用户名: 密码: 验证码:
煤矿回采工作面瓦斯涌出非线性特性分析及预测仿真理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
回采工作面瓦斯涌出来源复杂、影响因素多并且作业区域内瓦斯分布不均匀,容易造成回风巷和局部瓦斯积聚(尤其是上隅角),限制工作面的生产。因此选取回采工作面瓦斯涌出作为研究对象,结合回采工作面瓦斯浓度实测数据,针对煤矿井下空间复杂结构及动态变化条件下瓦斯涌出特征与规律的关键问题,以系统科学、安全科学和矿井通风与安全学等理论的原理辨识了煤矿瓦斯涌出各影响因素,应用非线性科学、现代应用数学、计算机科学等理论对回采工作面瓦斯涌出进行了非线性分析与预测仿真理论的研究,建立了基于支持向量机的瓦斯涌出混沌时间序列预测模型以及基于瓦斯涌出时空混沌行为的耦合映像格子模型,其主要研究内容和结果如下:
     (1)对Ⅱ1024回采工作面瓦斯浓度序列进行时间结构变异系数特征分析,δ值的复杂变化特征表明在瓦斯涌出在时间或空间不断发生变异,呈现出复杂的非线性特征。这也说明了传统的瓦斯涌出研究方法存在局限性,必须从非线性理论的角度来考察瓦斯涌出系统特性与规律;
     (2)结合现场瓦斯实测数据对7126回采工作面相对瓦斯涌出和绝对瓦斯涌出进行综合分析,结果表明该工作面瓦斯涌出变化起伏较大且呈现出明显的复杂性,相对瓦斯涌出量和绝对瓦斯涌出量表现出较明显的不稳定性,体现了煤矿回采工作面瓦斯涌出的各要素之间及其与外部系统的相互作用存在着的复杂的非线性关系。对回采工作面瓦斯涌出进行系统分析,表明该系统存在与混沌系统相耦合的特征,这证明了混沌理论对该系统进行研究的可行性;
     (3)对Ⅱ1024回采工作面的绝对瓦斯涌出时序数据,通过GP算法与互信息函数法,分别确定了嵌入维数m为10与延迟时间τ为15,在此条件下,通过功率谱、自相关函数、Poincare截面和返回映像等混沌特征分析方法,对Ⅱ1024回采工作面进行非线性特征判别,根据各分析图形特征,可明显判定煤矿回采工作面瓦斯涌出具有混沌特性,进一步证明了运用混沌理论对回采工作面瓦斯涌出进行研究的合理性和可行性;
     (4)通过对Ⅱ1024回采工作面绝对瓦斯涌出量时间序列R/S分析,证明了对其进行预测的可行性,对其进行最大Lyapunov指数计算与分析,发现随步长k的增加,其Lyapunov指数值趋于稳定,其值大约为0.041-0.042,是一个有限的正值,这说明采掘工作面瓦斯涌出系统的吸引子为奇怪吸引子,系统运动呈混沌状态,可预报尺度的确定避免了在进行采掘工作面瓦斯涌出预测研究时时间尺度过大的情形。通过运用混沌理论中相空间重构方法建立的人工神经网络和支持向量机的瓦斯涌出预测模型对比分析结果表明,基于SVM的瓦斯涌出混沌时间序列预测模型具有较好的预测精度,同时,基于SVM的瓦斯涌出混沌时间序列预测模型具有建立更简便、训练速度更快等优点。这样,由于充分考虑了瓦斯涌出时间序列的混沌性,使得预测更科学。这结果也为回采工作面瓦斯涌出的可预测性及预测模型的选择提供了一种新的依据。
     (5)瓦斯涌出系统是时空混沌系统,它不仅在时间维度上是混沌的,而且在空间维度上也是混沌的,借助耦合映像格子模型对该时空混沌动力系统进行了仿真研究,并建立了瓦斯涌出耦合映像格子模型,定性模拟了实际系统的时空发展行为。瓦斯涌出耦合映像格子模型演化特性表明,可以通过合适的技术措施和管理措施来抑制瓦斯涌出混沌的产生,提高回采工作面的安全度。
     (6)将瓦斯涌出非线性预测模型和耦合映像格子模型应用到Ⅱ1023回采工作面的瓦斯治理,根据这两个模型采取了针对性的措施,结果显示瓦斯压力与瓦斯涌出均呈下降趋势,瓦斯浓度也未超限,实施效果明显,为Ⅱ1023回采工作面的生产提供了较大的安全空间,同时也验证了模型的准确性。
     回采工作面瓦斯涌出非线性特性分析及预测仿真理论研究,将为回采工作面瓦斯涌出开创一个新的研究领域,其研究成果的获得和应用对有效预防和控制瓦斯事故以及改善煤矿安全生产状况具有重要的现实意义和较广阔的应用、推广前景,对其他类型的事故控制也有较大的指导作用。
The source of gas emission in the working face is complex and gas distribution in operation region is uneven. Gas easily accumulates in return airway and some certain parts (especially on top corner), so the work in the heading face is restricted. Therefore, gas emission in the heading face was selected as the research object. Focused on the complex underground structure of coal mine and the characteristics and law of gas emission under dynamic changing condition, combined with measured data of gas concentrations, the influencing factors of coal mine gas emission were identified with the theories such as systematic science, safety science, ventilation and safety of mine etc. The non-linear analysis and the theory for prediction and simulation about gas emission was processed by applying the non-linear science, modern applied mathematics, computer science etc. Then, the chaotic time series prediction model of gas emission which is based on the SVM and the CMLs model which is based on the spatiotemporal chaos behavior of gas emission were set up. The main research content and results are as follows:
     (1) Gas concentration series of the No.Ⅱ1024 working face is analyzed on its time structure variation coefficient characteristic. The complex change characteristic of 8 indicates that gas emission is constantly aberrated in time and space and has complicated nonlinear characteristic. It is also explained the conventional techniques is difficult to research gas emission and the characteristic and law of gas emission must be researched by the nonlinear theory;
     (2) Combining with on-site gas measured data, relative gas emission and absolute gas emission in the No.7126 working face were analyzed comprehensively. The results show that gas emission in this working face changes greatly and presents an obvious complexity, the relative gas emission rate and absolute gas emission rate shows more pronounced instability. It is verified the existence of complex non-linear relationship among the elements of gas emission and their interaction with external systems in coal mine working face. Systemic analysis was processed to gas emission of the working face. It was proved that chaos theory research about gas emission is feasible according to the chaos coupling characteristic of gas emission system;
