用户名: 密码: 验证码:
地震散射波成像技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着亟待解决地质问题的复杂化程度和解决问题精细程度的进一步提高,多次覆盖反射地震勘探技术暴露出的弊端和问题越来越多,虽然能较好地提高地震资料的信噪比,但在复杂构造情况下,尤其是在山前断裂带、盆地边缘破碎带、岩浆侵入型的勘探问题以及近地表不均匀性突出地带的探测问题,难以取得精确的成像结果,究其原因是传统反射地震勘探技术的理论基础限定了其不可能完全逾越对地质信息完整、准确地提取的能力。另外,传统方法只应用单一类型地震波场(如反射波、面波、折射波等)进行成像,成像效果和地质信息提取能力都受到一定的限制,尤其是地质情况复杂地带效果更差。其实,地震波所携带的地质信息是非常丰富的,单一类型地震波(如反射波)仅体现地质属性信息的一部份或者是某一方面,限定了其精细提取地质信息的能力。本文较系统地开展了地震散射波成像方法与技术研究,即应用更为广泛意义上的地震散射波场进行成像。
     在已有地震散射波理论的基础上,针对地震散射波传播的特性,建立了点散射地震-地质模型,在此基础上,完善了地震散射波几何运动学,总结了地震散射波的时距规律,并将散射波的时距特征和规律与传统的反射波时距特征和规律进行了深入的分析与对比,与此同时,提出了“视反射波”的概念。
     借助典型地质模型的地震波场数值模拟,深入分析了地震散射波的传播特征。研究表明,传统意义上的地震反射波不是真正意义上的反射波,而是地震散射波相互干涉的最终结果,地震散射波是孤立地质体表现出的基本特征,由于干涉效应,连续介质已经模糊了部分地震散射波的基本传播属性,尤其是连续水平弹性界面情况下,再加上背景噪音的影响,散射波性质就更不容易被发现。但是,当界面不规整、不均匀性突出的情况下,地震散射波的传播性质和规律就被凸显出来了,特别是存在尖灭点、断面等异常地质现象时,地震记录上就会出现传统意义上的异常波(如绕射波、断面波等),此时,地震散射波的传播规律和性质就体现出来了。
     通过散射波时距规律分析得出,散射波的时距曲线特征只与上行波有关系,其规律满足双曲线特征,而下行波仅与旅行时长短有关。针对转换波来说,由于上行波与下行波的传播速度是彼此孤立的,当然其时距规律也满足双曲线特征,这为地震转换波处理与信息获取提供了新的思路和理论支持。
     基于地震散射波的传播规律,研究了地震散射波成像速度分析方法与技术,深入分析了该技术与传统速度分析技术和基于等效偏移距地震散射波速度分析技术的异同点和优劣性。采集数据时,在传统覆盖次数固定的前提下,由于充分利用上了所有采集到的地震信息,在散射波速度分析时,使得叠加次数得以大大提高,这样不但使有效散射波能量聚焦能力更强,而且能有效提高信噪比,同时利用上了绕射波、断面波等传统意义上的异常波信息进行速度分析,因此,与传统速度分析技术相比较,该技术能更精确地获取成像速度,尤其对构造复杂地区和低信噪比地区的地震资料,能有效避免传统技术中异常波的伪能量团影响的弊端,同时可减小多次波的影响。
     在地震散射波速度分析技术的基础上,研究了地震散射波时间域成像方法与技术。基于点散射地质模型,无须进行道集选排,而是基于散射波时距双曲线规律,通过单点寻优成像。在传统覆盖次数一定的情况下,该技术比传统水平叠加成像技术的叠加次数大大提高了;另外,由于获取了精确的成像速度,同时利用上了传统意义上的绕射波、断面波等异常波信息进行成像。因此,该技术不但有效提高了信噪比,而且能大大提高成像精度;同时,因成像位置和区域可以根据实际情况来定义,对采集数据所覆盖的区域均可进行成像,所以比传统成像技术扩大了成像区域,所获取的地质信息更加丰富。
     在速度分析和成像技术的基础上,编制了相关软件,并建立了数套典型地质模型(水平层模型、断层模型、薄互层模型、角度不整合面模型、凹陷模型)进行成像处理与效果分析,取得了预期的效果。
     针对实际资料,建立了合理的地震散射波处理流程,从处理工艺上分析了该技术的优越性,并与传统的标准成像处理流程(包括叠后偏移成像、叠前偏移成像、基于等效偏移距的地震散射波成像等)进行了对比与分析,得出速度获取的精确成度直接影响到成像质量的好坏,本文方法与技术获取的速度精确度高,而且处理流程直观明了、简单。在此基础上,从实际亟待解决的实际地质问题出发,针对近地表工程与环境探测、城市活断层探测、煤田和油气地震勘探与开发问题,处理了数套实际资料(包括单分量、多分量),并与传统速度分析和叠后偏移技术处理的结果进行了对比与分析,取得了非常丰富的认识。
Along with urgently awaits to be solved the complication degree of geological question and to solve the question fine degree further enhancement, the malpractice and the question that the multifold reflected wave exploration technical has exposed are getting more and more. Although it can enhance the signal-to-noise ratio of seismic data well, in the complex structure situation, particularly the fault zone of mountain front, the crushed zone of basin edge, exploration question of magmatic intrusion as well as the survey question of nonuniformity prominent region in near surface, it is difficulty to obtain the precise imaging result. The reason is that the theory of the tradition reflected exploration technical has defined it is impossible to overstep the ability that withdraws geological feature accurately and geological information completely. Moreover, the traditional methods only apply the sole type seismic wave field (for example reflected wave, surface wave, refracted wave and so on) to carry on imaging, the imaging effect and the ability of geology information extracting is limited certainly, particularly the effect is worse in geological situation complex region. Actually the seismic wave which carries the geological information is very rich. And the sole type seismic wave (for example reflected wave) only manifests one part or one hand of the geological attributes information, has defined the ability of extracting geology information well. This article has developed the seismic scattered wave imaging method and technical research systematically, namely applying the seismic scattering wave field which is more widespread significance for seismic wave field to carry on imaging.
