用户名: 密码: 验证码:
互联网拥塞控制系统的非线性稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着网络规模和服务质量的不断升级,互联网拥塞控制的重要性将更加突出。在通信时延、时变的网络拓扑等客观因素的影响下,互联网拥塞控制系统具有明显的非线性特征,在一定条件下将失去稳定性而呈现出分岔、混沌等动力学行为特征。此时路由器队列长度以及用户窗口大小将大幅振荡,最终导致网络效率急速下降甚至拥塞崩溃。本论文围绕这一主题,首先研究了时滞系统的混沌控制与同步等非线性问题,然后采用模型改进、信号处理等方法,研究推迟分岔和增大稳定区的有效方法。本论文的主要工作体现在以下几个方面。
     (1)研究了同结构和异结构(超)混沌系统的同步。首先以Chen系统和n涡卷Chua系统为同步对象,分别在参数确定和不确定两种情况下,研究了相同和不同类型三维混沌系统的同步策略,推导了相应的同步控制器和参数自适应更新率;然后推导了高维混沌系统全状态混合投影同步的广义公式,以四维Chen系统和Lü系统为例,得到超混沌系统全状态混合投影同步的控制器公式;最后,应用Lyapunov稳定性理论和计算机仿真结果,证明所推导的同步控制器的作用效果。
     (2)研究了时滞多智能体网络的同步一致性。首先根据已有多智能体网络模型在稳定区、响应速度等方面存在的问题,提出了一种改进措施。改进模型时引进比例系数k来增强同步控制的灵活度,同时在通信接收端引入相同的时滞τ以兼顾运算复杂度。然后应用频域分析法和几何法推导出改进模型的同步条件,给出了应用该同步条件和网络拓扑确定时滞τ取值范围的具体方法。最后,通过计算机仿真以及跟已有模型的比较,证明了新模型在同步控制方面的优势。
     (3)研究了互联网拥塞控制中TCP/AQM时滞对偶模型的非线性稳定性。首先论述拥塞控制对偶模型的概念、分类和特点,通过线性化分析和计算机仿真,表明已有模型存在稳定区小、易发生分岔和混沌等问题,在此基础上提出了一种改进措施。然后以通信时延为分岔参数重点研究了新模型的分岔条件。分别采用摄动法、中心流形定理和正规形法理论法研究了新模型的分岔方向和稳定性。两种分析方法的比较表明,在小参数存在的基础上,摄动法具有求解思路简明、运算量小等优点。最后,尝试推导改进模型的同伦近似解并与数值解进行比较,从运算复杂度和精确度等方面证明了同伦分析法在拥塞控制系统求解中的有效性。
     (4)研究了互联网拥塞控制中TCP/AQM流体流模型的非线性稳定性。首先论述流体流模型的演变和简化过程,分析了几种简化策略的基本思想和共同存在的问题,从提高模型稳定性的角度出发提出了一种改进措施。然后从线性近似和非线性两个层面分析了改进模型的稳定性,其中非线性分析基于摄动理论,通过计算得到的Floquet指数的正负号判断分岔周期解的稳定性。相关的研究结果概括为两个定理,并通过计算机仿真进行验证。
     (5)研究了互联网拥塞控制中TCP/RED频闪模型的分岔控制和非线性稳定性。首先回顾了TCP/RED频闪模型的基本特点。以模型的窗口加权因子w为分岔参数,研究由倍周期分岔引起的不稳定性。为扩大模型的稳定工作区,我们将滑动平均滤波器引入频闪模型。引入滑动平均滤波器后,系统的分岔起点得到明显延缓,还可以通过调节滤波器的尺度来灵活控制频闪模型的稳定区。最后分析了滑动平均滤波器类型对系统运算复杂度的影响,相关的研究结论都通过了仿真验证。
With the development of Internet’s scale and quality of service (QoS), its congestion control will be more important than before. Impacted by communication delay and time-variant network topology, Internet congestion control system shows obvious nonlinear characteristics such as bifurcation and chaos, which means that the router’s queue length and the user’window size will oscillate radically, and network resource cannot be used effectively. Around such a problem, after studying on the chaos and synchronization of nonlinear and time-delayed systems, we use signal processing and modifying models methods to study how to put off the bifurcation outset or how to enlarge the stable range. The main contents and contributions of this dissertation are as follows.
     (1) Synchronizations between same or different chaotic systems are studied. First, taking Chen’s system and Chua’s system as instances, adaptive synchronizations of 3-dimension chaotic systems with uncertain or unknown parameters are investigated, where adaptive controllers and parameter update laws are designed with Lyapunov’s stability theorem. Next, general formula for full state hybrid projective synchronization (FSHPS) is derived. Based on the proposed formula, a concrete synchronization controller about 4-dimension chaotic systems, i.e. Chen’s hyper-chaotic system and Lü’s hyper-chaotic system is given. Finally, synchronization results are proved by numerical simulations. Studies show that two same or different chaotic systems can be synchronized asymptotically by the proposed controller.