     (3) Phase-space reconstruction is the premise of most chaotic research and calculation, and the key point of phase-space reconstruction technology is to select the embedding dimension m and delay timeτ. For the time-series data of absolute gas emission in the No.Ⅱ1024 working face, adopting the GP algorithm and mutual information function, the embedding dimension m and delay timeτcan be specified respectively, which are 10 and 15. Under this premise, non-linear characteristics of the No.Ⅱ1024 working face is identified through several chaotic characteristic analytical methods, such as power spectrum, auto-correlation function, Poincarre cross-section and return map etc. According to characteristics of the analysis graphics, it can be confirmed that gas emission in coal mine working face has chaotic characteristics. It is further proved that it is reasonable and feasible to research gas emission of the working face by chaos theory;
     (4) The feasibility of the prediction of absolute gas emission quantity was proved by the R/S analysis about it in the No.Ⅱ1024 working face. Through the calculation and analysis of the biggest Lyapunov index, it indicates that with the increase of step-size, the Lyapunov index value tends to be a constant which is about 0.041-0.042, and is a limited positive value. It illustrates that the attractor of gas emission system in the working face is strange attractor, the system is in chaotic sport status and the system movement presents chaos state. The determination of potential predictable scale avoids the situation of overlarge time scale when carry on the prediction research of gas emission in the working face. The contrast and analysis were processed about the prediction models of the ANN and the SVM based on the phase reconstruction method in the chaos theory, The result shows that the SVM prediction model possesses a better prediction precision, easier to build and faster training speed, and due to the consideration of time-space chaos of gas emission, it is more reliable. Also, it provides a new guideline on the predictable and the prediction model of gas emission of the working faces.
     (5) Gas emission system is spatio-temporal chaos system. It's not only chaotic in the time dimensionality but chaotic in the space dimensionality. Simulation research about gas emission system was processed by the CMLs model. The CMLs model about gas emission was built and the spatio-temporal development behavior of actual system was qualitatively simulated. The evolution characteristic of the CMLs model about gas emission shows that it can restrain the chaos of gas emission via appropriate technical measures and management measures to enhance the safety of the working face.
     (6) The nonlinear prediction model and the CMLs model about gas emission were applied to gas treatment in the No.Ⅱ1023 working face. Pertinently measures were adopted according to two models. The result shows gas pressure and gas emission all take on downtrend and gas density is not beyond the limit value. It offers biggish safe space for the production of the No.Ⅱ1023 working face. The model's validation is also verified.
     Nonlinear characteristic analysis and the theory of prediction and simulation about gas emission of the working face will create a new field of study to gas emission in the working face. The research result and its application have practical significance and broader application prospect for effective prevention and control of gas accidents and to improve coal mine safety, and also have greater guiding role to other types of accidents control.
