular such as Erk 1/2, JNK and p38 were assay with Western blot.
     At the last, PBMCs isolated from 30ml peripheral blood of 4 DM-2 patients and 4 healthy subjects were assayed the expression of beta-arrestin2 with Western blot. The ablations of beta-arrestin 2 were confirmed with Realtime PCR and Western blot. The proliferation and migration of EPCs were assayed after the ablation.
     Results
     The in vive stydies foud that NE increased mobilization of EPCs from bone marrow to peripheral circulation significantly after limb ischemia in C57 mouse. The proportion of EPCs in bone marrow increased from 2.0±0.4% to 4.7±0.9%, p< 0.05, in the peripheral circulation increased from 1.2±0.6% to 6.2±1.9%, p< 0.05, in spleen increased from 2.5±0.8% to 3.1±1.0%, p< 0.05. The effects of NE could be blocked by Phentolamine and I 127, but could not be blocked by Metoprolol.
     The cellular studies found that NE dose dependently increased the proliferation potential of EPCs. With the most effective concentration of NE 10μM, EPCs proliferation increased 103.6±54.6%, P< 0.05. This effect could be blocked by Phentolamine,1127, A6355 and L-NAME, but not by Metoprolol, SP600125,, PD169318, LY294002,, RO106-9920 and SNP, P> 0.05.NE significantly increased the migration potential of EPCs (124.1±12.2 VS 71.7±19.6, P< 0.05). This effect could be blocked by Phentolamine and 1127 (57.2±14.3 vs 124.1±12.2, P< 0.05 and 61.3±11.5 vs 124.1±12.2, P<0.05), but not by Metoprolol (112.8±26.0 VS 124.1±12.2,P>0.05).
     The cell signal studies found that NE significantly increased the phosphorylation of Erk 1/2 and signal molecular Src. This effect could be blocked by 1127, P< 0.05, but not by Phentolamine and Metoprolol, P> 0.05.
     The cell signal regulation studied found that after the ablation of beta-arrestin 2, EPCs were more sensitive to the addition of VEGF in the media (33.7±6.4% vs 2.1±1.4%, P< 0.05), but less sensitive to the addition of NE (26.6±7.8% vs 64.0±13.5%, P< 0.05). The ablation of beta-arrestin 2 decreased the migration potential and sensitive of EPCs to NE.
     Conclusion
     NE increases the mobilization of EPCs in mouse with limb ischemia and proliferation, migration potential of EPCs ex vivo. NE increases the phosphorylation of Erk 1/2 and signal molecular Src. Beta-arrestin 2 participates in the regulation of EPCs proliferation and migration.
引文
1. Povsic TJ, Goldschmidt-Clermont PJ. Endothelial progenitor cells:markers of vascular reparative capacity. Ther Adv Cardiovasc Dis.2008;2(3):199-213.
    2. Pompilio G, Capogrossi MC, Pesce M, Alamanni F, DiCampli C, Achilli F, Germani A, Biglioli P. Endothelial progenitor cells and cardiovascular homeostasis:clinical implications. Int J Cardiol.2009; 131 (2):156-167.
    3. Umemura T, Higashi Y. Endothelial progenitor cells:therapeutic target for cardiovascular diseases. J Pharmacol Sci.2008; 108(1):1-6.
    4. Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med.2003;348(7):593-600.
    5. Steiner S, Niessner A, Ziegler S, Richter B, Seidinger D, Pleiner J, Penka M, Wolzt M, Huber K, Wojta J, Minar E, Kopp CW. Endurance training increases the number of endothelial progenitor cells in patients with cardiovascular risk and coronary artery disease.
    Atherosclerosis.2005; 181 (2):305-310.
    6. Thum T, Bauersachs J. ADMA, endothelial progenitor cells, and cardiovascular risk. Circ Res. 2005;97(8):e84.
    7. Werner N, Nickenig G. Influence of cardiovascular risk factors on endothelial progenitor cells: limitations for therapy? Arterioscler Thromb Vasc Biol.2006;26(2):257-266.
    8. Miyata T, lizasa H, Sai Y, Fujii J, Terasaki T, Nakashima E. Platelet-derived growth factor-BB (PDGF-BB) induces differentiation of bone marrow endothelial progenitor cell-derived cell line TR-BME2 into mural cells, and changes the phenotype. J Cell Physiol. 2005;204(3):948-955.
    9. Smadja DM, Bieche I, Helley D, Laurendeau I, Simonin G, Muller L, Aiach M, Gaussem P. Increased VEGFR2 expression during human late endothelial progenitor cells expansion enhances in vitro angiogenesis with up-regulation of integrin alpha(6). J Cell Mol Med. 2007;11(5):1149-1161.
    10. Huang PH, Chen YH, Wang CH, Chen JS, Tsai HY, Lin FY, Lo WY, Wu TC, Sata M, Chen JW, Lin SJ. Matrix metalloproteinase-9 is essential for ischemia-induced neovascularization by modulating bone marrow-derived endothelial progenitor cells. Arterioscler Thromb Vasc Biol.2009;29(8):1179-1184.
    11. Leone AM, Rutella S, Giannico MB, Perfetti M, Zaccone V, Brugaletta S, Garramone B, Niccoli G, Porto I, Liuzzo G, Biasucci LM, Bellesi S, Galiuto L, Leone G, Rebuzzi AG, Crea F. Effect of intensive vs standard statin therapy on endothelial progenitor cells and left ventricular function in patients with acute myocardial infarction:Statins for regeneration after acute myocardial infarction and PCI (STRAP) trial. Int J Cardiol.2008;130(3):457-462.
    12. Di Stefano R, Santoni T, Armani C, Barsotti MC, Chifenti B, Mariani M, Balbarini A. Endothelial progenitor cells induction by short-term stimulation with phytohaemagglutinin of mononuclear cells. Cardiovasc Radial Med.2002;3(3-4):169-171.
    13. Thum T, Fraccarollo D, Galuppo P, Tsikas D, Frantz S, Ertl G, Bauersachs J. Bone marrow molecular alterations after myocardial infarction:Impact on endothelial progenitor cells. Cardiovasc Res.2006;70(1):50-60.