     (2) Synchronization and consensus of time-delayed multi-agent network models are investigated. First, several prior networks’synchronization characteristics with or without time delay are studied. Then, in the aspect of enlarging models’stable domain, an improved model is presented, whose main characteristics lie in two aspects: One is that a proportional coefficient k is introduced to raise the model’s flexibility, the other is that time delay is introduced into each communication receiver. Finally, by geometrical method and frequency-domain method, the synchronization condition is derived, how to choose time delay is also provided and verification is come out by numerical simulations. It is found that synchronization domain of the novel model is larger than those of some prior models and it can be regulated.
     (3) Nonlinear stability of time-delayed dual model of Internet congestion control system is studied. Firstly, some notions and typical examples of the time-delayed dual model are reviewed. It's found that these models’stable domains are narrow and prone to enter into bifurcated or chaotic states. Then an improved model is proposed correspondingly, and the Hopf bifurcation phenomenon is studied by setting time delay as the bifurcation parameter. Both perturbation method and center manifest theorem and normal form theory are used to complete the nonlinear stability analysis, including the bifurcation direction, the stability and the change of the periodic solution. In addition, we try to use homotopy analysis method (HAM) to calculate bifurcation solution of the improved model, and the calculation’s complexity is compared with some traditional methods. In the final, the theoretical conclusions above are verified by numerical experiments.
     (4) Nonlinear stability of a fluid flow model in Internet congestion control is studied. First, the simplification and evolvement of fluid flow models are analyzed. Then a modified fluid flow model is presented in order to enlarge its stable range. Finally the linear and nonlinear stability analyses are finished, respectively. Its nonlinear stability analysis is based on perturbation method, and the conclusion can be described by its Floquet exponent’s sign. Fluid flow model’s research is summarized as two theorems which are verified by numerical simulations.
     (5) Bifurcation control and nonlinear stability of TCP/RED stroboscopic model in Internet congestion control are studied. First basic characteristics of TCP/RED stroboscopic model are reviewed. By numerical simulation, it is shown that TCP/RED stroboscopic model is unstable when the parameter w passes through some critical bifurcation value, and the critical bifurcation value is too small to satisfy the general request of Internet congestion control. Then, in order to enlarge the model’s stable domain, a moving average filter is added to the TCP/RED stroboscopic mode. Studies show that the moving average filter can be used to put off the bifurcation’s outset, and the model’s stable domain can be regulated by choosing different filter sizes. In addition, the computation complexity after being added to the filter is analyzed and the conclusion in point is verified by numerical simulations.
引文
[1] Postel J., Transmission Control Protocol, RFC793, 1981
    [2] Braden B., Clark D., Crowcroft J., etc, Recommendations on Queue Management and Congestion Avoidance in Internet, RFC2309, Proposed Standard, April, 1998
    [3]胡越明,Internet技术及其实现,北京:高等教育出版社,2005
    [4] Tanenbaum A.S., Computer Networks[M], (3/E), Prentice Hall, Inc., 1996
    [5]章淼,吴建平,林闯,互联网端到端拥塞控制研究综述,软件学报,2002,13(3):354-363
    [6] Ramakrishnan J., R., Chiu K.K., Ming D., Congestion avoidance in computer networks with a connectionless network layer, Technical Report, DEC-TR-506, Digital Equipment Corporation, 1988
    [7] Zhang W., Tan L.S., Peng G., Dynamic queue level control of TCP/RED systems in AQM routers, Computers and Electrical Engineering, 2009, 35: 59-70
    [8] Ott T., Lakshman T., Wong L., SRED: stabilized RED, Proceedings of IEEE INFOCOM, 1999, 3: 1346-1355
    [9] Aweya J., Ouellette M., Montuno D.Y., etc., A control theoretic approach to active queue management, Computer Networks, 2001, 36: 203-235
    [10] Floyd S., Gummadi R., Shenker S., Adaptive RED: An algorithm for increasing the robustness of RED’s Active Queue Management, http://www.icir.org/~floyd, 2001