引文
[1]李毅中.安全生产现状、发展趋势和对策措施[R].北京:国家安全生产监督管理总局,2007.2
    [2]陈红,祁慧等.中国煤矿重大瓦斯爆炸事故规律分析[J].中国矿业.2005,14(3)
    [3]刘冠妹等.矿井通风一瓦斯一煤尘[M].北京:中国劳动出版社,1991
    [4]C.K.萨文科.井下空气冲击波[M].北京:冶金工业出版社,1979
    [5]工程爆破文集(第三辑)[M].北京:冶金工业出版社,1983
    [6]第十一届国际采矿安全会议论文集[M].北京:煤炭工业出版社,1985
    [7]第十二届国际采矿安全会议论文集[M].北京:煤炭工业出版社,1987
    [8]Geoffrey Taylor. The Formation of a Blast Wave by a Very Intense Explosion. Ⅰ. Theoretical Discussion [J]. Series A, Mathematical and Physical Sciences:1950, 201(1065):159-174
    [9]L.I. Sedov. Similarity and Dimensional Methods in Mechanics [M]. New York: Academic Press,1993
    [10]I.O.Moen, J.H.S. Lee and B.H. Hjertager. Pressure Development due to Turbulent Flame Propagation in Large-Scale Methane/Air Explosion [J]. Combustio and Flame: 1982(47):31-52
    [11]Sakurai, A. Blast Wave Theory, Basic Developments in Fluid Mechanics [M]. New York:Academic Press,1959
    [12]G.B. Whithman. The Propagation of Spherical Blast [J]. Proceedings of Royal Society:1950, A203:571-581
    [13]Oshima, K. On Exploding Wires, Vol.2 [M]. New York:Plenum Press,1962
    [14]H.I. Brode. Numerical Simulation of Spherical Blast Waves [J]. Journal of Applied Physics:1955,26:766-775
    [15]W.E. Baker. Explosion in Air [M]. Austin: University of Texas Press,1973
    [16]R. Courant, K.O. Friedrichs. Suspersonic Flow and Shock Waves [M]. New York: Springer-Verlag Press,1948
    [17]田力.地下爆炸冲击下地面结构动力效应及滑移隔震研究[D].天津:天津大学,2004
    [18]高建康,菅从光,林柏泉,李超.壁面粗糙度对瓦斯爆炸过程中火焰传播和爆炸波的作用[J].煤矿安全.2005,2:44-46
    [19]林柏泉,菅从光,周世宁等.受限空间瓦斯爆炸反射波及对火焰传播的影响[J].中国矿业大学学报:2005,34(1):1-5
    [20]翟成,林柏泉,菅从光.瓦斯爆炸火焰波在分叉管路中的传播规律[J].中国安全科学学报:2005,15(6):69-72
    [21]吴兵,张莉聪,徐景德.瓦斯爆炸运动火焰生成压力波的数值模拟[J].中国矿业大学学报:2005,34(4):423-426
    [22]杨艺,何学秋,王从银等.瓦斯爆炸火焰的分形特性[J].中国矿业大学学报:2004,33(1):115-119
    [23]何学秋,杨艺,王恩元等。障碍物对瓦斯爆炸火焰结构及火焰传播影响的研究[J].煤炭学报:2004,29(2):186-189
    [24]吴红波,张立,郭子如.点火能对瓦斯火焰传播影响的实验研究[J].煤矿爆破:2004,1:5-7
    [25]林柏泉,管从光等.湍流的诱导及对瓦斯爆炸火焰传播的作用[J].中国矿业大学学报:2003,32(2):107-110
    [26]林柏泉,桂晓宏.瓦斯爆炸过程中火焰厚度测定及其温度场数值模拟分析[J].实验力学:2002,17(2):227-233
    [27]林柏泉,桂晓宏.瓦斯爆炸过程中火焰传播规律的模拟研究[J].中国矿业大学学报(自然科学版):2002,31(1):6-9
    [28]王从银,何学秋.瓦斯爆炸火焰厚度及其持续时间的实验研究[J].煤炭科学技术:2001,29(8):27-30
    [29]王从银,何学秋.瓦斯爆炸传播火焰高内聚力特性的试验研究[J].中国矿业大学学报(自然科学版):2001,30(3):217-220
    [30]何利文,施式亮,宋译.回采工作面瓦斯涌出的复杂性及其度量[J].煤炭学报,2008,33(5):547-550
    [31]马晨晓,马新生,李太明.矿井瓦斯涌出量方法的研究[J].中州煤炭:2000(3):37-39
    [32]张兆瑞,赵永生.简化速度法预测矿井瓦斯涌出量[J].山西煤炭:1995(4):57-59
    [33]张铁岗.矿井瓦斯综合治理技术[M].北京:煤炭工业出版社,2001
    [34]梁运培,罗小林.回采工作面涌出规律及涌出量预测方法的研究[J].中州煤炭:1999(6):3-4
    [35]郭凡进,辛新平.回采工作面瓦斯涌出量预测的实践与探讨[J].煤矿安全:1998(2):3-4
    [36]李德洋,张兴华,吕庆刚.高产高效工作面瓦斯涌出规律及防治方法[J].矿业安全与环保:1999(3):32-41
    [37]陈大力,秦永洋,赵俊峰.综采工作面瓦斯涌出规律及影响因素分析[J].煤矿安全:2003,34(12):7-10
    [38]张兴华.综采工作面采空区瓦斯运移规律及其应用[D].阜新:辽宁工程技术大学资源与环境工程学院,2002
    [39]王招,王锦,朱建功.阳泉五矿综放面瓦斯涌出的影响因素分析[J].中国地质灾害与防治学报:2003,14(1):81-84
    [40]骆祖江,杨锡禄.煤层甲烷运移动力学模型研究[D].西安:煤炭科学院西安分院,1997
    [41]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].徐州:中国矿业大学出版社,1999
    [42]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992.