    14. Li X, Han Y, Pang W, Li C, Xie X, Shyy JY, Zhu Y. AMP-activated protein kinase promotes the differentiation of endothelial progenitor cells. Arterioscler Thromb Vasc Biol. 2008;28(10):1789-1795.
    15. Vatta MS, Rubio M, Bianciotti LG, Fernandez BE. Atrial natriuretic factor does not affect norepinephrine catabolism in rat hypothalamus and adrenal medulla. Neurosci Lett. 1998;253(3):151-154.
    16. Kawada T, Yamazaki T, Akiyama T, Sato T, Shishido T, Sugimachi M, Sunagawa K. Chronic adriamycin treatment impairs myocardial interstitial neuronal release of norepinephrine and epinephrine. J Cardiovasc Pharmacol.2000;36 Suppl 2:S31-34.
    17. Wang Y, De Arcangelis V, Gao X, Ramani B, Jung YS, Xiang Y. Norepinephrine-and epinephrine-induced distinct beta2-adrenoceptor signaling is dictated by GRK2 phosphorylation in cardiomyocytes. J Biol Chem.2008;283(4):1799-1807.
    18. Tsai SJ, Wang YC, Hong CJ. Norepinephrine transporter and alpha(2c) adrenoceptor allelic variants and personality factors. Am J Med Genet.2002; 114(6):649-651.
    19. Millan MJ, Dekeyne A. Discriminative stimulus properties of the selective norepinephrine reuptake inhibitor, reboxetine, in rats:a characterization with alpha/beta-adrenoceptor subtype
    selective ligands, antidepressants, and antagonists at neuropeptide receptors. Int J Neuropsychopharmacol.2007; 10(5):579-593.
    20. Sebolt-Leopold JS, Herrera R, Ohren JF. The mitogen-activated protein kinase pathway for molecular-targeted cancer treatment. Recent Results Cancer Res.2007; 172:155-167.
    21. Wang Y, Dohlman HG. Regulation of G protein and mitogen-activated protein kinase signaling by ubiquitination:insights from model organisms. Circ Res. 2006;99(12):1305-1314.
    22. Cuevas BD, Abell AN, Johnson GL. Role of mitogen-activated protein kinase kinase kinases in signal integration. Oncogene.2007;26(22):3159-3171.
    1. Yoder MC. Defining human endothelial progenitor cells. J Thromb Haemost.2009;7 Suppl 1:49-52.
    2. Nolan DJ, Ciarrocchi A, Mellick AS, Jaggi JS, Bambino K, Gupta S, Heikamp E, McDevitt MR, Scheinberg DA, Benezra R, Mittal V. Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Genes Dev. 2007;21(12):1546-1558.
    3. Kong D, Melo LG, Gnecchi M, Zhang L, Mostoslavsky G, Liew CC, Pratt RE, Dzau VJ. Cytokine-induced mobilization of circulating endothelial progenitor cells enhances repair of injured arteries. Circulation.2004;110(14):2039-2046.
    4. Condon ET, Wang JH, Redmond HP. Surgical injury induces the mobilization of endothelial progenitor cells. Surgery.2004;135(6):657-661.
    5. Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A, Bohm M, Nickenig G. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med. 2005;353(10):999-1007.
    6. Werner N, Nickenig G. Influence of cardiovascular risk factors on endothelial progenitor cells: limitations for therapy? Arterioscler Thromb Vasc Biol.2006;26(2):257-266.
    7. Zhang JJ, Yi ZW, Dang XQ, He XJ, Wu XC. [Mobilization effects of SCF along with G-CSF on bone marrow stem cells and endothelial progenitor cells in rats with unilateral ureteral obstruction]. Zhongguo Dang Dai Er Ke Za Zhi.2007;9(2):144-148.
    8. Zhang Y, Adachi Y, Iwasaki M, Minamino K, Suzuki Y, Nakano K, Koike Y, Mukaide H, Shigematsu A, Kiriyama N, Li C, Ikehara S. G-CSF and/or M-CSF accelerate differentiation of bone marrow cells into endothelial progenitor cells in vitro. Oncol Rep. 2006;15(6):1523-1527.
    9. Pistrosch F, Herbrig K, Oelschlaegel U, Richter S, Passauer J, Fischer S, Gross P. PPARgamma-agonist rosiglitazone increases number and migratory activity of cultured endothelial progenitor cells. Atherosclerosis.2005;183(1):163-167.
    10. De Falco E, Porcelli D, Torella AR, Straino S, Iachininoto MG, Orlandi A, Truffa S, Biglioli P, Napolitano M, Capogrossi MC, Pesce M. SDF-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells. Blood. 2004;104(12):3472-3482.
    11. Walter DH, Haendeler J, Reinhold J, Rochwalsky U, Seeger F, Honold J, Hoffmann J, Urbich C, Lehmann R, Arenzana-Seisdesdos F, Aicher A, Heeschen C, Fichtlscherer S, Zeiher AM, Dimmeler S. Impaired CXCR4 signaling contributes to the reduced neovascularization capacity of endothelial progenitor cells from patients with coronary artery disease. Circ Res. 2005;97(11):1142-1151.
    12. Gavard J, Gutkind JS. VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol.2006;8(11):1223-1234.
    13. Spadaccio C, Pollari F, Casacalenda A, Alfano G, Genovese J, Covino E, Chello M. Atorvastatin increases the number of endothelial progenitor cells after cardiac surgery:a randomized control study. J Cardiovasc Pharmacol.55(1):30-38.
    14. Ribatti D. The discovery of endothelial progenitor cells. An historical review. Leuk Res. 2007;31(4):439-444.
    15. Farace F, Massard C, Borghi E, Bidart JM, Soria JC. Vascular disrupting therapy-induced mobilization of circulating endothelial progenitor cells. Ann Oncol.2007;18(8):1421-1422.
    16. Zhou B, Wu KH, Poon MC, Han ZC. Endothelial progenitor cells transfected with PDGF: cellular and molecular targets for prevention of diabetic microangiopathy. Med Hypotheses. 2006;67(6):1308-1312.