     In the existing seismic scattering wave theory foundation, in view of the characteristic of seismic scattering wave propagating, this paper has established the point scattering seismic geological model, based on this, consummated the seismic scattering wave geometry kinematics, summarized the seismic scattering wave time-distance curve rule, and has carried on analyzing and contrasting the time-distance curve characteristic and rule for scattering wave with traditional reflected wave, at the same time, proposed the concept of apparent reflected wave.
     With the wave field numerical simulation of the typical geological model, this paper analyzed the seismic scattering wave propagation characteristic thoroughly. The research has indicated that the seismic reflected wave in the traditional significance is not reflected wave in fact, but is the final outcome which the seismic scattering wave interfered mutually. The seismic scattering wave is the basic feature which the isolated geological body appeared. As a result of the interference effect, the continuous medium already blurred the partial seismic scattering wave basic propagation attribute, particularly in the elastic contact surface situation with horizontal and continues. In addition with the influence of background noise, the scattering wave nature has not been discovered easily. But, when contact surface not neat and nonuniform prominent, the propagation nature and the rule of the seismic scattering wave are highlighted, especially unusual geological phenomenon, such as thin out point, fault and so on. There will be the extraordinary wave with traditional significance in seismic record (for example diffracted wave, fault section wave and so on), and the seismic scattering wave propagation rule and the nature has been manifested at this time.
     Through analyzing scattering wave time-distance rule, this paper obtained that the relation of the scattering wave time-distance curve characteristic only relating with the upgoing wave, and the rule following hyperbolic curve characteristic. But the downgoing wave only relates with the length of the travel time. As for the converted wave, the propagation velocities of downgoing and upgoing wave are each other isolated, certainly the time-distance curve rule also following hyperbolic curve characteristic. This provides one new mentality and theory to support for seismic converted wave processing and information acquisition.
     Based on the propagation rule of seismic scattering wave, this paper studied on seismic scattering wave imaging velocity analysis method and technical, and analyzed the similarities and differences thoroughly as well as superiority-inferiority of the technical with the tradition velocity analysis technical and the technical of basing on equivalent off-setting seismic scattering wave velocity analysis. When data acquiring, under the premise of tradition fold number fixed, the scattering velocity analysis technical not only made the focusing ability of effective scattering wave energy to be stronger, but also could enhance the signal-to-noise ratio effectively, simultaneously used on the information with the traditional extraordinary wave of diffracted wave and fault section wave etc to carry on velocity analysis. Because the technical used on the seismic information which fully all gathered, simultaneous the times of stacking number is able to enhance greatly. Therefore, compared with the tradition velocity analysis technical, the technical could gain the imaging velocity precisely, especially to the seismic data of constructed complex region and low signal-to-noise ratio area, which could avoid the malpractice of the extraordinary wave false energy group affected in the traditional technical effectively, simultaneously may reduce influence of multiple wave.
