用户名: 密码: 验证码:
光学腔量子电动力学中的单原子探测及控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腔量子电动力学不仅是研究开放量子系统的典范,也是实现量子信息处理的重要途径之一。强耦合腔量子电动力学中的光与原子之间能量交换速率远大于系统损耗引起的退相干速率,保证了量子信息能够在飞行比特与静止比特之间可靠而且可逆地转换。借助于受激拉曼绝热过程,强耦合于光学腔中的单原子又是产生理想的确定性单光子源的重要手段。高精细度光学腔中的单原子探测与控制则是保证腔量子电动力学能够实现上述目标的核心问题,是腔量子电动力学实验的基础。
     针对腔量子电动力学中单原子的探测与控制问题,本论文中完成了以下工作:1)利用超高反射率的腔镜搭建了长度为86.8μm,精细度达3.3×105的光学微腔,实现了腔量子电动力学强耦合的基本条件;2)基于低温度漂移的传导腔(Transfer Cavity),设计搭建了用于腔量子电动力学失谐控制的光学频率链系统,实现了原子-腔失谐与探测光失谐的精密控制,并成功应用于单原子的实时探测实验;3)以激光冷却过程得到的磁光阱中的冷原子作为腔量子电动力学的原子源,实现了自由释放的冷原子与光学微腔的强耦合。在空腔平均光子数约为1的条件下,利用单光子探测技术实时捕获了单原子在光学微腔中的穿越信号,并得到了平均120μs的单原子腔内驻留时间,为腔量子电动力学中的单原子控制提供了触发信号;4)结合现有实验系统,提出了结合腔内原子冷却技术与腔内远失谐光学偶极阱技术实现单光子源的方案建议,为下一步完成高质量可控单光子源的制备奠定了基础。
Cavity quantum electrodynamics (cavity QED) has long been the central paradigm for the study of open quantum systems, as well as the ideal candidate for quantum information processing. In strong coupling regime the rate of energy exchange between atom and cavity dominates the loss rates resulting from the loss of the system, which ensures the reliable and reversible mapping of the information between the flying qubits (photons) and the stationary ones (atoms). Based on the Stimulated Raman Adiabatic Passage, strongly coupled single atoms inside a high-finesse optical cavity can serve as the determinate single photon source. The detection and control of single atoms resided in the high-finesse optical cavity, in real time, enables the cavity QED system to achieve the above goals.
     The main work in this thesis focus on the real-time detection of single atoms free-falling into the high-finesse optical cavity in the strong coupling regime, including as follows:1) An 86.8-microns-length optical cavity, with the finesse of 3.3×105, has been built, which fulfills the conditions required for strong coupling in optical cavity QED.2) An optical frequency chain has been developed by using a transfer cavity with low temperature expansion coefficients. The frequency chain facilitates the detuning between probe light and atomic resonance, and the detuning between cavity resonance and atomic transition.3) Strong coupling between Cesium atom and optical cavity has been achieved with a free-falling cold atom ensemble as the atom source. Under the condition of about one intra-cavity photon, the transits of single atoms through the cavity mode are detected in real time, which provides a trigger for manipulation of single atoms. The mean duration of atom-cavity interaction is about 120μs.4) Ideas of the generation of deterministic single photon source combining cavity cooling and far off-resonance trap inside cavity are proposed based on the present cavity QED system.
引文
[1]S. Haroche and J.-M. Raimond. Exploring the Quantum:Atoms, Cavities, and Photons Oxford University Press,2006.
    [2]H. Mabuchi and A. C. Doherty. Cavity Quantum Electrodynamics:Coherence in Context. Science,2002,298(5597),1372-1377
    [3]J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi. Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network. Phys. Rev. Lett.,1997,78(16),3221
    [4]L. M.Duan and H. J. Kimble. Scalable Photonic Quantum Computation through Cavity-Assisted Interactions. Phys. Rev. Lett.,2004,92(12),127902
    [5]M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press,2000.