    17. Smadja DM, Bieche I, Helley D, Laurendeau I, Simonin G, Muller L, Aiach M, Gaussem P. Increased VEGFR2 expression during human late endothelial progenitor cells expansion enhances in vitro angiogenesis with up-regulation of integrin alpha(6). J Cell Mol Med. 2007;11(5):1149-1161.
    18. Korbling M, Reuben JM, Gao H, Lee BN, Harris DM, Cogdell D, Giralt SA, Khouri IF, Saliba RM, Champlin RE, Zhang W, Estrov Z. Recombinant human granulocyte-colony-stimulating factor-mobilized and apheresis-collected endothelial progenitor cells:a novel blood cell component for therapeutic vasculogenesis. Transfusion. 2006;46(10):1795-1802.
    19. Goon PK, Lip GY, Stonelake PS, Blann AD. Circulating endothelial cells and circulating progenitor cells in breast cancer:relationship to endothelial damage/dysfunction/apoptosis, clinicopathologic factors, and the Nottingham Prognostic Index. Neoplasia. 2009; 11(8):771-779.
    20. Religa P, Cao R, Bjorndahl M, Zhou Z, Zhu Z, Cao Y. Presence of bone marrow-derived circulating progenitor endothelial cells in the newly formed lymphatic vessels. Blood. 2005;106(13):4184-4190.
    21. Huang PH, Chen YH, Wang CH, Chen JS, Tsai HY, Lin FY, Lo WY, Wu TC, Sata M, Chen JW, Lin SJ. Matrix metalloproteinase-9 is essential for ischemia-induced neovascularization by modulating bone marrow-derived endothelial progenitor cells. Arterioscler Thromb Vasc Biol.2009;29(8):1179-1184.
    22. Liang C, Ren Y, Tan H, He Z, Jiang Q, Wu J, Zhen Y, Fan M, Wu Z. Rosiglitazone via upregulation of Akt/eNOS pathways attenuates dysfunction of endothelial progenitor cells, induced by advanced glycation end products. Br J Pharmacol.2009;158(8):1865-1873.
    23. Albiero M, Menegazzo L, Avogaro A, Fadini GP. Pharmacologic targeting of endothelial progenitor cells. Cardiovasc Hematol Disord Drug Targets.10(1):16-32.
    24. Custodis F, Laufs U. Physical exercise and endothelial progenitor cells. J Cardiopulm Rehabil Prev.2007;27(2):74-75.
    25. Tongers J, Roncalli JG, Losordo DW. Role of endothelial progenitor cells during ischemia-induced vasculogenesis and collateral formation. Microvasc Res.
    26. Massa M, Rosti V, Ferrario M, Campanelli R, Ramajoli I, Rosso R, De Ferrari GM, Ferlini M, Goffredo L, Bertoletti A, Klersy C, Pecci A, Moratti R, Tavazzi L. Increased circulating hematopoietic and endothelial progenitor cells in the early phase of acute myocardial infarction. Blood.2005; 105(1):199-206.
    27. Wojakowski W, Kazmierski M, Korzeniowska B, Tendera M. Link between erythropoietin release and mobilization of endothelial progenitor cells in acute myocardial infarction. Eur Heart J.2007;28(15):1785-1786.
    28. Michaud SE, Dussault S, Haddad P, Groleau J, Rivard A. Circulating endothelial progenitor cells from healthy smokers exhibit impaired functional activities. Atherosclerosis. 2006;187(2):423-432.
    29. Delva P, Degan M, Vallerio P, Arosio E, Minuz P, Amen G, Di Chio M, Lechi A. Endothelial progenitor cells in patients with essential hypertension. J Hypertens.2007;25(1):127-132.
    30. Fukuda D, Sata M. The renin-Angiotensin system:a potential modulator of endothelial progenitor cells. Hypertens Res.2007;30(11):1017-1018.
    1. Hughes AD, Coady E, Raynor S, Mayet J, Wright AR,-Shore AC, Kooner JS, Thom SA, Chaturvedi N. Reduced endothelial progenitor cells in European and South Asian men with atherosclerosis. Eur J Clin Invest.2007;37(1):35-41.
    2. Dedobbeleer C, Blocklet D, Toungouz M, Lambermont M, Unger P, Degaute JP, Goldman S, Berkenboom G. Myocardial homing and coronary endothelial function after autologous blood CD34+ progenitor cells intracoronary injection in the chronic phase of myocardial infarction. J Cardiovasc Pharmacol.2009;53(6):480-485.
    3. Zhao X, Huang L, Yin Y, Fang Y, Zhou Y. Autologous endothelial progenitor cells transplantation promoting endothelial recovery in mice. Transpl Int.2007;20(8):712-721.
    4. Zhao X, Wu N, Huang L. Endothelial progenitor cells and spleen:new insights in regeneration medicine. Cytotherapy.12(1):7-16.
    5. Suzuki H, Watabe T, Kato M, Miyazawa K, Miyazono K. Roles of vascular endothelial growth factor receptor 3 signaling in differentiation of mouse embryonic stem cell-derived vascular progenitor cells into endothelial cells. Blood.2005; 105(6):2372-2379.
    6. Traktuev DO, Prater DN, Merfeld-Clauss S, Sanjeevaiah AR, Saadatzadeh MR, Murphy M, Johnstone BH, Ingram DA, March KL. Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells. Circ Res. 2009;104(12):1410-1420.
    7. Kahler CM, Wechselberger J, Hilbe W, Gschwendtner A, Colleselli D, Niederegger H, Boneberg EM, Spizzo G, Wendel A, Gunsilius E, Patsch JR, Hamacher J. Peripheral infusion of rat bone marrow derived endothelial progenitor cells leads to homing in acute lung injury. Respir Res.2007;8:50.
    8. Verloop RE, Koolwijk P, Zonneveld AJ, Hinsbergh VW. Proteases and receptors in the recruitment of endothelial progenitor cells in neovascularization. Eur Cytokine Netw. 2009;20(4):207-219.