    [43]林柏泉.矿井瓦斯防治及理论与技术[M].徐州:中国矿业大学出版社,1998
    [44]王佑安.煤矿安全手册-矿井瓦斯防治[M].北京:煤炭工业出版社,1996
    [45]贾东旭,王兆丰,袁军伟,陈向军.我国地勘解吸法存在的问题分析[J].煤炭科学技术:2006,34(4):88-90
    [46]陈大力,陈洋.对我国煤层瓦斯含量测定方法的评述[J].煤炭安全:2008,12:34-36
    [47]赵凯等.煤层甲烷气勘探开发理论与实验测试技术[M].北京:石油工业出版社,1996
    [48]唐书恒等.二元气体等温吸附一解吸中气分的变化规律[J].中国矿业大学学报:2004,4:56-59
    [49]章立清,秦玉金.我国矿井瓦斯涌出量预测方法研究现状及展望[J].煤矿安全:2007,8:58-60
    [50]许满贵,葛岭梅.煤体结构对矿井瓦斯灾害的影响研究[J].湖南科技大学学报(自然科学版):2007,22(1):17-20
    [51]王大曾.瓦斯地质[M].北京:煤炭工业出版社,1992
    [52]于良臣.地质勘探过程中应用解吸法直接测定煤层瓦斯含量的试验研究[R].抚顺:煤炭科学研究总院抚顺分院,1981
    [53]MT77-84,煤层瓦斯含量和成分测定方法(解吸法)[S].中华人民共和国煤炭工业部标准,1983
    [54]段毅,吴保祥,郑朝阳,王传远.煤层气组分的形成演化模拟实验研究[J].科学通报:2005,50(B10):27-31
    [55]苏文书等.综采工作面沼气涌出规律及预测[R].重庆:煤炭科学研究总院重庆分院,1985
    [56]瓦斯通风防灭火安全研究所.矿井瓦斯涌出量预测方法的发展与贡献[J].煤矿安全:2003,34(9):10-13
    [57]吴志莲.中国煤炭工业年鉴(1991)[M].北京:煤炭工业出版社,1991
    [58]孙旭东.中国煤炭工业年鉴(1992)[M].北京:煤炭工业出版社,1992
    [59]国家煤炭工业局.中国煤炭工业年鉴(1993)[M].北京:煤炭工业出版社,1993
    [60]范维唐等.中国煤炭工业年鉴(1994)[M].北京:煤炭工业出版社,1994
    [61]孙旭东.中国煤炭工业年鉴(1995)[M].北京:煤炭工业出版社,1995
    [62]于不凡.煤矿瓦斯灾害防治及利用手册[M].北京:煤炭工业出版社,2000
    [63]马晨晓,马新生,李太明.矿井瓦斯涌出量预测方法的研究[J].中州煤炭:2000,3:15-17
    [64]曹垚林.综掘工作面瓦斯预测技术在平顶山矿区的应用研究[D].北京:煤炭科学研究总院,2003
    [65]杨力生.煤矿瓦斯预测方法述评[J].瓦斯地质:1988,1:5-7
    [66]Bodziony J, Topolnicki J. Results of laboratory investigations of gas and coal outbursts[J].Arch. Min. Sci.:1998(34):581-591
    [67]L.W. Lunarzewski. Gas emission prediction and recovery in underground coal mines [J].International Journal of Coal Geology: 1998,35:117-145
    [68]煤炭科学研究总院抚顺分院.煤矿安全手册[M].北京:煤炭工业出版社,1994
    [69]梁运培,罗小林.回采工作面瓦斯涌出规律及涌出量预测方法的研究[J].中州煤炭:1999(6):3-4
    [70]金玉明,王森平.平煤集团十三矿已一、已二采区已15-17煤层瓦斯涌出量预测[J].东北煤炭技术:1999(6):23-25
    [71]李洪彪.基于BP神经网络的瓦斯涌出量预测的研究[D].昆明:昆明理工大学,2008
    [72]张子戌,袁崇孚.瓦斯地质数学模型法预测矿井瓦斯涌出量研究[J].煤炭学报:1999,24(4):368-372
    [73]王永先,曹焕举,孙晓震.用多元线性回归分析法预测矿井深部瓦斯涌出量[J].焦作工学院学报(自然科学版):2001(7):246-249
    [74]夏红春,程远平,李顺峰.基于最小二乘法的矿井深部区域瓦斯涌出量预测[J].矿业安全与环保:2002,29(4):13-16
    [75]赵益芳,张兆瑞,李有忠.利用速度法预测矿井新盘(采)区瓦斯涌出量的研究[J].太原理工大学学报:2002,32(4):347-351