    [6]H. J. Kimble. The quantum internet. Nature,2008,453(7198),1023-1030
    [7]E. M. Purcell. Spontaneous Emission Probabilities at Radio Frequancies. Phys. Rev.,1946,69,681
    [8]D. Kleppner. Inhibited Spontaneous Emission. Phys. Rev. Lett.,1981,47(4),233
    [9]D. Meschede, H. Walther, and G Muller. One-Atom Maser. Phys. Rev. Lett.,1985, 54(6),551
    [10]G. Rempe, H. Walther, and N. Klein. Observation of quantum collapse and revival in a one-atom maser. Phys. Rev. Lett.,1987,58(4),353
    [11]G. Rempe, F. Schmidt-Kaler, and H. Walther. Observation of sub-Poissonian photon statistics in a micromaser. Phys. Rev. Lett.,1990,64(23),2783
    [12]M. Weidinger, B. T. H. Varcoe, R. Heerlein, and H. Walther. Trapping States in the Micromaser. Phys. Rev. Lett.,1999,82(19),3795
    [13]O. Benson, G. Raithel, and H. Walther. Quantum jumps of the micromaser field: Dynamic behavior close to phase transition points. Phys. Rev. Lett.,1994,72(22), 3506
    [14]B. T. H. Varcoe, S. Brattke, M. Weidinger, and H. Walther. Preparing pure photon number states of the radiation field. Nature,2000,403(6771),743-746
    [15]S. Brattke, B. T. H. Varcoe, and H. Walther. Generation of Photon Number States on Demand via Cavity Quantum Electrodynamics. Phys. Rev. Lett.,2001,86(16), 3534
    [16]R. J. Thompson, G. Rempe, and H. J. Kimble. Observation of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett.,1992,68(8),1132
    [17]S. Haroche, M. Brune, and J. M. Raimond. Trapping Atoms by the Vacuum Field in a Cavity. Europhys. Lett.,1991,14(1),19-24
    [18]G. Rempe, R. J. Thompson, H. J. Kimble, and R. Lalezari. Measurement of ultralow losses in an optical interferometer. Opt. Lett.,1992,17(5),363-365
    [19]E. T. Jaynes and F. W. Cummings. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE,1963,51,89
    [20]K. An, J. J. Childs, R. R. Dasari, and M. S. Feld. Microlaser:A laser with One Atom in an Optical Resonator. Phys. Rev. Lett.,1994,73(25),3375
    [21]S. Chu. Nobel Lecture:The manipulation of neutral particles. Rev. Mod. Phys., 1998,70(3),685
    [22]C. N. Cohen-Tannoudji. Nobel Lecture:Manipulating atoms with photons. Rev. Mod. Phys.,1998,70(3),707
    [23]W. D. Phillips. Nobel Lecture:Laser cooling and trapping of neutral atoms. Rev. Mod. Phys.,1998,70(3),721
    [24]H. J. Metcalf and P. v. d. Straten. Laser Cooling and Trapping. Springer-Verlag, New York,1999.