    [11] Liu S., Basar T., Srikant R., Exponential-RED: A Stabilizing AQM scheme for low- and high-speed TCP protocols, IEEE/ACM Transactions on Networking, 2005, 13 (5): 1068-1081
    [12] Athuraliya S., Low S., Li V. H., etc., REM: active queue management, IEEE Network, 2001, 15: 48-53
    [13] Lakshmaikantha A., Beck C.L., Srikant R., Robustness of real and virtual queue-based active queue management schemes. IEEE/ACM Transactions on Networking, 2005, 13(1): 81-93
    [14] Kunniyur S., Srikant R., Analysis and design of adaptive virtual queue algorithm foractive queue management, ACM Computer Communication Review, 2001, 31(4): 123-134
    [15] Floyd S., High speed TCP for large congestion windows, RFC 3649, IETF, 2003
    [16] Kelly T., Scalable TCP: Improving performance in high-speed wide area networks, http://www.lce.eng.cam.ac.uk/~ctk21scalable/2003
    [17] Shin M., Song C., Injong R., Dual-resource TCP/AQM for processing- constrained networks, IEEE/ACM Transactions on Networking, 2008, 16(2): 435-449
    [18] Low S.H., Duality A. Model of TCP and queue management algorithms, IEEE/ACM Transactions on Networking, 2003, 11(4): 525-536
    [19] Papachristodoulou A., Doyle J.C., Low S., Analysis of nonlinear delay differential equation models of TCP/AQM protocols using sums of squares, Proceedings of IEEE Conference on Decision and Control, Atlantis, Paradise island, Bahamas, 2004
    [20] Xia Q.Y., Jin, X. Hamdi M., Active queue management with dual virtual proportional integral queues for TCP uplink/downlink fairness in infrastructure WLANs, IEEE Transactions on Wireless Communications, 2008, 7(6): 2261-2271
    [21] Ying L., Dullerud G., Srikant R., Global stability of Internet congestion controllers with heterogeneous delays for the Internet, Proceedings of the American Control Conference, 2004
    [22] Misra V., Gong W. B., Towsley D., Fluid-based analysis of a network of AQM routers supporting TCP flows with an application to RED[DB/OL], http://www. net.cs.umass.edu/~misra/2001
    [23] Hespanha J.P., Bohacek S., Obraczka K., etc. Hybrid modeling of TCP congestion control, Hybrid Systems: Computation and Control, Berlin: Springer Verlag, 2001
    [24] Veres A., Boda M., The chaotic nature of TCP-AQM congestion control, Proceedings of IEEE INFOCOM, 2000
    [25] Ranjan P., Abed E.H., La R.J., Nonlinear instability in TCP-RED, IEEE/ACM Transactions on Networking, 2004, 12 (6): 1079-1092
    [26] Zhang H., Liu M., Vukadinovic V., etc. Modeling TCP/RED: a dynamical approach, Complex Dynamics in Communications Networking, Berlin: Springer Verlag, 2005, 251-278
    [27] Trajkovic L., Modeling TCP/RED: a dynamical approach, International Workshop of Complex Systems and Networks, Hong Kong, 2005
    [28] Liu M., Zhang H., Trajkovic L., Stroboscopic model and bifurcations in TCP/RED, Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS), Kobe, Japan, 2005: 2060- 2063
    [29] Li C. G., Chen G. R., Liao X. F., et al., Hopf bifurcation in an Internet congestion control model, Chaos, Solitons and Fractals 2004, 19 ( 4): 853-862
    [30] Yang H.Y., Tian Y.P. , Hopf bifurcation in REM algorithm with communication delay, Chaos, Solitons and Fractals, 2005, 25, 1093-1105
    [31] Michiels W., Niculescu S.I., Stability analysis of a fluid flow model for TCP like behavior, International Journal of Bifurcation and Chaos (IJBC), 2005, 15(7): 2277-2282
    [32] Raina G., Local Bifurcation analysis of some dual congestion control algorithms, IEEE Transactions on Automatic Control, 2005, 50(8): 1135-1146
    [33] Chen L., Wang X.F., Han Z.Z., Control bifurcation and chaos in internet congestion control model, International Journal of Bifurcation and Chaos (IJBC), 2005, 14(5): 1863 -1876
    [34] Chen Z., Yu P., Hopf Bifurcation Control for an Internet congestion model, International Journal of Bifurcation and Chaos (IJBC), 2005, 15(8): 2643–2651
    [35] Low S.H., Paganini F., Wang J.T., etc., Linear stability of TCP/RED and a scalable control, Computer Networks, 2003, 43 (5): 633-647
    [36] Hollot C.V., Misra V. Towsley D., etc., A control theoretic analysis of RED, Proceedings of IEEE/INFOCOM, 1510-1519, 2000
    [37] Hollot C.V., Misra V., Towsley D., etc., Analysis and design of controllers for AQM routers supporting TCP flows, IEEE Transactions on Automatic Control, 2002, 47(6): 945-959
    [38] Richiels W., Melchor-Aguilar D., Niculescu S.I., Stability analysis of some classes of TCP/AQM networks, International Journal of Control (IJC), 2006, 79(9): 1136-1144