    9. Hristov M, Zernecke A, Bidzhekov K, Liehn EA, Shagdarsuren E, Ludwig A, Weber C. Importance of CXC chemokine receptor 2 in the homing of human peripheral blood endothelial progenitor cells to sites of arterial injury. Circ Res.2007; 100(4):590-597.
    10. Moore XL, Lu J, Sun L, Zhu CJ, Tan P, Wong MC. Endothelial progenitor cells' "homing" specificity to brain tumors. Gene The r. 2004; 11 (10):811-818.
    11. Oh IY, Yoon CH, Hur J, Kim JH, Kim TY, Lee CS, Park KW, Chae IH, Oh BH, Park YB, Kim HS. Involvement of E-selectin in recruitment of endothelial progenitor cells and angiogenesis in ischemic muscle. Blood.2007;110(12):3891-3899.
    12. Walter DH, Zeiher AM, Dimmeler S. Effects of statins on endothelium and their contribution to neovascularization by mobilization of endothelial progenitor cells. Coron Artery Dis. 2004;15(5):235-242.
    13. Luttun A, Ross JJ, Verfaillie C, Aranguren XL, Prosper F. Differentiation of multipotent adult progenitor cells into functional endothelial and smooth muscle cells. Curr Protoc Immunol. 2006;Chapter 22:Unit 22F 29.
    14. Wu H, Riha GM, Yang H, Li M, Yao Q, Chen C. Differentiation and proliferation of endothelial progenitor cells from canine peripheral blood mononuclear cells. J Surg Res. 2005;126(2):193-198.
    15. Henrich D, Hahn P, Wahl M, Wilhelm K, Dernbach E, Dimmeler S, Marzi I. Serum derived from multiple trauma patients promotes the differentiation of endothelial progenitor cells in vitro:possible role of transforming growth factor-beta1 and vascular endothelial growth factor165. Shock.2004;21(1):13-16.
    16. Miyatake M, Rubinstein TJ, McLennan GP, Belcheva MM, Coscia CJ. Inhibition of EGF-induced ERK/MAP kinase-mediated astrocyte proliferation by mu opioids:integration of G protein and beta-arrestin 2-dependent pathways. J Neurochem.2009; 110(2):662-674. 。
    17. Miyamoto Y, Suyama T, Yashita T, Akimaru H, Kurata H. Bone marrow subpopulations contain distinct types of endothelial progenitor cells and angiogenic cytokine-producing cells. J Mol Cell Cardiol.2007;43(5):627-635.
    18. Cesari F, Sofi F, Caporale R, Capalbo A, Marcucci R, Macchi C, Lova RM, Cellai T, Vannucci M, Gensini GF, Abbate R, Gori AM. Relationship between exercise capacity, endothelial progenitor cells and cytochemokines in patients undergoing cardiac rehabilitation. Thromb Haemost.2009; 101 (3):521-526.
    19. Schmidt D, Breymann C, Weber A, Guenter CI, Neuenschwander S, Zund G, Turina M, Hoerstrup SP. Umbilical cord blood derived endothelial progenitor cells for tissue engineering of vascular grafts. Ann Thorac Surg.2004;78(6):2094-2098.
    20. Zisch AH. Tissue engineering of angiogenesis with autologous endothelial progenitor cells. Curr Opin Biotechnol.2004;15(5):424-429.
    21. Mao M, Wang SN, Lv XJ, Wang Y, Xu JC. Intravenous delivery of bone marrow-derived endothelial progenitor cells improves survival and attenuates lipopolysaccharide-induced lung injury in rats. Shock.
    22. Lin HH, Chen YH, Yet SF, Chau LY. After vascular injury, heme oxygenase-1/carbon monoxide enhances re-endothelialization via promoting mobilization of circulating endothelial progenitor cells. J Thromb Haemost.2009;7(8):1401-1408.
    23. Canizo MC, Lozano F, Gonzalez-Porras JR, Barros M, Lopez-Holgado N, Briz E, Sanchez-Guijo FM. Peripheral endothelial progenitor cells (CD133+) for therapeutic vasculogenesis in a patient with critical limb ischemia. One year follow-up. Cytotherapy. 2007;9(1):99-102.
    24. Eguchi M, Masuda H, Kwon S, Shirakura K, Shizuno T, Ito R, Kobori M, Asahara T. Lesion-targeted thrombopoietin potentiates vasculogenesis by enhancing motility and enlivenment of transplanted endothelial progenitor cells via activation of Akt/mTOR/p70S6kinase signaling pathway. J Mol Cell Cardiol.2008;45(5):661-669.
    25. Zhu C, Ying D, Zhou D, Mi J, Zhang W, Chang Q, Li L. Expression of TGF-betal in smooth muscle cells regulates endothelial progenitor cells migration and differentiation. J Surg Res.2005;125(2):151-156.
    26. Zhou B, Wu KH, Poon MC, Han ZC. Endothelial progenitor cells transfected with PDGF:cellular and molecular targets for prevention of diabetic microangiopathy. Med Hypotheses.2006;67(6):1308-1312.
    27. Langer HF, May AE, Vestweber D, De Boer HC, Hatzopoulos AK, Gawaz M. Platelet-induced differentiation of endothelial progenitor cells. Semin Thromb Hemost. 2007;33(2):136-143.
    1. Kholodenko BN, Birtwistle MR. Four-dimensional dynamics of MAPK information processing systems. Wiley Interdiscip Rev Syst Biol Med.2009;1(1):28-44.
    2. Liu L, Zhang H, Sun L, Gao Y, Jin H, Liang S, Wang Y, Dong M, Shi Y, Li Z, Fan D. ERK/MAPK activation involves hypoxia-induced MGrl-Ag/37LRP expression and contributes to apoptosis resistance in gastric cancer. Int J Cancer.2009.
    3. Lizarraga-Mollinedo E, Fernandez-Millan E, de Miguel-Santos L, Martinez-Honduvilla CJ, Alvarez C, Escriva F. Early undernutrition increases glycogen content and reduces the activated forms of GSK3, AMPK, p38 MAPK, and JNK in the cerebral cortex of suckling rats. J Neurochem.112(1):123-133.