     In the foundation of seismic scattering wave velocity analysis technical, this paper studied on the seismic scattering wave imaging method and technical in time domain. With the point scattering geological model, the technical does not need gathers collection, but bases on the scattering wave time-distance curve hyperbolic rule, adopts single point optimization imaging. Comparing with the traditional horizontal stacking imaging technical under the premise of tradition fold number fixed, the stacking number of the imaging technical is enhance greatly. Moreover, because gained the precise imaging velocity, simultaneously used on the information with the traditional extraordinary wave of diffracted wave and fault section wave etc carry on imaging, therefore, the technical not only enhanced the signal-to-noise ratio effectively, but also could increase the imaging precision greatly; At the same time, because the imaging position and the region may act according to the actual situation to define, so long as the region of the gathering data covered may carry on the imaging. Therefore compared with the traditional imaging technical, the imaging technical can extend imaging region. And the gained geological information is richer.
     In the foundation of the velocity analysis and imaging technical, compiled the related software, and established several sets of typical geological models (horizontal level model, fault model, thin interbed model, angle plane of unconformity model, hollow model) to carry on imaging processing and analysis with the effect, this paper has made a good progress.
     In view of the actual data, this paper has established standard seismic scattering wave processing flow, analyzed this technical congenital superiority from the processing craft, and carry on contrasting and analyzing with traditional standard imaging processing flow (post-stack imaging, pre-stack imaging, based on equivalent offset seismic scattering wave imaging and so on), which obtained the precise of the gained velocity becoming immediate influence to the imaging quality. The gained velocity precision of the technical in this article is high, moreover processing flow direct-viewing perspicuity and simple.Based on this, urgently awaits the actual geological question which from the reality is solved to embark, in view of the near surface engineering and environment survey, the urban active fault survey, the coal field and oil gas seismic exploration and the development question, this paper has processed several sets of actual data (including single component, multi-components), and carry on contrasting and analyzing with the result of the tradition velocity analysis and post-stack migration technical, has obtained a very rich understanding.
引文
[1]渥·伊尔马滋[黄绪德译].地震数据处理[M].石油工业出版社,1993.
    [2]孟尔盛.复杂构造山区地震勘探问题.石油学报[J],1999(3):1-7.
    [3]熊翥.复杂地区地震数据处理思路[M].石油工业出版社,2002.
    [4]徐伯勋,白旭滨,于常青.地震勘探信息提取、分析和预测[M].北京:地质出版社,2001.
    [5]李庆忠.走向精确勘探的道路[M].北京:石油工业出版社,1994.
    [6]尚新民,石林光.复杂地表区低信噪比地震资料处理技术[J].石油物探,2001(2):108-115.
    [7]印兴耀,韩文功,李振春等.地震技术新进展[M].中国石油大学出版社.
    [8]H.H.普济廖夫等,横波和转换波法地震勘探[M],裘慰庭译,石油工业出版社,1993.
    [9]Stewert R R, Gaiser A, Brown R J et al., Converted wave seismic exploration:method[J] Geophysics,2002,67(5):1348-1363.
    [10]Stewert R R, Gaiser A, Brown R J et al., Converted wave seismic exploration: applications[J]. Geophysics,2003 68(1):40-57.
    [11]赵六邦.多分两地震勘探技术理论与实践[M].石油工业出版社,2007.
    [12]黄中玉,孙建库,朱仕军等.多分量地震技术[M].石油工业出版社,2007.
    [13]李录明,罗省贤.多波多分量地震勘探原理[M],成都科技大学出版社,1997.
    [14]Caldwell J., Marine multicomponent seismology[J], The Leading Edge,1999,18(11): 1274-1282.
    [15]印兴耀,韩文功,李振春等.地震技术新进展[M].中国石油大学出版社2006.
    [16]李录明,罗省贤.海上多波地震资料处理方法及应用[J],成都理工学报,2002.29(1):1-8.
    [17]刘洋,魏修成.转换波地震勘探的若干问题与对策[J].勘探地球物理进展.2003,26(4):247-251.
    [18]Tessmer, Behle, Common reflection point data-stacking technique for converted wave[J], Geophysical prospecting,1988,36(7):671-688.