    [39] Ren F.Y., Lin C., Wei B., A Robust active queue management algorithm in large delay networks, Computer Communications, 2005, 28(5): 485-493
    [40] Ramakrishnan K., Floyd S., A Proposal to add Explicit Congestion Notification to IP,RFC2481, Proposed Standard, January 1999
    [41] Ramakrishnan K.K., Floyd S. Black D., The Addition of Explicit Congestion Notification to IP, RFC3168, Proposed Standard, September, 2001
    [42] Salles R.M., Rolla V.G., Efficient routing heuristics for Internet traffic engineering, Computer Communications, 2007, 30: 1942-1952
    [43] Salim H., Ahmed U., Performance Evaluation of Explicit Congestion Notification, RFC2884, Proposed Standard, July 2000
    [44] Elliott V., Christensen K.J., Characterizing and reducing route oscillations in the Internet, Computer Communications, 2003, 26: 143-153
    [45]邹艳丽,非线性电路与复杂网络的混沌控制与同步研究[博士学位论文],上海:上海交通大学,2006. 12
    [46] Lorenz E., Deterministic non-periodic flows, Journal of Atmosphere Science, 1963, 10: 130
    [47] Rnelle D., Takens Rnelle D, Takens F. On the nature of turbulence, Commun. Math. Phys., 1971, 20, 167
    [48] Li T. Y., Yorke J., Periodic three means chaos, Amer. Math Monthly, 1975, 82 (10): 985-992
    [49] Packard N.H., Grutchfield J.P., Farmer J.D., Geometry from a time series, Physical Review Letters, 1980, 45: 712-716
    [50] Takens F., Dynamical systems and turbulence, Lectures notes in mathematics, 898, Edited by D. Rand and L.S. Yang, Berlin: Springer-Verlag,1981
    [51] Mandelbort B., The fractal geometry of nature, Freeman Company California, 1982
    [52] Simoyi R.H., One-dimensional dynamics in a multicomponent chemical reaction, Phys. Rev. Lett., 1982, 49, 245
    [53]汪秉宏,弱混沌与准规则斑图[M],上海:上海教育出版社,1996,1-50
    [54]罗晓曙,非线性系统中的混沌控制与同步及其应用研究[博士学位论文],合肥:中国科学技术大学,2003. 04
    [55]蒋品群,混沌系统和复杂网络系统的控制、同步和演化研[博士学位论文],合肥:中国科学技术大学,2005. 04
    [56] Pecora L.M., Carroll T.L. Synchronization in chaotic systems, Phys. Rev. Lett., 1990, 64: 821-824
    [57] Pecora L.M., Carroll T.L. Driving systems with chaotic signals, Phys. Rev. A, 1991, 44: 2374-2383
    [58] Ott E., Grebogi C., Yorke J.A., Controlling chaos, Phys. Rev. Lett., 1990, 64: 1196-1199
    [59] Qu Z.L., Hu G, Controlling chaos from continuous feedback, Phys. Rev. Lett., 1993, 178, 265
    [60] Vasegh N., Sedigh A.K., Delayed feedback control of time-delayed chaotic systems: Analytical approach at Hopf bifurcation, Phys. Lett. A, 2008, 372: 5110-5114
    [61] Pyragas K., Experimental control of chaos by delayed self-controlling feedback, Phys. Lett. A, 1993, 180, 99
    [62] Liu Y., Barbosa L.C., Rios Leite J.R., Control of Lorenz chaos, Phys. Lett. A, 1994, 185, 35
    [63] Tian Y.C., Gan F., Adaptive control of chaotic continuous-time systems with delay, Physics D, 1998, 117, 1
    [64] Zhou P., Chaos synchronization on parameters adaptive control on Chen chaotic system, Journal of China Universities of Posts and Telecommunications, 2003, 10(3): 91-94
    [65] Park J.H., Adaptive modified projective synchronization of a unified chaotic system with an uncertain parameter, Chaos Solitons and Fractals, 2007, 34: 1552-1559
    [66]方锦清,非线性系统中混沌的控制与同步及其应用前景(一),物理学进展,1996,16:1-74
    [67]胡刚,萧井华,郑志刚,混沌控制[M],上海:上海科技教育出版社,2000
    [68]王光瑞,于熙龄,郑志刚,混沌的控制填补及利用[M],北京:国防工业出版社,2001
    [69] Wang X.Y., He Y.J., Projective synchronization of fractional order chaotic system based on linear separation, Phys. Lett. A, 2008, 372: 435–441
    [70] Hu M.F., Yang Y.Q., Xu Z.Y., etc., Projective synchronization in drive-response dynamical networks, Physica A, 2007, 381: 457–466
    [71] Wang B.X., Guan Z.H., Chaos synchronization in general complex dynamical networkswith coupling delays, Nonlinear Analysis: Real World Applications, in press, available online, 2009. 05
    [72] Chen J.H., Chen H.K., Lin Y.K., Synchronization and anti-synchronization coexist in Chen–Lee chaotic systems, Chaos, Solitons and Fractals 2009, 39: 707-716
    [73] Hu M.F., Xu Z.Y., Zhang R., Full state hybrid projective synchronization of a general class of chaotic maps, Communications in Nonlinear Science and Numerical Simulation 2008, 13: 782-789
    [74] Hu M.F., Xu Z.Y., Zhang R., Full state hybrid projective synchronization in continuous-time chaotic(hyper-chaotic) systems, Communications in Nonlinear Science and Numerical Simulation, 2008,13: 456-464