    4. Steffan JJ, Cardelli JA. Thiazolidinediones induce Rab7-RILP-MAPK-dependent juxtanuclear lysosome aggregation and reduce tumor cell invasion. Traffic.11(2):274-286.
    5. Endo H, Watanabe T, Sugioka Y, Niioka M, Inagaki Y, Okazaki I. Activation of two distinct MAPK pathways governs constitutive expression of matrix metalloproteinase-1 in human pancreatic cancer cell lines. Int J Oncol.2009;35(6):1237-1245.
    6. Liang C, Ren Y, Tan H, He Z, Jiang Q, Wu J, Zhen Y, Fan M, Wu Z. Rosiglitazone via upregulation of Akt/eNOS pathways attenuates dysfunction of endothelial progenitor cells, induced by advanced glycation end products. Br J Pharmacol.2009; 158(8):1865-1873.
    7. Sorrentino SA, Bahlmann FH, Besler C, Muller M, Schulz S, Kirchhoff N, Doerries C, Horvath T, Limbourg A, Limbourg F, Fliser D, Haller H, Drexler H, Landmesser U. Oxidant stress impairs in vivo reendothelialization capacity of endothelial progenitor cells from patients with type 2 diabetes mellitus:restoration by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. Circulation.2007; 116(2):163-173.
    8. Cottrell GS, Padilla BE, Amadesi S, Poole DP, Murphy JE, Hardt M, Roosterman D, Steinhoff M, Bunnett NW. Endosomal endothelin-converting enzyme-1:a regulator of beta-arrestin-dependent ERK signaling. J Biol Chem.2009;284(33):22411-22425.
    9. Suzuki M, Abe A, Imagama S, Nomura Y, Tanizaki R, Minami Y, Hayakawa F, Ito Y, Katsumi A, Yamamoto K, Emi N, Kiyoi H, Naoe T. BCR-ABL-independent and RAS/MAPK pathway-dependent form of imatinib resistance in Ph-positive acute lymphoblastic leukemia cell line with activation of EphB4. Eur J Haematol.84(3):229-238.
    10. Raymond B, Ravaux L, Memet S, Wu Y, Sturny-Leclere A, Leduc D, Denoyelle C, Goossens PL, Paya M, Raymondjean M, Touqui L. Anthrax lethal toxin down-regulates type-IIA secreted phospholipase A(2) expression through MAPK/NF-kappaB inactivation. Biochem Pharmacol.79(8):1149-1155.
    11. Tohgo A, Choy EW, Gesty-Palmer D, Pierce KL, Laporte S, Oakley RH, Caron MG, Lefkowitz RJ, Luttrell LM. The stability of the G protein-coupled receptor-beta-arrestin interaction determines the mechanism and functional consequence of ERK activation. J Biol Chem.2003;278(8):6258-6267.
    12. Nakamura N, Naruse K, Matsuki T, Hamada Y, Nakashima E, Kamiya H, Matsubara T, Enomoto A, Takahashi M, Oiso Y, Nakamura J. Adiponectin promotes migration activities of endothelial progenitor cells via Cdc42/Racl. FEBS Lett.2009;583(15):2457-2463.
    13. Chen KC, Chang LS. Notexin upregulates Fas and FasL protein expression of human neuroblastoma SK-N-SH cells through p38 MAPK/ATF-2 and JNK/c-Jun pathways. Toxicon.55(4):754-761.
    14. Seeger FH, Haendeler J, Walter DH, Rochwalsky U, Reinhold J, Urbich C, Rossig L, Corbaz A, Chvatchko Y, Zeiher AM, Dimmeler S. p38 mitogen-activated protein kinase downregulates endothelial progenitor cells. Circulation.2005; 111 (9):1184-1191.
    15. Xing Z, Cardona CJ, Anunciacion J, Adams S, Dao N. Roles of the ERK MAPK in the regulation of proinflammatory and apoptotic responses in chicken macrophages infected with H9N2 avian influenza virus. J Gen Virol.91 (Pt 2):343-351.
    1. Shukla AK, Violin JD, Whalen EJ, Gesty-Palmer D, Shenoy SK, Lefkowitz RJ. Distinct conformational changes in beta-arrestin report biased agonism at seven-transmembrane receptors. Proc Natl Acad Sci U S A.2008;105(29):9988-9993.
    2. Zhang J, Barak LS, Anborgh PH, Laporte SA, Caron MG, Ferguson SS. Cellular trafficking of G protein-coupled receptor/beta-arrestin endocytic complexes. J Biol Chem. 1999;274(16):10999-11006.
    3. Chen W, Ren XR, Nelson CD, Barak LS, Chen JK, Beachy PA, de Sauvage F, Lefkowitz RJ. Activity-dependent internalization of smoothened mediated by beta-arrestin 2 and GRK2. Science.2004;306(5705):2257-2260.
    4. Dinh DT, Qian H, Seeber R, Lim E, Pfleger K, Eidne KA, Thomas WG. Helix I of beta-arrestin is involved in postendocytic trafficking but is not required for membrane translocation, receptor binding, and internalization. Mol Pharmacol.2005;67(2):375-382.
    5. Patel PA, Tilley DG, Rockman HA. BETA-arrestin-mediated signaling in the heart. Circ J. 2008;72(11):1725-1729.
    6. Ma L, Pei G. BETA-arrestin signaling and regulation of transcription. J Cell Sci. 2007;120(Pt2):213-218.
    7. Azzi M, Charest PG, Angers S, Rousseau G, Kohout T, Bouvier M, Pineyro G. BETA-arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors. Proc Natl Acad Sci U S A. 2003;100(20):11406-11411.
    8. Strous GJ, Schantl JA. BETA-arrestin and Mdm2, unsuspected partners in signaling from the cell surface. Sci STKE.2001;2001(110):pe41.
    9. Beaulieu JM, Caron MG. BETA-arrestin goes nuclear. Cell.2005;123(5):755-757.
    10. Jones KT, Echeverry M, Mosser VA, Gates A, Jackson DA. Agonist mediated internalization of M2 mAChR is beta-arrestin-dependent. J Mol Signal.2006; 1:7.