    [25]H. Mabuchi, Q. A. Turchette, M. S. Chapman, and H. J. Kimble. Real-time detection of individual atoms falling through a high-finesse optical cavity. Opt. Lett.,1996,21(17),1393
    [26]C. J. Hood, M. S. Chapman, T. W. Lynn, and H. J. Kimble. Real-Time Cavity QED with Single Atoms. Phys. Rev. Lett.,1998,80(19),4157
    [27]P. Munstermann, T. Fischer, P. Maunz, P. W. H. Pinkse, and G. Rempe. Dynamics of Single-Atom Motion Observed in a High-Finesse Cavity. Phys. Rev. Lett.,1999, 82(19),3791
    [28]P. Munstermann, T. Fischer, P. W. H. Pinkse, and G. Rempe. Single slow atoms from an atomic fountain observed in a high-finesse optical cavity. Opt. Commun., 1999,159(1-3),63-67
    [29]A. C. Doherty, A. S. Parkins, S. M. Tan, and D. F. Walls. Motion of a two-level atom in an optical cavity. Phys. Rev. A,1997,56(1),833
    [30]P. Horak, G. Hechenblaikner, K. M. Gheri, H. Stecher, and H. Ritsch. Cavity-Induced Atom Cooling in the Strong Coupling Regime. Phys. Rev. Lett., 1997,79(25),4974
    [31]G. Hechenblaikner, M. Gangl, P. Horak, and H. Ritsch. Cooling an atom in a weakly driven high-Q cavity. Phys. Rev. A,1998,58(4),3030
    [32]T. Fischer, P. Maunz, T. Puppe, P. W. H. Pinkse, and G. Rempe. Collective light forces on atoms in a high-finesse cavity. New J. Phys.,2001,3,11-11
    [33]C. J. Hood, T. W. Lynn, A. C. Doherty, A. S. Parkins, and H. J. Kimble. The Atom-Cavity Microscope:Single Atoms Bound in Orbit by Single Photons. Science,2000,287(5457),1447-1453
    [34]P. W. H. Pinkse, T. Fischer, P. Maunz, and G. Rempe. Trapping an atom with single photons. Nature,2000,404(6776),365-368
    [35]T. Fischer, P. Maunz, P. W. H. Pinkse, T. Puppe, and G. Rempe. Feedback on the Motion of a Single Atom in an Optical Cavity. Phys. Rev. Lett.,2002,88(16), 163002
    [36]R. Grimm, M. Weidemuller, and Y. B. Ovchinnikov. Optical dipole traps for neutral atoms, in Adv. At. Mol. Opt. Phys., Vol.42, B. Bederson and H. Walther, Editors. Academic Press, San Diego.2000, p.95.
    [37]J. Ye, D. W. Vernooy, and H. J. Kimble. Trapping of Single Atoms in Cavity QED. Phys. Rev. Lett.,1999,83(24),4987
    [38]T. Ido, Y. Isoya, and H. Katori. Optical-dipole trapping of Sr atoms at a high phase-space density. Phys. Rev. A,2000,61(6),061403
    [39]J. Ye, H. J. Kimble, and H. Katori. Quantum state engineering and precision metrology using state-insensitive light traps. Science,2008,320(5884),1734-1738
    [40]J. McKeever, J. R. Buck, A. D. Boozer, A. Kuzmich, H. C. Nagerl, D. M. Stamper-Kurn, and H. J. Kimble. State-Insensitive Cooling and Trapping of Single Atoms in an Optical Cavity. Phys. Rev. Lett.,2003,90(13),133602
    [41]K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman. Deterministic Loading of Individual Atoms to a High-Finesse Optical Cavity. Phys. Rev. Lett.,2007,98(23),233601
    [42]J. A. Sauer, K. M. Fortier, M. S. Chang, C. D. Hamley, and M. S. Chapman. Cavity QED with optically transported atoms. Phys. Rev. A,2004,69(5),051804
    [43]S. Kuhr, W. Alt, D. Schrader, M. Muller, V. Gomer, and D. Meschede. Deterministic Delivery of a Single Atom. Science,2001,293(5528),278-280
    [44]S. Nuβmann, M. Hijlkema, B. Weber, F. Rohde, G. Rempe, and A. Kuhn. Submicron Positioning of Single Atoms in a Microcavity. Phys. Rev. Lett.,2005, 95(17),173602-173604
    [45]C. Monroe. Quantum information processing with atoms and photons. Nature, 2002,416(6877),238-246