    [76]陶云奇,许江,李树春.改进的灰色马尔柯夫模型预测采煤工作面瓦斯涌出量[J].煤炭学报:2007,32(4):391-395
    [77]谢万垦,孙惠民.矿井瓦斯涌出量的灰色预测[J].煤矿安全:2002,33(4):32-34
    [78]刘新喜,王勇,赵云胜.回采工作面瓦斯涌出特征及灰色预测模型[J].中国安全科学学报:2001,11(1):11-16
    [79]刘新喜,赵云胜.用灰色建模法预测矿井瓦斯涌出量[J].中国安全科学学报:2000,10(4):51-54
    [80]赵朝义,袁修干,孙金镖.遗传规划在采煤工作面瓦斯涌出量预测中的应用[J].应用基础与工程科学学报:1999,7(4):385-392
    [81]题正义,杨艳国,丁涛.瓦斯涌出量的模糊数学与灰色系统理论的预测[J].辽宁技术工程大学学报(自然科学版):2002,19(2):127-129
    [82]Pxigonine I., Stengers I. Order out of Chaos [M].USA:Bantam Books, Inc.,1984
    [83]尼科里斯,普利高津.探索复杂性(罗久里等译)[M].四川:四川教育出版社,1986
    [84]罗灼礼,闻学泽,罗伟.中国大陆原地复发强震的基本特征及其预测[J].地震:1995,15(1):1-11.
    [85]闻学泽.活动断裂地震潜势的定量评估[M].北京:地震出版社,1996.
    [86]罗灼礼,王伟军,陈凌.海城岫岩地震序列非线性及判定前震序列的时间结构变异诊断法[J].地震:2000,20(增刊):18-27.
    [87]龙尼兹C.地震危险性分析中的统计计方法[M].北京:地震出版社,1988.
    [88]D.P. Schwarts, K.J. Coppersmith. Fault behavior and characteristic earthquake: examples from the Wasatch and San Andress fault zones [J]. J. Geophys. Res.: 1984,89:5681-5698.
    [89]王永先,曹焕举,孙晓震.用多元线性回归分析法预测矿井深部瓦斯涌出量[J].焦作工学院学报(自然科学版):2001,20(4):246-249
    [90]赵平原.用回归分析法评价B2煤层的影响因素[J].煤田地质与勘探:1992,20(4):16-18.
    [91]中国煤炭学会瓦斯地质专业委员会.瓦斯地质论文集[C].北京:煤炭工业出版社,1995
    [92]连昌宝,李伟.提高煤层瓦斯压力预测精度的探索[J].河南理工大学学报(自然科学版):2008,27(2):131-139
    [93]李士勇,田新华.非线性科学与复杂性科学[M].哈尔滨:哈尔滨工业大学出版社,2006
    [94]林振山.非线性科学及其在地学中的应用[M].北京:气象出版社,2003
    [95]刘洪,郭志勇.预测的混沌理论的范式[J].系统辨证学学报:1998,6(4):31-35
    [96]S. Neil Rasband. Chaotic Dynamics of Nonlinear System [M]. New York: John Wiley & Sons, Inc.,1990
    [97][美]詹姆斯.格雷克.混沌学-一门新科学[M].北京:社会科学文献出版社出版,1991
    [98]刘式达,刘式适.非线性动力学和复杂现象[M].北京:气象出版社,1989
    [99][美]米歇尔.沃尔德罗普.复杂-诞生于秩序与混沌边缘的科学[M].北京:三联书店,1998
    [100]R.L. Devancy. An Introduction to Chaotic Dynamical System [M]. New York: Westview Press,1992
    [101]D. Assaf, S. Gadbois. Definition of chaos [J]. Letter in American Mathematical Monthly: 1995,99:865
    [102]卢侃,孙建华等.混沌动力学[M].上海:上海翻译出版公司,1990
    [103]李勤学,王万良,许维胜等.混沌及其控制研究进展[J].机电工程:1999,5:56-59
    [104]成思危.复杂性科学探索[M].北京:民主与建设出版社,1999
    [105]邓宗琦.混沌学的历史和现状[J].华中师范大学学报:1997,31(4):52-55.