    [75] Hu M.F., Yang Y.Q., Xu Z.Y., Zhang R., etc., Hybrid projective synchronization in a chaotic complex nonlinear system, Mathematics and Computers in Simulation, 2008, 79: 449–457
    [76] Hu M.F., Xu Z.Y. Zhang R. etc., Adaptive full state hybrid projective synchronization of chaotic systems with the same and different order, Phys. Lett. A, 2007, 365: 315–327
    [77] Chen J.R., Jiao L.C., Wu J.S., etc., Projective synchronization with different scale factors in a driven–response complex network and its application in image encryption, Nonlinear Analysis: Real World Applications, in press, available online, 2009.11
    [78] Yang Y.Q., Cao J.D., Exponential synchronization of the complex dynamical networks with a coupling delay and impulsive effects, Nonlinear Analysis: Real World Applications, in press, available online 27, 2009.03
    [79] Zhou J., Lu J.A, LüJ.H., Pinning adaptive synchronization of a general complex dynamical network, Automatica, 2008, 44(4): 996-1003
    [80] Li P., Zhang Y., Synchronization of Kuramoto oscillators in random complex networks, Physica A: Statistical Mechanics and its Applications, 2008, 387(7): 1669-1674
    [81] Liu T., Dimirovski G.M., Zhao J., Exponential synchronization of complex delayed dynamical networks with general topology, Physica A: Statistical Mechanics and its Applications, 2008, 387(2-3): 643-652
    [82] Wang Q.Y. , Lu Q.S., Chen G.R., Ordered bursting synchronization and complex wave propagation in a ring neuronal network, Physica A: Statistical Mechanics and itsApplications, 2007, 374(2): 869-878
    [83] Wu J.S., Jiao L.C., Synchronization in complex delayed dynamical networks with nonsymmetric coupling, Physica A: Statistical Mechanics and its Applications, 2007, 386(1): 513-530
    [84] Yu W.W., Chen G.R., LüJ.H., On pinning synchronization of complex dynamical network, Automatica, 2009, 45(2): 429-435
    [85] Xu D.G., Su Z.F., Synchronization criterions and pinning control of general complex networks with time delay, Applied Mathematics and Computation, 2009, 215(4): 1593-1608
    [86] Yang M., Wang Y.W., Xiao J.W. etc. Robust synchronization of impulsively- coupled complex switched networks with parametric uncertainties and time-varying delays, Nonlinear Analysis: Real World Applications, in press, available online, 2009.11
    [87] Liu X. Wang J.Z., Huang L. Global synchronization for a class of dynamical complex networks, Physica A: Statistical Mechanics and its Applications, 2007, 386(1): 543-556
    [88] Yue D., Li H.J., Synchronization stability of continuous/discrete complex dynamical networks with interval time-varying delays, Neurocomputing, in press, available online, 2009,11
    [89] Wang Q.Y., Chen G.R., Lu Q.S., etc., Novel criteria of synchronization stability in complex networks with coupling delays, Physica A, 2007, 378: 527-536
    [90] Huang H., Feng G., Synchronization of non-identical chaotic neural networks with time delays, Neural Networks, 2009, 22(7): 869-874
    [91] Liu M.Q. Optimal exponential synchronization of general chaotic delayed neural networks: An LMI approach, Neural Networks, 2009, 22(7): 949-957
    [92] Cao J.D., Li L.L., Cluster synchronization in an array of hybrid coupled neural networks with delay, Neural Networks, 2009, 22(4): 335-342
    [93] Tang Y., Qiu R.H., Fang J.A., etc., Adaptive lag synchronization in unknown stochastic chaotic neural networks with discrete and distributed time-varying delays, Physics Letters A, 2008, 372(24): 4425-4433
    [94] Ren H.P., Liu D. Synchronization of chaos using radial basis functions neural networks, Journal of Systems Engineering and Electronics, 2007, 18(1): 83-88, 100
    [95] Li C., Liao X., Huang T., Global stability analysis for delayed neural networks via an interval matrix approach, IET Control Theory Appl., 2007, 1(3): 743-748
    [96]王国红,段小虎,基于变形蔡氏电路的混沌掩盖保密通信研究,空军工程大学学报,2005(4):49-51,62
    [97]罗晓曙,蔡氏混沌电路的同步及其在保密通信中的应用,军事通信技术,1999(12): 19-23
    [98]赵柏山,混沌保密通信系统若干问题的研究[博士学位论文],大连:大连海事大学,2008.12
    [99]王有维,混沌保密通信理论及方法研究[博士学位论文],长春:吉林大学,2008. 04
    [100]范文华,基于掺铒光纤激光器的混沌保密通信方法研究[博士学位论文],长春:吉林大学,2007. 08
    [101]陈滨,混沌在时变参数保密通信及雷达波形设计中的应用基础研究[博士学位论文],成都:电子科学大学,2007. 08
    [102]姚明海,混沌系统的控制与同步及其在保密通信中的应用[博士学位论文],杭州:浙江大学, 2007. 07
    [103]樊春霞,混沌保密通信系统的研究[博士学位论文],南京:南京航空航天大学,2005.07
    [104]龚剑扬,混沌保密通信关键技术研究[博士学位论文],哈尔滨:哈尔滨工程大学,2005. 01
    [105] Chen G. R., Dong X., From chaos to order[M], Singapore: World scientific, 1998