    [46]A. Kubanek, M. Koch, C. Sames, A. Ourjoumtsev, P. W. H. Pinkse, K. Murr, and G. Rempe. Photon-by-photon feedback control of a single-atom trajectory. Nature, 2009,462(7275),898-901
    [47]V. Vuletic and S. Chu. Laser Cooling of Atoms, Ions, or Molecules by Coherent Scattering. Phys. Rev. Lett.,2000,84(17),3787
    [48]P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe. Cavity cooling of a single atom. Nature,2004,428(6978),50-52
    [49]C. Monroe, D. M. Meekhof, B. E. King, S. R. Jefferts, W. M. Itano, D. J. Wineland, and P. L. Gould. Resolved-Sideband Raman Cooling of a Bound Atom to the 3D Zero-Point Energy. Phys. Rev. Lett.,1995,75(22),4011
    [50]A. Boca, R. Miller, K. M. Birnbaum, A. D. Boozer, J. McKeever, and H. J. Kimble. Observation of the Vacuum Rabi Spectrum for One Trapped Atom. Phys. Rev. Lett., 2004,93(23),233603
    [51]R. Miller, T. E. Northup, K. M. Birnbaum, A. Boca, A. D. Boozer, and H. J. Kimble. Trapped atoms in cavity QED:coupling quantized light and matter. J. Phys. B,2005,38(9), S551-S565
    [52]S. Nuβmann, K. Murr, M. Hijlkema, B. Weber, A. Kuhn, and G. Rempe. Vacuum-stimulated cooling of single atoms in three dimensions. Nat Phys,2005, 1(2),122-125
    [53]C. Ginzel, H.-J. Briegel, U. Martini, B.-G. Englert, and A. Schenzle. Quantum optical master equations:The one-atom laser. Phys. Rev. A,1993,48(1),732
    [54]T. Pellizzari and H. Ritsch. Preparation of stationary Fock states in a one-atom Raman laser. Phys. Rev. Lett.,1994,72(25),3973
    [55]M. Loffler, G. M. Meyer, and H. Walther. Spectral properties of the one-atom laser. Phys. Rev. A,1997,55(5),3923
    [56]J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble. Experimental realization of a one-atom laser in the regime of strong coupling. Nature,2003, 425(6955),268
    [57]A. D. Boozer, A. Boca, J. R. Buck, J. McKeever, and H. J. Kimble. Comparison of theory and experiment for a one-atom laser in a regime of strong coupling. Phys. Rev. A,2004,70(2),023814
    [58]E. Knill, R. Laflamme, and G. J. Milburn. A scheme for efficient quantum computation with linear optics. Nature,2001,409(6816),46-52
    [59]V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J.-F. Roch. Experimental Realization of Wheeler's Delayed-Choice Gedanken Experiment. Science,2007,315(5814),966-968
    [60]P. Grangier, B. Sanders, and J. Vuckovic, eds. Focus issue on single photons on demand. New J. Phys. Vol.6,2004.
    [61]A. S. Parkins, P. Marte, P. Zoller, and H. J. Kimble. Synthesis of arbitrary quantum states via adiabatic transfer of Zeeman coherence. Phys. Rev. Lett.,1993,71(19), 3095
    [62]C. K. Law and H. J. Kimble. Deterministic generation of a bit-stream of single-photon pulses. J. Mod. Opt.,1997,44(11/12),2067
    [63]A. Kuhn, M. Hennrich, T. Bondo, and G Rempe. Controlled generation of single photons from a strongly coupled atom-cavity system. Appl. Phys. B,1999,69(5), 373-377
    [64]A. Kuhn, M. Hennrich, and G Rempe. Deterministic Single-Photon Source for Distributed Quantum Networking. Phys. Rev. Lett.,2002,89(6),067901
    [65]J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble. Deterministic Generation of Single Photons from One Atom Trapped in a Cavity. Science,2004,303(5666),1992
    [66]M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe. A single-photon server with just one atom. Nat Phys,2007,3(4),253-255
    [67]P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe. Normal-Mode Spectroscopy of a Single-Bound-Atom-Cavity System. Phys. Rev. Lett.,2005,94(3),033002