    [106]苏宁,贾欣乐.混沌学及其混沌控制概述[J].系统工程:1996,14(4):14-18.
    [107]黄润生.混沌及其应用[M].武汉:武汉工业大学出版社,2000.
    [108]陈奉苏.混沌及其应用[M].北京:中国电力出版社,1998.
    [109]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用[M].武汉:武汉大学出版社,2002
    [110]郝柏林.分岔、混沌、奇怪吸引子、湍流及其它[J].物理学进展:1983,3(3):329-415
    [111]张淑誉译(JamesG leick著).混沌:开创新科学[M].上海:上海译文出版社,1990
    [112]李眉眉.电力负荷混沌特性分析及其预测研究[D].四川:四川大学,2004
    [113]卢侃,孙建华.混沌学传奇[M].上海:上海翻译出版社公司,1991
    [114]仪垂祥.非线性科学及其在地学中的应用[M].北京:气象出版社,1995
    [115]M. Henon. A two dimensional mapping with a strange attractor [J]. Comm. Math. Phys.:1976,50:69-77
    [116]David Ruelle, Floris Takens. On the nature of turbulence [J]. Comm. Math. Phys.: 1971,20:167-192
    [117]T.Y. Li, J.A. Yorke. Period three implies chaos [J]. The American Mathematical Mothly: 1975,82 (10):985-992
    [118]R.M. May. Simple mathematical models with very complicated dynamics [J]. Nature:1976,261:459-467
    [119]M.J. Feigenbaum. Quantitative universality for a class of nonlinear transformations [J]. Journal of Statistical Physics:1978,19:25-52
    [120]C. Nicolis, G. Nicolis. Is there a climatic attractor? [J]. Nature:1984,311: 529-532
    [121]Klaus Fraedrich. Estimating the dimension of weather and climate atractors [J]. Journal of the Atmospheric Science:1986,50(15):2549-2555
    [122]J. Kurths, H. Herzel. An attractor in a solar time series [J]. Physica D:1987,25: 165-172
    [123]A. Hense. On the possible existence of a strange attractor for the Southern Oscillation [J]. Beitr. Phys. Atmos.:1987,60:34-47
    [124]I. Rodriguez-Iturbe, F.B. De Power, M.B. Sharifi, K.P. Georgakakos. Chaos in rainfall [J]. Water Resources Research:1989,25(7):1667-1675
    [125]F. Takens. Determing strange attractors in turbulence [J]. Lecture Notes in Math: 1981,898:361-381
    [126]N.H. Packard, J.P. Crutchfield, J.D. Farmer and R.S. Shaw. Geometry from a time series [J]. Physical Review Letters:1980,45(9):712-716
    [127]Grassberger P, Procaccia I. Dimension and entropy of strange attractors from a fluctuating dynamic approach [J]. Physica:1984,13D:34-54.
    [128]G. Chen, D. Lai. Feedback anticontrol of discrete chaos [J]. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering: 1998,8: 1585-1590
    [129]林振山.气候建模、诊断和预测的研究[M].北京:气象出版社,1996
    [130]B.P. Wilcox, M.S. Seyfried, T.H. Matison. Searching for chaotic dynamics in snowmelt runoff [J]. Water Resources Research: 1991,27(6):1005-1010
    [131]A.W. Jayarwardena, Feizhou Lai. Analysis and prediction of chaos in rainfall and stream flow time series [J]. Journal of Hydrology:1994,153:23-52
    [132]傅军,丁晶,邓育仁.洪水混沌特性初步研究[J].水科学进展:1996,7(3):226-229
    [133]丁晶,邓育仁,傅军.探索水文现象变化的新途径-混沌分析[J].水利学报:1997增刊:242-246
    [134]赵永龙,丁晶,邓育仁.混沌分析在水文预测中的应用和展望[J].水科学进展:1998,9(2):181-186
    [135]仲蔚,俞金寿.混沌与分形在化工过程控制中的应用[J].控制与决策:2001,16(1):1-6
    [136]洪时中.非线性时间序列分析的最新进展及其在地球科学中的应用前景[J].地球科学进展:1999,14(6):559-565
    [137]赵汉青,文必洋.短时间序列的混沌检测方法及其在高频地波雷达海杂波混沌特性研究中的应用[J].信息处理:2003,19(1):92-94
    [138]杨一文,刘贵忠,张宗平.基于嵌入理论和神经网络技术的混沌数据预测及其在股票市场中的应用[J].系统工程理论与实践:2001,(6):52-78
    [139]V. Ajjarapu, B. Lee. Bifurcation theory and its application to nonlinear dynamical phenomena in an electrical power system [J]. IEEE Transactions on Power Systems:1992,7(1):424-431
    [140]H.D. Chiang, C.W. Liu, P.P. Varaiya. Chaos in a simple power system [J]. IEEE Transactions on Power Systems:1993,4:1407-1417
    [141]S. Smale. Differentiable dynamical systems [J]. Bull. Am. Math. Soc.:1967, (73): 747-817
    [142]E.N. Lorenz. Deterministic Nonperiodic Flow [J]. Journal of the Atmospheric Science:1963,20:130-141.