    11. Meng QY, Li XQ, Yu XB, Lei FR, Jiang K, Li CY. Transplantation of VEGF165-gene-transfected endothelial progenitor cells in the treatment of chronic venous thrombosis in rats. Chin Med J (Engl).123(4):471-477.
    12. Chen F, Tan Z, Dong CY, Li X, Xie Y, Wu Y, Chen X, Guo S. Combination of VEGF(165)/Angiopoietin-1 gene and endothelial progenitor cells for therapeutic neovascularization. Eur J Pharmacol.2007;568(1-3):222-230.
    13. Urs NM, Jones KT, Salo PD, Severin JE, Trejo J, Radhakrishna H. A requirement for membrane cholesterol in the beta-arrestin-and clathrin-dependent endocytosis of LPA1 lysophosphatidic acid receptors. J Cell Sci.2005;118(Pt 22):5291-5304.
    14. Laporte SA, Oakley RH, Holt JA, Barak LS, Caron MG. The interaction of beta-arrestin with the AP-2 adaptor is required for the clustering of beta 2-adrenergic receptor into clathrin-coated pits. J Biol Chem.2000;275(30):23120-23126.
    15. Schulz R, Wehmeyer A, Murphy J, Schulz K. Phosducin, beta-arrestin and opioid receptor migration. Eur J Pharmacol.1999;375(1-3):349-357.
    16. Gaborik Z, Szaszak M, Szidonya L, Balla B, Paku S, Catt KJ, Clark AJ, Hunyady L. BETA-arrestin-and dynamin-dependent endocytosis of the ATl angiotensin receptor. Mol Pharmacol.2001;59(2):239-247.
    17. Bouschet T, Martin S, Kanamarlapudi V, Mundell S, Henley JM. The calcium-sensing receptor changes cell shape via a beta-arrestin-1 ARNO ARF6 ELMO protein network. J Cell Sci.2007;120(Pt 15):2489-2497.
    18. Claing A, Chen W, Miller WE, Vitale N, Moss J, Premont RT, Lefkowitz RJ. beta-Arrestin-mediated ADP-ribosylation factor 6 activation and beta 2-adrenergic receptor endocytosis. J Biol Chem.2001;276(45):42509-42513.
    19. Luttrell LM, Roudabush FL, Choy EW, Miller WE, Field ME, Pierce KL, Lefkowitz RJ. Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds. Proc Natl Acad Sci U S A.2001;98(5):2449-2454.
    20. McDonald PH, Chow CW, Miller WE, Laporte SA, Field ME, Lin FT, Davis RJ, Lefkowitz RJ. Beta-arrestin 2:a receptor-regulated MAPK scaffold for the activation of JNK3. Science.2000;290(5496):1574-1577.
    21. Karreth FA, DeNicola GM, Winter SP, Tuveson DA. C-Raf inhibits MAPK activation and transformation by B-Raf(V600E). Mol Cell.2009;36(3):477-486.
    22. Smith J, Yu R, Hinkle PM. Activation of MAPK by TRH requires clathrin-dependent endocytosis and PKC but not receptor interaction with beta-arrestin or receptor endocytosis. Mol Endocrinol.2001;15(9):1539-1548.
    23. Bjorgo E, Solheim SA, Abrahamsen H, Baillie GS, Brown KM, Berge T, Okkenhaug K, Houslay MD, Tasken K. Cross talk between phosphatidylinositol 3-kinase and cyclic AMP (cAMP)-protein kinase a signaling pathways at the level of a protein kinase B/beta-arrestin/cAMP phosphodiesterase 4 complex. Mol Cell Biol.30(7):1660-1672.
    24. Tohgo A, Pierce KL, Choy EW, Lefkowitz RJ, Luttrell LM. beta-Arrestin scaffolding of the ERK cascade enhances cytosolic ERK activity but inhibits ERK-mediated transcription following angiotensin ATla receptor stimulation. J Biol Chem.2002;277(11):9429-9436.
    25. Rakhit S, Pyne S, Pyne NJ. Nerve growth factor stimulation of p42/p44 mitogen-activated protein kinase in PC12 cells:role of G(i/o), G protein-coupled receptor kinase 2, beta-arrestin I, and endocytic processing. Mol Pharmacol.2001;60(1):63-70.
    26. Ahn S, Kim J, Hara MR, Ren XR, Lefkowitz RJ.{beta}-Arrestin-2 Mediates Anti-apoptotic Signaling through Regulation of BAD Phosphorylation. J Biol Chem. 2009;284(13):8855-8865.
    27. Piu F, Gauthier NK, Wang F. Beta-arrestin 2 modulates the activity of nuclear receptor RAR beta2 through activation of ERK2 kinase. Oncogene.2006;25(2):218-229.
    1. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science.1997;275(5302):964-967.
    2. Ribatti D. The discovery of endothelial progenitor cells. An historical review. Leuk Res. 2007;31(4):439-444.
    3. Ribatti D, Nico B, Crivellato E, Vacca A. Endothelial progenitor cells in health and disease. Histol Histopathol.2005;20(4):1351-1358.
    4. Nishimura H, Asahara T. Bone marrow-derived endothelial progenitor cells for neovascular formation. EXS.2005(94):147-154.
    5. Aicher A, Heeschen C. Nonbone marrow-derived endothelial progenitor cells:what is their exact location? Circ Res.2007;101(9):e102.
    6. Ergun S, Gehling UM. Non-bone-marrow-derived endothelial progenitor cells:what is their exact location? Circ Res.2007;101(3):e31.
    7. Jourde-Chiche N, Dou L, Sabatier F, Calaf R, Cerini C, Robert S, Camoin-Jau L, Charpiot P, Argiles A, Dignat-George F, Brunet P. Levels of circulating endothelial progenitor cells are related to uremic toxins and vascular injury in hemodialysis patients. J Thromb Haemost. 2009;7(9):1576-1584.