    [68]K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble. Photon blockade in an optical cavity with one trapped atom. Nature,2005, 436(7047),87
    [69]I. Schuster, A. Kubanek, A. Fuhrmanek, T. Puppe, P. W. H. Pinkse, K. Murr, and G. Rempe. Nonlinear spectroscopy of photons bound to one atom. Nat Phys,2008, 4(5),382-385
    [70]A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. H. Pinkse, K. Murr, and G. Rempe. Two-Photon Gateway in One-Atom Cavity Quantum Electrodynamics. Phys. Rev. Lett.,2008,101(20),203602-203604
    [71]J. Bochmann, M. Mucke, G. Langfahl-Klabes, C. Erbel, B. Weber, H. P. Specht, D. L. Moehring, and G. Rempe. Fast Excitation and Photon Emission of a Single-Atom-Cavity System. Phys. Rev. Lett.,2008,101(22),223601-223604
    [72]P. Alsing and H. J. Carmichael. Spontaneous dressed-state polarization of a coupled atom and cavity mode. Quantum Opt.,1991,3(1),13
    [73]T. W. Hansch and A. L. Schawlow. Cooling of gases by laser radiation. Opt. Commun.,1975,13(1),68-69
    [74]P. Meystre and S. Stenholm, eds. Mechanical Effects of Light. J. Opt. Soc. Am. B. Vol.2,1985.
    [75]S. Chu and C. Wieman, eds. Laser Cooling and Trapping of Atoms. J. Opt. Soc. Am. B. Vol.6,1989.
    [76]J. Dalibard, J. M. Raimond, and J. Zinn-Justin, eds. Les Houches 1990 Session LⅢ, Fundamental Systems in Quantum Optics. NORTH-HOLLAND,1992.
    [77]R. Loudon. The Quantum Theory of Light. Clarendon Press, Oxford,1983.
    [78]D. A. Steck. Cesium D line data.2003; Available from:http://steck.us/alkalidata (revision 2.1.1,30 April 2009).
    [79]C. J. Foot. Atomic Physics. Oxford University Press,2005.
    [80]P. R. Berman, ed. Cavity Electrodyniamics. Academic Press, San Diego,1994.
    [81]Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble. Measurement of Conditional Phase Shifts for Quantum Logic. Phys. Rev. Lett., 1995,75(25),4710
    [82]Cavity QED Approaches to Quantum Information Processing and Quantum Computing.2004; Available from:http://qist.lanl.gov/pdfs/cavity_qed.pdf.
    [83]S. J. van Enk, H. J. Kimble, and H. Mabuchi. Quantum Information Processing in Cavity-QED. Quantum Information Processing,2004,3(1),75-90
    [84]C. J. Hood, H. J. Kimble, and J. Ye. Characterization of high-finesse mirrors:Loss, phase shifts, and mode structure in an optical cavity. Phys. Rev. A,2001,64(3), 033804
    [85]P. Meystre and M. Sargent III. Elements of Quantum Optics. Springer-Verlag, 2007.
    [86]J. J. Sanchez-Mondragon, N. B. Narozhny, and J. H. Eberly. Theory of Spontaneous-Emission Line Shape in an Ideal Cavity. Phys. Rev. Lett.,1983,51(7), 550
    [87]H. J. Carmichael. An Open Systems Approach to Quantum Optics. Springer-Verlag, Berlin,1993.
    [88]P. Alsing, D. S. Guo, and H. J. Carmichael. Dynamic Stark effect for the Jaynes-Cummings system. Phys. Rev. A,1992,45(7),5135
    [89]H.-J. Briegel and B.-G. Englert. Quantum optical master equations:The use of damping bases. Phys. Rev. A,1993,47(4),3311
    [90]H. J. Kimble. Non-classical light 20 years later:an assessment of the voyage into Hilbert space. Phil. Trans. R. Soc. Lond. A,1997,355(1733),2327-2341
    [91]H. J. Kimble. Strong interactions of single atoms and photons in cavity QED. Phys. Scr.,1998, T76,127
    [92]L. A. Lugiato. Theory of Optical Bistability, in Prog. Optics, Vol.ⅩⅪ, E. Wolf, Editor. Elsevier, Amsterdam.1984, p.69.