    [106] Chen G. R., Chaos on some controllability conditions for chaotic dynamics control, Chaos, Solitons and Fractals, 1997, 8: 1461-70
    [107] Pyragas K., Pyragas V., Kiss I.V., Hudson J.L., Stabilizing and tracking unknown steady states of dynamics systems, Phys. Rev. Lett., 2002, 89(24), 244103
    [108] Pyragas K., Pyragas V., Kiss I.V., Hudson J.L., Adaptive control of unknown unstable steady states of dynamics systems, Phys. Rev. E, 2004, 70, 026215
    [109] Liao T.L., Adaptive synchronization of two Lorenz systems, Chaos, Solitons and Fractals, 1998, 9(4): 1555-1561
    [110] Tan J.M., Qiu S.S., Jiang L.Z., Synchronization of Chua’s circuits with 5-scroll. Journal of Chongqing University of Posts and Telecommunications , 2005, 17(2): 165-168
    [111] Zou Y.L., Zhu J., Controlling the chaotic n-scroll Chua’s circuit with two low pass filters, Chaos, Solitons and Fractals, 2006, 29: 400-406
    [112]刘秉正,非线性动力学[M],北京:高等教育出版社,2005
    [113] Zhang G.H., Wu Y.Y., Liu Y.H., Stability and sentivity for congestion control in wireless mesh networks with time varying link capacities, Ad Hoc Networks, 2007, 5:769-785
    [114] Mainieri R, Rehacek J., Projective synchronization in three-dimensional chaotic systems, Phys. Rev. Lett., 1999, 82: 3042-3045
    [115] Yan J.P., Li C.P., Generalized projective synchronization of a unified chaotic system, Chaos, Solitons and Fractals, 2005, 26: 1119-1124
    [116]陈启宗,线性系统理论与设计[M],北京:科学出版社,1988
    [117]蔡国梁,黄娟娟,超混沌Chen系统和超混沌Rossler系统的异结构同步,物理学报,2006,55(8):3997-4008
    [118]高洁,陆君安,不确定参数下的四维超混沌吕系统的最优同步,动力学与控制学报,2006,4(4):320-325
    [119]俞辉,多智能体机器人协调控制研究及稳定性分析[博士学位论文],武汉:华中科技大学,2009. 03
    [120]赵波,群集智能计算和多智能体技术及其在电力系统优化运行中的应用研究[博士学位论文],杭州:浙江大学,2006. 07
    [121]江资斌,基于多智能体的虚拟企业协同生产高级计划研究[博士学位论文],长沙:中南大学,2007.11
    [122]景楠,基于多智能体与GIS的城市人口分布预测研究[博士学位论文],广州:中国科学院研究生院(广州地球化学研究所),2007.08
    [123]何汉明,基于角色的多智能体社会模型研究与应用[博士学位论文],西安:西北工业大学, 2007. 03
    [124] Saber R.O., Murray R.M., Consensus problems in networks of agents with switching topology and time-delays, IEEE Transactions on Automatic Control, 2004, 49(9): 1520-1533
    [125] Wang W., Slotine J.E. Contraction analysis of time-delayed communications and group cooperation. IEEE Transaction on Automation Control, 2006, 51(4): 712-717
    [126] Belykh I., Synchronization in asymmetrically coupled networks with node balance, Chaos, 2006, 16(2): 1-8
    [127] Tian Y.P., Liu C.L. Consensus of multi-agent system with diverse input and communication delays. IEEE Transactions on Automation Control, 2008, 53(9): 2122-2128
    [128] Yang P., Freeman R.A., Lynch K.M., Multi-agent coordination by decentralized estimation and control, IEEE Transactions on Automation Control, 2008, 53(11): 2480-2496
    [129] Su H.S., Wang X.F., Lin Z.L., Flocking of multi-agents with a virtual leader, IEEE Transactions on Automatic Control, 2009, 54(2): 2122-2128
    [130] Moreau L., Stability of multi-agent systems with timedependent communication links, IEEE Transactions on Automatic Control, 2005, 50(2): 169-182
    [131] Lehgigk S.H., Stability theorems of linear motions, Englewood Cliffs, New Jersey: Prentice-Hall, 1966: 152-199
    [132] Desoer C.A., Wang Y.T., On the generalized Nyquist stability criterion, IEEE Transactions on Automatic Control, 1980, 25(2): 187-196
    [133] Pham Q.C., Slotine J.E., Stable concurrent synchronization in dynamic system networks, Neural Networks, 2007, 20: 62-77
    [134]丁大为,互联网拥塞控制算法若干问题研究[博士学位论文],上海:上海交通大学,2008. 12
    [135]闫友彪,陈元琰,罗晓曙等,Internet拥塞控制研究的最新进展分析和展望,计算机应用研究,2005(2): 8-13
    [136]刘志新,高速通信网络拥塞控制算法研究[博士学位论文],秦皇岛:燕山大学,2007.07
    [137]邵立松,互联网端到端拥塞控制算法研究[博士学位论文],长沙:国防科学技术大学,2006.10
    [138] Low S.H., Paganini F., Doyle J.C., Internet congestion control, IEEE Control Systems Magazine, 2002, 22(1): 28-43
    [139] Zhu L., Ansari N., Local Stability of a New Adaptive Queue Management (AQM) Scheme, IEEE Commun. Lett., 2004, 8(65): 406-408
    [140] Papachristodoulou A., Global stability analysis of a TCP/AQM protocol for arbitrary networks with delay, Proceedings of 43rd IEEE Conference on Decision and Control, Atlantis, 2004: 1029-1034
    [141] Bauso D., Giarre L., Neglia G., AQM stability in multiple bottleneck networks, Proceedings of IEEE International Conference on Communication, Paris, 2004: 2267-2271
    [142] Kuusela P., Lassila J., Virtamo J., etc., Modeling RED with idealized TCP sources, Proceedings of ninth IFIP Conference on Performance Modeling and Evaluation of ATM and IP Networks, Budapest, Hungary, 2001: 155-166