    8. Tongers J, Roncalli JG, Losordo DW. Role of endothelial progenitor cells during ischemia-induced vasculogenesis and collateral formation. Microvasc Res.
    9. Groger A, Piatkowski A, Grieb G, Wolter TP, Fuchs PC, Pallua N. The mobilisation of mononuclear cells and endothelial progenitor cells after burn injury in a porcine model. Burns.2009.
    10. Henrich D, Hahn P, Wahl M, Wilhelm K, Dernbach E, Dimmeler S, Marzi I. Serum derived from multiple trauma patients promotes the differentiation of endothelial progenitor cells in vitro:possible role of transforming growth factor-betal and vascular endothelial growth factorl65. Shock.2004;21(1):13-16.
    11. Scheubel RJ, Holtz J, Friedrich I, Borgermann J, Kahrstedt S, Navarrete Santos A, Silber RE, Simm A. Paracrine effects of CD34 progenitor cells on angiogenic endothelial sprouting. Int J Cardiol.139(2):134-141.
    12. Zhou B, Wu KH, Poon MC, Han ZC. Endothelial progenitor cells transfected with PDGF: cellular and molecular targets for prevention of diabetic microangiopathy. Med Hypotheses. 2006;67(6):1308-1312.
    13. Meng QY, Li XQ, Yu XB, Lei FR, Jiang K, Li CY. Transplantation of VEGF165-gene-transfected endothelial progenitor cells in the treatment of chronic venous thrombosis in rats. Chin Med J (Engl).123(4):471-477.
    14. Lee SJ, Kim CE, Yun MR, Seo K W, Park HM, Yun JW, Shin HK, Bae SS, Kim CD. 4-Hydroxynonenal enhances MMP-9 production in murine macrophages via 5-lipoxygenase-mediated activation of ERK and p38 MAPK. Toxicol Appl Pharmacol.242(2):191-198.
    15. Zhang Y, Adachi Y, Iwasaki M, Minamino K, Suzuki Y, Nakano K, Koike Y, Mukaide H, Shigematsu A, Kiriyama N, Li C, Ikehara S. G-CSF and/or M-CSF accelerate differentiation of bone marrow cells into endothelial progenitor cells in vitro. Oncol Rep. 2006; 15(6):1523-1527.
    16. De Falco E, Avitabile D, Totta P, Straino S, Spallotta F, Cencioni C, Torella AR, Rizzi R, Porcelli D, Zacheo A, Di Vito L, Pompilio G, Napolitano M, Melillo G, Capogrossi MC, Pesce M. Altered SDF-1-mediated differentiation of bone marrow-derived endothelial progenitor cells in diabetes mellitus. J Cell Mol Med.2009;13(9B):3405-3414.
    17. Custodis F, Laufs U. Physical exercise and endothelial progenitor cells. J Cardiopulm Rehabil Prev.2007;27(2):74-75.
    18. Michaud SE, Dussault S, Haddad P, Groleau J, Rivard A. Circulating endothelial progenitor cells from healthy smokers exhibit impaired functional activities. Atherosclerosis. 2006;187(2):423-432.
    19. Delva P, Degan M, Vallerio P, Arosio E, Minuz P, Amen G, Di Chio M, Lechi A. Endothelial progenitor cells in patients with essential hypertension. J Hypertens.2007;25(1):127-132.
    20. Oliveras A, Soler MJ, Martinez-Estrada OM, Vazquez S, Marco-Feliu D, Vila JS, Vilaro S, Lloveras J. Endothelial progenitor cells are reduced in refractory hypertension. J Hum Hypertens.2008;22(3):183-190.
    21. Moore XL, Lu J, Sun L, Zhu CJ, Tan P, Wong MC. Endothelial progenitor cells'"homing" specificity to brain tumors. Gene Ther. 2004;11(10):811-818.
    22. Yin Y, Zhao X, Fang Y, Yu S, Zhao J, Song M, Huang L. SDF-1 alpha involved in mobilization and recruitment of endothelial progenitor cells after arterial injury in mice. Cardiovasc Pathol.2009.
    23. Biancone L, Cantaluppi V, Duo D, Deregibus MC, Torre C, Camussi G. Role of L-selectin in the vascular homing of peripheral blood-derived endothelial progenitor cells. J Immunol. 2004;173(8):5268-5274.
    24. Berthelemy N, Kerdjoudj H, Schaaf P, Prin-Mathieu C, Lacolley P, Stoltz JF, Voegel JC, Menu P.02 level controls hematopoietic circulating progenitor cells differentiation into endothelial or smooth muscle cells. PLoS One.2009;4(5):e5514.
    25. Walter DH, Zeiher AM, Dimmeler S. Effects of statins on endothelium and their contribution to neovascularization by mobilization of endothelial progenitor cells. Coron Artery Dis. 2004;15(5):235-242.
    26. Kim S, von Recum HA. Endothelial progenitor populations in differentiating embryonic stem cells I:Identification and differentiation kinetics. Tissue Eng Part A. 2009;15(12):3709-3718.
    27. Sanchez A, Toledo-Pinto EA, Menezes ML, Pereira OC. Changes in norepinephrine and epinephrine concentrations in adrenal gland of the rats submitted to acute immobilization stress. Pharmacol Res.2003;48(6):607-613.
    28. Morrison SF, Cao WH. Different adrenal sympathetic preganglionic neurons regulate epinephrine and norepinephrine secretion. Am J Physiol Regul Integr Comp Physiol. 2000;279(5):R1763-1775.
    29. Carpene C, Galitzky J, Collon P, Esclapez F, Dauzats M, Lafontan M. Desensitization of beta-1 and beta-2, but not beta-3, adrenoceptor-mediated lipolytic responses of adipocytes after long-term norepinephrine infusion. J Pharmacol Exp Ther.1993;265(1):237-247.
    30. Masuo K, Katsuya T, Sugimoto K, Kawaguchi H, Rakugi H, Ogihara T, Tuck ML. High plasma norepinephrine levels associated with beta2-adrenoceptor polymorphisms predict future renal damage in nonobese normotensive individuals. Hypertens Res. 2007;30(6):503-511.