    [93]M. O. Scully and M. S. Zubairy. Quantum optics. Cambridge University Press, 1997.
    [94]S. M. Tan. Quantum Optics and Computation Toolbox for MATLAB. Available from:http://www.qo.phy.auckland.ac.nz/qotoolbox.html.
    [95]K. Murr. On the suppression of the diffusion and the quantum nature of a cavity mode. Optical bistability:forces and friction in driven cavities. J. Phys. B,2003, 36(12),2515-2537
    [96]G Rempe. One atom in an optical cavity:Spatial resolution beyond the standard diffraction limit. Appl. Phys. B,1995,60(2),233-237
    [97]C. J. Hood, Real-time measurement and trapping of single atoms by single photons, PhD thesis, California Institute of Technology,2000.
    [98]A. E. Siegman. Lasers. University Science Books, California,1986.
    [99]李利平,刘涛,李刚,张天才,and王军民.高精细度光学腔中低损耗的测量.物理学报,2004,53,1401
    [100]李志刚,张玉驰,张鹏飞,李园,李刚,王军民,and张天才.用扫描激光频率腔衰荡对超低损耗镜片的测量.光学学报,2009,29(3),718
    [101]李刚,高精细度微光学腔及单原子的控制与测量,山西大学博士毕业论文,2007.
    [102]J. McKeever, Trapped Atoms in Cavity QED for Quantum Optics and Quantum Information, PhD thesis, California Institute of Technology,2004.
    [103]N. Hodgson and H. Weber. Laser Resonators and Beam Propagation. Springer, Berlin,2005.
    [104]M. Okano, K. Kajimura, S. Wakiyama, F. Sakai, W. Mizutani, and M. Ono. Vibration isolation for scanning tunneling microscopy. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,1987,5(6),3313-3320
    [105]C. W. d. Silva, ed. Vibration and Shock Handbook. CRC Press,2005.
    [106]T. A. Savard, K. M. OHara, and J. E. Thomas. Laser-noise-induced heating in far-off resonance optical traps. Phys. Rev. A,1997,56(2),R1095
    [107]王晓勇,腔QED系统中的频率链,山西大学硕士毕业论文,2007.
    [108]T. W. Lynn, Measurement and Control of Individual Quanta in Cavity QED, PhD thesis, California Institute of Technology,2003.
    [109]A. Boca, Experiments in Cavity QED:Exploring the Interaction of Quantized Light with a Single Trapped Atom, PhD thesis, California Institute of Technology, 2005.
    [110]G. Li, Y. Zhang, Y. Li, X. Wang, J. Zhang, J. Wang, and T. Zhang. Precision measurement of ultralow losses of an asymmetric optical microcavity. Appl. Opt., 2006,45(29),7628-7631
    [111]闫树斌,用于腔量子电动力学实验的铯原子双磁光阱及其冷原子输运研究,山西大学博士毕业论文,2006.
    [112]P. Zhang, G. Li, Y.-c. Zhang, Y. Guo, J. Wang, and T. Zhang. Light-induced atom desorption for cesium loading of a magneto-optical trap:Analysis and experimental investigations. Phys. Rev. A,2009,80(5),053420
    [113]卫栋,87Rb-40K玻色费米混和气体磁光阱的实验研究,山西大学博士毕业论文,2007.
    [114]闫树斌,耿涛,张天才,and王军民.用于腔量子电动力学研究的铯原子双磁光阱.中国激光,2006,33,190
    [115]K. M. Birnbaum, Cavity QED with Multilevel Atoms, PhD thesis, California Institute of Technology,2005.