    [143]M. Henon. A two dimensional mapping with a strange attractor [J]. Comm. Math. Phys.:1976,50:69-77
    [144]B.B. Mandelbrot. The Fractal Geometry of Nature [M]. New York: W.H. Freeman and Company,1982
    [145]J. Kaplan, J. Yorke. Functional differential equations and approximation of fixed points [M]. New York:Springer-Verlag,1979.
    [146]赫柏林.自然界中有序和混沌[J].百科知识:1984,1:520-526.
    [147]S. Grossmann, S. Thomae. Invariant distributions and stationary correlation functions of one-dimensional discrete processes [J]. Zeitschrift Naturforschung:1977,32a (12):1353
    [148]宋学锋.混沌经济学理论及其应用研究[M].徐州:中国矿业大学出版社,1996.
    [149]Ying Cheng-lai, David Lerner. Effective scaling regime for computing the correlation dimension from chaotic time series [J]. Phys D:1998,115(5):1-18
    [150]D.S. Broomherd. Extracting qualitative dynamics from experimental data [J]. Physica D:1987,20(11):217-236
    [151]W. Liebert, K. Pawalzik, H.G. Schuster. Optimal embeddings of chaotic attractors from topological considerations [J]. Europhysics Letters:1991,14(8):521-526.
    [152]Hen Yu-shu, Ma Jun-hai, Liu Zeng-rong.The state space reconstruction technology of different kinds of chaotic data obtained from dynamical system [J].Acta Mechanica Sinica: 1999,15(1):82-92
    [153]M.T. Rosenstein, J.J. Collins and C.J. De Luca. A practical method for caculating largest Lyapunov exponents from small data sets [J]. Physica D:1993, 65:117-134.
    [154]林嘉宇,王越科,黄芝平等.语音信号相空间重构中的时间延迟的选择-复自相关法[J].信号处理:1999,15(3):220-225.
    [155]吕小青,曹彪,曾敏等.确定延迟时间互信息法的一种算法[J].计算物理:2006,23(2):184-188
    [156]刘延柱,陈立群.非线性动力学.上海:上海交通大学出版社,2000
    [157]马红光,李夕海,王国华.相空间重构中嵌入维和时间延迟的选择[J].西安交通大学学报:2004,38(4):335-338
    [158]姚洪兴,姜桂仁,耿霞.相空间重构中参数确定方法的新探讨[J].江苏大学学报(自然科学版):2005,26(6A):82-85
    [159]秦奕青,蔡卫东,杨炳儒.非线性时间序列的相空间重构技术研究[J].系统仿真学报:2008,20(11):2969-2973
    [160]马飞.褐飞虱发生系统的混沌特性及其预测研究[D].南京:南京农业大学农学院,2001
    [161]施式亮,宋译,何利文,朱川曲.矿井掘进工作面瓦斯涌出混沌特性判别研究[J].煤炭学报:2006,31(6):701-705
    [162]Scargle J D. Studies in astronomical time series analysis Ⅳ, Modeling chaotic and random processes with linear filters [J].Astrophys. J.:1990,359(12):469-482.
    [163]郜传厚,周志敏,邵之江.高炉冶炼过程的混沌性解析[J].物理学报:2005,54(4):1490-1494
    [164]林振山.长期预报的相空间理论和模式[M].北京:气象出版社,1993.
    [165]郑祖光,刘式达.用天气变量时间序列估计天气的可预报性[J].气象学报:1992,50(1):81-85
    [166]郝仲熙.基于分形理论的煤矿瓦斯涌出规律预测研究[D].太原:太原理工大学,2006
    [167]H.E. Hurst. Long term storage capacity of reservoirs [J]. Transactions of the American Society of Civil Engineers:1951,116:770-799
    [168]Lo, Andrew W. Long-term memory in stock market prices [J]. Econometrics: 1991,59:1279-1313
    [169]Edgar E. Peters. Chaos and order in the capital markets [M]. NewYork:John Wiley&Sons,inc.,1991
    [170]Edgar E. Peters. R/S analysis using logarithmic returns:A technical note [J]. Financial Analysts Journal:1992,10:116-123
    [171]B.B. Mandelbort, J.R. Wallis. Robustness of the rescaled range R/S in the measurement of noncylic long run statistical dependence [J].Water Resources Research:1969,5:967-988
    [172]J.R. Wallis, N.C. Matalas. Small sample properties of H&K estimators of the Hurst coefficient [J]. Water Resources Research:1970,6:1583-1594
    [173]B.B. Mandelbort, J.W. Van Ness. Fractional Brownian motion, fractional noises and applications [J].SIAM Review:1968,10:422-437
    [174]B.B. Mandelbort. Statistical methodology for non-periodic cycle:Form the covariance to R/S analysis [J]. Annals of Economic and Social Measurement:1972,1:259-290
    [175]Edgar E. Peters. Fractal Structure in the capital markets [J]. Financial Analysts Journal:1989,8:672-679
    [176]Edgar E. Peters. Fractal market analysis: Applying chaos theory to investment and economics [M]. New York: John Wiley&Sons, Inc.,1994
    [177]杨培才.厄尔尼诺/南方涛动的可预报性[J].大气科学:1990,14(1):64-71.