    [143] Chen J., Paganini F., Sanadidi M.Y., etc., Fluid-flow analysis of TCP Westwood with RED, Computer Networks, 2006, 50(9): 1302-1326
    [144] Brakmo L.S., Peterson L.L., TCP Vegas: end to end congestion avoidance on a global Internet, IEEE Journal on Selected Areas in Communications, 1995, 13(8): 1465-1480
    [145] Paganini F., On the stability of optimization-based flow control, Proceedings of American Control Conference, Arlington, 2001, 4689-4694
    [146] Kelly F., Maulloo A., Tan D., Rate control in communication networks: shadow prices, proportional fairness and stability, Journal of the Operational Research Society, 1998, 49(3): 237-252
    [147] Gibbens R.J., Kelly F.P., Resource pricing and the evolution of congestion control, Automatica, 1999, 35(12): 1969-1985
    [148] Voice T., A global stability result for primal dual congestion control algorithms with routing, Comp. Commun. Rev., 2004, 34(3): 35-41
    [149] Alpcan T., Basar T., A globally stable adaptive congestion control scheme for Internet-style networks with delay, IEEE/ACM Transactions on Networking, 2005, 13 (6):1261-1274
    [150] Paganini F., Wang Z., Doyle J.C., etc. Congestion control for high performance, stability and fairness in general networks, IEEE/ACM Transactions on Networking, 2005, 13(1): 43-56
    [151] Tian Y.P., Stability analysis and design of the second-order congestion control for networks with heterogeneous delays, IEEE/ACM Transactions on Networking, 2005, 13 (5): 1082-1093
    [152] Ying L., Dullerud G.E., Srikant R., Global stability of Internet congestion controller with heterogeneous delays, IEEE/ACM Transactions on Networking, 2006, 14(3): 579-591
    [153] Hollot C.V., Chait Y., Nonlinear stability analysis for a class of TCP/AQM networks, Proceedings of IEEE Conference on Decision and Control, Orlando, 2001: 2309-2314
    [154] Hollot C.V., Misra V., Towsley D., et al., On designing improved controllers for AQM routers supports TCP flows, Proceedings of IEEE/INFOCOMM, Anchorage, 2001: 1726-1734
    [155] Sinha S., Ramaswamy R., Rao J., Adaptive control on nonlinear dynamics, Physica D, 1990, 43(1): 118-128
    [156] Ren F.Y., Lin C.,Wei B., A nonlinear control theoretic analysis to TCP-RED system, Computer Networks, 2005, 49(4): 580-592
    [157] Tan L.S., Zhang W., Peng G., et al., Stability of TCP/ systems in AQM routers, IEEE Transactions Automatic Control, 2006, 51(8): 1393-1398
    [158] Michiels W., Niculescu S-I., Stability analysis of a fluid flow model for TCP like behavior, International Journal of Bifurcation and Chaos, 2005, 15(7): 2277-2282
    [159] Misra V., Gong W B, Towsley D, Proceedings of SIGCOMM, Stockholm, Sweden, 2000, 30: 151-161
    [160] Kuusela P., Lassila J., Virtamo J., Stability of TCP-RED congestion control, Proceedings of ITC-17, Salvador da Bahia, Brazil, 2001: 655-660
    [161] Kelly F.P., Fairness and stability of end-end congestion, Europe Journal of Control, 2003(9): 149-165
    [162] Wang J.T.,Tang A., Low S.H., Local stability of FAST TCP, Proceedings of 43rdIEEE Conference on Decision and Control, Atlantis, 2004: 1023-1028
    [163] Mascolo S., Congestion control in high-speed communication networks using the Smith principle, Automatica, 1999, 35(12): 1921-1935
    [164] Michiels W., Melchor D., Niculescu S.I., Stability analysis of some classes of TCP/AQM network, International Journal of Control, 2006, 79(9): 1134-1144
    [165] Liu M., Marciello A., Bernardo M., et al., Discontinuity-induced bifurcation in TCP/RED, Proceedings of IEEE International Symposium on Circuits and Systems, Kos, Greece, 2006: 2629-2632
    [166] Raina G., Local Bifurcation Analysis of Some dual congestion control algorithm, IEEE Transactions on Automation Control, 2005, 50(8): 1135-1146
    [167] Richard H.R., Lecture notes on nonlinear vibrations, http://www.tam. cornell.edu / randdocs, 2005
    [168] Gopalsamy K., Delay induced periodicity in a neural netlet of excitation and inhibition, Physica D, 1996, 89 (1): 395-42l
    [169] Cooke K., Grossman Z., Discrete delay, 1982. Distributed delay and stability switches. Journal of Mathematics Analysis and Application, 1982, 86: 592-627
    [170] Wang H.L., Hu H.Y., Reamrks on the perturbations in solving the second-order delay differential equations, Nonlinear Dynamics, 2003, 33(4): 379-398