    [116]K. B. MacAdam, A. Steinbach, and C. Wieman. A narrow band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb. Am. J. Phys.,1992,60,1098
    [117]D. W. Preston. Doppler-free saturated absorption:Laser spectroscopy. Am. J. Phys., 1996,64,1432
    [118]E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts. Double-pass acousto-optics modulator system. Rev. Sci. Instrum.,2005,76(6),063112
    [119]R. E. Scholten. Enhanced laser shutter using a hard disk drive rotary voice-coil actuator. Rev. Sci. Instrum.,2007,78(2),026101
    [120]T. Bergeman, G. Erez, and H. J. Metcalf. Magnetostatic trapping fields for neutral atoms. Physical Review A,1987,35(4),1535
    [121]H. Mabuchi, J. Ye, and H. J. Kimble. Full observation of single-atom dynamics in cavity QED. Appl. Phys. B,1999,68(6),1095-1108
    [122]D. W. Vernooy, Cold atoms in cavity QED for quantum information processing, PhD thesis, California Institute of Technology,2000.
    [123]张玉驰,王晓勇,李刚,王军民,and张天才.自由运转半导体激光器边模间的强度关联.物理学报,2007,56(4),2202
    [124]G. C. Bjorklund. Frequency-modulation spectroscopy:a new method for measuring weak absorptions and dispersions. Opt. Lett.,1980,5(1),15-17
    [125]J. H. Shirley. Modulation transfer processes in optical heterodyne saturation spectroscopy. Opt. Lett.,1982,7(11),537-539
    [126]J. J. Snyder, R. K. Raj, D. Bloch, and M. Ducloy. High-sensitivity nonlinear spectroscopy using a frequency-offset pump. Opt. Lett.,1980,5(4),163-165
    [127]R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G M. Ford, A. J. Munley, and H. Ward. Laser phase and frequency stabilization using an optical resonator Appl. Phys.B,1983,31,97
    [128]E. D. Black. An introduction to Pound-Drever-Hall laser frequency stabilization. Am.J.Phys.,2001,69(1),79
    [129]刘四平,张玉驰,张鹏飞,李刚,王军民,and张天才.减反膜外腔半导体激光器特性的研究.物理学报,2009,58(1),285
    [130]L. Ma and J. Hall. Optical heterodyne spectroscopy enhanced by an external opticalcavity:toward improved working standards. IEEE J. Quantum Elect.,1990, 26(11),2006-2012
    [131]刘涛,闫树斌,李利平,雷宏香,张天才,and王军民.铯原子调制转移光谱在激光稳频中的应用.2003,32(1),5
    [132]R. W. Fox, C. W. Oates, and L. W. Hollberg. Stabilizing Diode Lasers to High-Finesse Cavities, in Cavity-Enhanced Spectroscopies, Vol.40, R.D. Van Zee and J.P. Looney, Editors. Academic Press, San Diego.2002, p.1.
    [133]J. M. Wang, J. Wang, S. B. Yan, T. Geng, and T. C. Zhang. Transferring cold atoms in double magneto-optical trap by a continuous-wave transfer laser beam with large red detuning. Rev. Sci. Instrum.,2008,79,123116
    [134]耿涛,基于光学腔量子电动力学的原子操控,山西大学博士毕业论文,2006.