    [178]严绍瑾等.一维气候时间序列所包含的混沌吸引子的Kolmogorov熵的确定[J].热带气象:1991,7(2):97-103.
    [179]马镜娴,罗哲贤.干旱、半干旱区域降水趋势可预报期限的初步研究[J].气象学报:1996,54(1):117-120.
    [180]周家斌.一种基于混沌理论的预报方法[J].大气科学(增刊):1993:26-32.
    [181]陈凯,朱钰.机器学习算法机器相关算法综述[J].统计与信息论坛:2007,22(5):105-112.
    [182]刘琴.机器学习[J].武钢职工大学学报,2001,6:41-44.
    [183]杨兆升,朱中.基于BP神经网络的路径行程时间实时预测模型[J].系统工程理论与实践:1999,8:59-64.
    [184]张立明.人工神经网络的模型及应用[M].上海:复旦大学出版社,1993.
    [185]何小荣.改善BP神经网络检验效果的研究[J].清华大学学报(自然科学版):1995,35(3):31-36.
    [186]V. Vapnik, S.E. Golowich, A.J. Smola. Support vector method for function approximation, regression estimation and signal processing [J]. Cambridge:MIT Press:1997,281-287
    [187]王伟.人工神经网络原理[M].北京:北京航空航天出版社,1995.
    [188]袁曾任.人工神经网络及其应用[M].北京:清华大学出版社,1999
    [189]施式亮,刘宝琛.基于人工神经网络的矿井瓦斯涌出量预测模型及其应用[J].矿冶工程:1999,19(1):21-23
    [190]朱川曲.采煤工作面瓦斯涌出量预测的神经网络模型[J].中国安全科学学报:1999,9(2):42-45
    [191]安鸿涛,宋国文,张云中等.人工神经网络在瓦斯涌出量预测中的应用[J].河南理工大学学报:2006,25(4):275-278
    [192]简相超,郑君里.混沌神经网络预测算法评估准则与性能分析[J].清华大学学报 (自然科学版):2001,41(7):43-46.
    [193]李眉眉,丁晶.基于混沌分析的BP神经网络模型及其在负荷预测中的应用[J].四川大学学报(工程科学版):2004(4):15-18.
    [194]V.N. Vapnik. The nature of statistical learning theory [M]. New York: Springer-Verlag,1995.
    [195]S. Mukherjee, E. Osuna, F. Girosi. Nonlinear prediction of chaotic time series using support vector machines[C]. Proceedings of the 1997 IEEE Workshop-Neural Networks for Signal Processing, vol. VII,1997:511
    [196]V. Cherkassky, Yunqian Ma. Practical selection of SVM parameters and noise estimation for SVM regression [J]. Neural Networks:2004,17(1):113-126
    [197]Casdagli, Martin. Nonlinear prediction of chaotic time series [J]. Physica D:1989, 35:335-356.
    [198]杨维明.时空混沌和耦合映像格子[M].上海科技教育出版社,1994
    [199]何利文,施式亮,宋译,刘业科.瓦斯爆炸演变过程的混沌特征分析.郑州大学学报(工学版),2009,30(2):133-136
    [200]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1999
    [201]K. Kaneko. Symplectic cellular automata [J]. Physics Letters:1989,139A:47
    [202]K. Kaneko. Period-doubling of kink-autikink patterns, quasiperiodicity in antiferro-like structures and spatial intermittency in coupled logistic lattice. [J]. Progress of Theoretical Physics:1984,3:480
    [203]K. Kaneko. Spatio-temporal intermittency in coupled map lattice [J]. Progress of Theoretical Physics:1985,74:1033
    [204]H. Chate, P. Manneville. Continuous and discontinuous transition to spatio-temporal intermittency in two dimensional coupled map lattice [J]. Europhysics Letters:1988,6:591
    [205]D. Stassinopoulos, G. Huber and P. Alstrom. Measuring the onset of spatiotemporal intermittency [J]. Physical Review Letters:1990,64:3007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700