    [171] He J.H., Periodic solution and bifurcation of delay differential equations, Phys. Lett. A, 2005, 347(4-6): 228-30
    [172] Ding D.W., Zhu J., Luo X.S., etc., Delay induced Hopf bifurcation in a dual model of Internet congestion, Nonlinear Analysis: Real World Applications, 2009(10): 2873-2883
    [173] Hassard, B.D. Kazarinoff N.D., Wan Y.H., Theory and application of Hopf bifurcation , Cambridge: Cambridge University Press, 1981
    [174] Ding D.W., Zhu J. Luo X.S., Hopf bifurcation analysis in a fluid flow model of Internet congestion control algorithm, Nonlinear Analysis: Real World Applications, 2009 (10): 824-839
    [175] Guo S.T., Liao X.F., Li C.G., Stability and Hopf bifurcation analysis in a novel congestion control mode with communication delay, Nonlinear Analysis: Real World Applications, 2008(9): 1292-1309
    [176]廖世俊,超越摄动:同伦分析方法导论,北京:科学出版社,2006
    [177]廖世俊,同伦分析方法:一种新的求解非线性问题的近似解析方法,应用数学和力学,1998,19(10): 885-890
    [178]廖世俊,同伦分析方法:一种不依赖于小参数的非线性分析方法,上海力学,1997 18 (3):196-200
    [179] Odibat Z., Momani S., Modified homotopy perturbation method: Application to quadratic Riccati differential equation of fractional order, Chaos, Solitons and Fractals, 2008, 36, 167-174
    [180] Ghorbani A., Saberi-Nadjafi J., Exact solutions for nonlinear integral equations by a modified homotopy perturbation method, Computers and Mathematics with Applications, 2008, 56: 1032-1039
    [181] Rudin W.,泛函分析(英文版)[M],北京:机械工业出版社,2004
    [182]门少平,封建湖,应用泛函分析[M],北京:科学出版社,2005
    [183]钱艳平,互联网拥塞控制算法若干问题研究[博士学位论文],南京:东南大学,2007. 03
    [184]章淼,高速网络拥塞控制研究[博士学位论文],北京:清华大学,2008. 07
    [185] Ott E., Chaos in Dynamical Systems [M] 2nd ed., Cambridge: Cambridge University Press, 2002: 12-56
    [186] Jacobson V., Congestion avoidance and control, ACM Computer Communication Review 1998, 18 (4): 314-329
    [187] Floyd S., Jacogson V. , Random early detection gateways for congestion avoidance, IEEE/ACM Transaction on Networking, 1993,1(4): 397-413
    [188] Ding D.W., Zhu J., Luo X.S., Controlling chaos in mixed TCP and UDP model based on TDMF method, Dynamics of Continuous, Discrete & Impulsive Systems B, 2007, 14(7): 126-130
    [189] Zhu L. N., Peng H., Zhu S.D., etc. A DDoS intrusion detection method based improved slip average filter, Microcomputer Information, 2006, 11(3): 71-73
    [190] Arce G.R., Barner K.E., Ma L.P., etc. RED gateway congestion control using median queue size estimates, IEEE Transaction on Signal Processing, 2003, 51(8): 2149-2164
    [191]陈传峰,李增智,庄鸿,边界网关协议BGP-4路由稳定性研究,计算机工程,2002,28(8):146-148
    [192]孙文海,焦利,金跃辉,OSPF路由监测系统,计算机应用与软件,2009,26(6):24-26
    [193]张春宏,曲荣欣,高远,BGP-4路由测量对路由稳定性的影响分析,计算机工程,2001,27(11):146-148
    [194] Sahoo A., Kant K., Mohapatra P., BGP convergence delay after multiple simulaneous router failures: Characterization and solutions, Comp. Commun., 2009, 32: 1207-1218
    [195]赵雅兴,FPGA原理、设计与应用,天津:天津大学出版社,2003
    [196] R. Johari, Tan D., End-to-end congestion control for the internet: delays and stability. IEEE/ACM Transation on Networking, 9(6): 818-832, 2001.
    [197] Massoulie L., Stability of distributed congestion control with heterogeneous feedback delays, IEEE Transactions on Automatic Control, 2002, 47: 895-902
    [198] Tian, Y.P., Yang H.Y., Stability of the Internet congestion control with diverse delays. Automatica, 2004, 40 (9):1533-1541
    [199] Aoul Y.H., Mehaoua A., Skianis C., A fuzzy logic-based AQM for real-time traffic over internet, Computer Networks, 2007, 51: 4617-4633
    [200] Xia Q.Y., Jin, X. Hamdi M, AQM with dual virtual PI queues for TCP uplink/downlink fairness in infrastructure WLANs, IEEE Wireless Commun. and Netw. Conference, 2007, 2139-2144
    [201] Zaher A.A., An improved chaos-based secure communication technique using a novel encryption function with an embedded cipher key, Chaos, Solitons & Fractals, 2009, 42(5): 2804-2814
    [202] Singh N., Sinha A., Chaos-based secure communication system using logistic map, Optics and Lasers in Engineering, 2010, 48(3): 398-404
    [203] Fallahi K., Leung H., A chaos secure communication scheme based on multiplication modulation, Communications in Nonlinear Science and Numerical Simulation, 2010, 15(2): 368-383
    [204] Misra V., Gong W.B., Towsley D., Fluid-based analysis of a network of AQM routerssupporting TCP flows with an application to RED, Proceedings of ACM/SIGCOMM, Santa Clara, 2000, 151-16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700