    [135]G. Li, L. Li, Z. Du, T. Liu, T. Zhang, and J. Wang. Ultra-low mean-photon-number measurement with balanced optical heterodyne detection. Chin. Phys. Lett.,2004, 21(4),671-674
    [136]Y. Li, G. Li, Y. C. Zhang, X. Y. Wang, J. Zhang, J. M. Wang, and T. C. Zhang. Effects of counting rate and resolution time on a measurement of the intensity correlation function. Phys. Rev. A,2007,76(1),013829-013825
    [137]G. Li, T. C. Zhang, Y. Li, and J. M. Wang. Photon statistics of light fields based on single-photon-counting modules. Phys. Rev. A,2005,71(2),023807-023806
    [138]Y.-c. Zhang, Y. Li, Y.-q. Guo, G Li, J.-m. Wang, and T.-c. Zhang. Fourth order degree of coherence by double Hanbury Brown-Twiss detectons. Chin. Phys. B, 2010,19(8)
    [139]C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and M. Zimmermann. On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle. Rev. Mod. Phys.,1980,52(2),341
    [140]A. C. Doherty, T. W. Lynn, C. J. Hood, and H. J. Kimble. Trapping of single atoms with single photons in cavity QED. Phys. Rev. A,2000,63(1),013401
    [141]P. W. H. Pinkse and G Rempe. Single Atoms Moving in a High-Finesse Cavity, in Cavity-Enhanced Spectroscopies, Vol.40, R.D. van Zee and J.P. Looney, Editors. Academic Press, San Diego.2002, p.255.
    [142]P. L. W. Maunz, Cavity cooling and spectroscopy of a bound atom-cavity system, 2004.
    [143]A. Ashkin and J. P. Gordon. Stability of radiation-pressure particle traps:an optical Earnshaw theorem. Opt. Lett.,1983,8(10),511-513
    [144]D. Frese, B. Ueberholz, S. Kuhr, W. Alt, D. Schrader, V. Gomer, and D. Meschede. Single Atoms in an Optical Dipole Trap:Towards a Deterministic Source of Cold Atoms. Phys. Rev. Lett.,2000,85(18),3777
    [145]C. W. Gardiner, J. Ye, H. C. Nagerl, and H. J. Kimble. Evaluation of heating effects on atoms trapped in an optical trap. Phys. Rev. A,2000,61(4),045801
    [146]张静,非经典光场与原子相互作用的理论研究,山西大学博士毕业论文,2008.
    [147]J. McKeever, J. R. Buck, A. D. Boozer, and H. J. Kimble. Determination of the Number of Atoms Trapped in an Optical Cavity. Phys. Rev. Lett.,2004,93(14), 143601
    [148]K. Murr, S. Nussmann, T. Puppe, M. Hijlkema, B. Weber, S. C. Webster, A. Kuhn, and G Rempe. Three-dimensional cavity cooling and trapping in an optical lattice. Phys. Rev. A,2006,73(6),063415
    [149]A. Messiah. Quantum mechanics. Wiley, New York,1978.
    [150]A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble. Reversible state transfer between light and a single trapped atom. Phys. Rev. Lett.,2007,98(19),4
    [151]S. Bose, P. L. Knight, M. B. Plenio, and V. Vedral. Proposal for Teleportation of an Atomic State via Cavity Decay. Phys. Rev. Lett.,1999,83(24),5158
    [152]L. M. Duan and H. J. Kimble. Efficient Engineering of Multiatom Entanglement through Single-Photon Detections. Phys. Rev. Lett.,2003,90(25),253601
    [153]A. S. S(?)rensen and K. Melmer. Measurement Induced Entanglement and Quantum Computation with Atoms in Optical Cavities. Phys. Rev. Lett.,2003,91(9), 097905
    [154]H. J. Kimble and S. J. van Enk. Quantum physics:Push-button teleportation. Nature,2004,429(6993),712
    [155]B. Sun, M. S. Chapman, and L. You. Atom-photon entanglement generation and distribution. Phys. Rev. A,2004,69(4),042316
    [156]J. Gea-Banacloche, T. C. Burt, P. R. Rice, and L. A. Orozco. Entangled and Disentangled Evolution for a Single Atom in a Driven Cavity. Phys. Rev. Lett., 2005,94(5),053603
    [157]D. L. Zhou, B. Sun, C. P. Sun, and L. You. Generating entangled photon pairs from a cavity-QED system. Phys. Rev. A,2005,72(4),040302-040304
    [158]B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble. A photon turnstile dynamically regulated by one atom. Science,2008,319(5866), 1062-1065

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700