    31. Kaminska B, Gozdz A, Zawadzka M, Ellert-Miklaszewska A, Lipko M. MAPK signal transduction underlying brain inflammation and gliosis as therapeutic target. Anat Rec (Hoboken).2009;292(12):1902-1913.
    32. Liu L, Zhang H, Sun L, Gao Y, Jin H, Liang S, Wang Y, Dong M, Shi Y, Li Z, Fan D. ERK/MAPK activation involves hypoxia-induced MGrl-Ag/37LRP expression and contributes to apoptosis resistance in gastric cancer. Int J Cancer.2009.
    33. Willoughby EA, Collins MK. Dynamic interaction between the dual specificity phosphatase MKP7 and the JNK3 scaffold protein beta-arrestin 2. J Biol Chem. 2005;280(27):25651-25658.
    34. Chen KC, Chang LS. Notexin upregulates Fas and FasL protein expression of human neuroblastoma SK-N-SH cells through p38 MAPK/ATF-2 and JNK/c-Jun pathways. Toxicon.55(4):754-761.
    35. Seeger FH, Haendeler J, Walter DH, Rochwalsky U, Reinhold J, Urbich C, Rossig L, Corbaz A, Chvatchko Y, Zeiher AM, Dimmeler S. p38 mitogen-activated protein kinase downregulates endothelial progenitor cells. Circulation.2005; 111(9):1184-1191.
    36. Fadini GP, Miorin M, Facco M, Bonamico S, Baesso I, Grego F, Menegolo M, de Kreutzenberg SV, Tiengo A, Agostini C, Avogaro A. Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. J Am Coll Cardiol.2005;45(9):1449-1457.
    37. Urs NM, Jones KT, Salo PD, Severin JE, Trejo J, Radhakrishna H. A requirement for membrane cholesterol in the beta-arrestin-and clathrin-dependent endocytosis of LPA1 lysophosphatidic acid receptors. J Cell Sci.2005; 118(Pt 22):5291-5304.
    38. Laporte SA, Oakley RH, Holt JA, Barak LS, Caron MG. The interaction of beta-arrestin with the AP-2 adaptor is required for the clustering of beta 2-adrenergic receptor into clathrin-coated pits. J Biol Chem.2000;275(30):23120-23126.
    39. Schulz R, Wehmeyer A, Murphy J, Schulz K. Phosducin, beta-arrestin and opioid receptor migration. Eur J Pharmacol.1999;375(1-3):349-357.
    40. Gaborik Z, Szaszak M, Szidonya L, Balla B, Paku S, Catt KJ, Clark AJ, Hunyady L. BETA-arrestin-and dynamin-dependent endocytosis of the ATl angiotensin receptor. Mol Pharmacol.2001;59(2):239-247.
    41. Bouschet T, Martin S, Kanamarlapudi V, Mundell S, Henley JM. The calcium-sensing receptor changes cell shape via a beta-arrestin-1 ARNO ARF6 ELMO protein network. J Cell Sci.2007;120(Pt 15):2489-2497.
    42. Claing A, Chen W, Miller WE, Vitale N, Moss J, Premont RT, Lefkowitz RJ. beta-Arrestin-mediated ADP-ribosylation factor 6 activation and beta 2-adrenergic receptor endocytosis. J Biol Chem.2001;276(45):42509-42513.
    43. Luttrell LM, Roudabush FL, Choy EW, Miller WE, Field ME, Pierce KL, Lefkowitz RJ. Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds. Proc Natl Acad Sci U S A.2001;98(5):2449-2454.
    44. McDonald PH, Chow C W, Miller WE, Laporte SA, Field ME, Lin FT, Davis RJ, Lefkowitz RJ. Beta-arrestin 2:a receptor-regulated MAPK scaffold for the activation of JNK3. Science. 2000;290(5496):1574-1577.
    45. Karreth FA, DeNicola GM, Winter SP, Tuveson DA. C-Raf inhibits MAPK activation and transformation by B-Raf(V600E). Mol Cell.2009;36(3):477-486.
    46. Zhang J, Barak LS, Anborgh PH, Laporte SA, Caron MG, Ferguson SS. Cellular trafficking of G protein-coupled receptor/beta-arrestin endocytic complexes. J Biol Chem. 1999;274(16):10999-11006.
    47. Smith J, Yu R, Hinkle PM. Activation of MAPK by TRH requires clathrin-dependent endocytosis and PKC but not receptor interaction with beta-arrestin or receptor endocytosis. Mol Endocrinol.2001; 15(9):1539-1548.
    48. Bjorgo E, Solheim SA, Abrahamsen H, Baillie GS, Brown KM, Berge T, Okkenhaug K, Houslay MD, Tasken K. Cross talk between phosphatidylinositol 3-kinase and cyclic AMP (cAMP)-protein kinase a signaling pathways at the level of a protein kinase B/beta-arrestin/cAMP phosphodiesterase 4 complex. Mol Cell Biol.30(7):1660-1672.
    49. Tohgo A, Pierce KL, Choy EW, Lefkowitz RJ, Luttrell LM. beta-Arrestin scaffolding of the ERK cascade enhances cytosolic ERK activity but inhibits ERK-mediated transcription following angiotensin ATla receptor stimulation. J Biol Chem.2002;277(11):9429-9436.
    50. Rakhit S, Pyne S, Pyne NJ. Nerve growth factor stimulation of p42/p44 mitogen-activated protein kinase in PC 12 cells:role of G(i/o), G protein-coupled receptor kinase 2, beta-arrestin Ⅰ, and endocytic processing. Mol Pharmacol.2001;60(1):63-70.
    51. Ahn S, Kim J, Hara MR, Ren XR, Lefkowitz RJ.{beta}-Arrestin-2 Mediates Anti-apoptotic Signaling through Regulation of BAD Phosphorylation. J Biol Chem. 2009;284(13):8855-8865.
    52. Piu F, Gauthier NK, Wang F. Beta-arrestin 2 modulates the activity of nuclear receptor RAR beta2 through activation of ERK2 kinase. Oncogene.2006;25(2):218-229.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700