    [19]Slotboom R. T.,Converted wave(P-SV) moveout estimation[A],60th Ann.Internat. Mtg., Soc Expl.Geophys.Expanded Abstract,1990:1104-1106.
    [20]Tsvankin, L., and Thomsen L., Nonhyperbolic reflection move out in anisotropic media[J], Geoghysics,1994,59(8):1290-1304.
    [21]John J. Zhang, A new mMethod of NMO and stacking for converted-wave Processing[A]. SEG International Exposition and 72nd Annual Meeting,2002.
    [22]许士勇,马在田.转换波的转换点位置和时距关系[A].地球物理1999[C].合肥:安徽科学技术出版社,1999:27.
    [23]许士勇,马在田.快速有效的转换波共转换点叠加技术[J].地球物理学报.2002,45(4):557-568.
    [24]朱衍镛.PS转换波的时差估计[J].石油地球物理勘探.1996,31(5):651-659.
    [25]Thomesen,L., Converted-wave reflection seismology over inhomogeneous, anisotropic media[J], Geophysics,1999,64(3):678-690.
    [26]Daniel Garza-Rocha, Wolfgang Rabbel, A New Way for Stacking of Reflected Converted Waves [A], SEG International Exposition and 72nd Annual Meeting,2002.
    [27]李录明,罗省贤.P-SV转换波速度分析方法及解释方法[J],石油地球物理勘探,1995,30(1):66-74.
    [28]Zhu X, Recent advances in multicomponent processing[J], The Leading Edge,1999, 18(11):1283-1289.
    [29]Garza-Rocha, D. Calculation of traveltimes for reflected converted waves using the common converting element method[A],EAGE 2001:108.
    [30]郭向宇,凌云等.PS转换波共转换点的几种计算方法及实据应用[J].石油物探.2002,42(2):141-148.
    [31]魏修成,刘洋.高精度转换波速度分析[J],石油勘探与开发,2000,27(2):57-59.
    [32]沈鸿雁,李庆春.转换波高精度非双曲时距“双曲化”[A].中国地球物理2005[C],吉林大学出版社,2005::75.
    [33]沈鸿雁,李庆春.高精度转换波时距曲线“双曲化”处理[J].石油地球物理勘探.2007,42(3):251-255.
    [34]沈鸿雁,李庆春,共转换元素叠加探讨[A].中国地球物理2005[C],吉林大学出版社,2005:78.
    [35]W. Y. Chung and D. Corrigan.转换横波的抽道集[A].模型研究,美国勘探地球物理学家学会第57届年会论文集[C],石油工业出版社.
    [36]何宗强.转换波变速抽道速度分析方法[J],石油地球物理勘探,34(4):442-447.
    [37]张耀辉,P-SV波的共转换点道集的抽取[J],石油物探,1992,31(3):87-101.
    [38]毛小平,姚姚.转换横波迭代法快速速度分析[J],中国海上油气(地质),1999,13(5):363-365.
    [39]Beyer, W.H., Standard mathematical tables[M], Boca Raton:CRC Press,1984.
    [40]崔秀,韩立国.共转换点道集的迭代算法及应用[J].世界地质.1998,17(4):53-57.
    [41]Shen Yong-Huan, Applied mathematical handbook[M], Beijing:Science Press,1992.
    [42]吴如山,安艺敬一.地震波的散射与衰减[M].李裕澈,卢寿德等译,北京:地震出版社,1993.
    [43]N.布莱斯坦,J.K.科恩,J.W.斯托克威尔[张文生译].多维地震成像、偏移和反演中的数学[M].北京:科学出版社,2004.
    [44]李小凡.大延伸非均匀介质中地震波全弹性散射理论Ⅰ——弹性波单次次散射理论[J].力学学报,2002,34(4):559-568.
    [45]李小凡.大延伸非均匀介质中地震波全弹性散射理论Ⅱ——弹性波多次散射理论[J].力学学报,2002,34(5):743-755.
    [46]陈相府.复杂地区煤田地震勘探效果分析[J].物探与化探,2007,31(B10):102-104
    [47]崔若飞,李晋平.地震属性技术在煤田地震勘探中的应用研究[J].中国矿业大学学报,2002,31(3):267-270.
    [48]徐成明,王云.地表复杂地区煤田地震勘探方法及效果[J].物探与化探,2001,25(6):437-442.
    [49]孙明,林君.金属矿地震散射波场的数值模拟研究[J].地质与勘探,2001,37(4):68-70.
    [50]徐明才,高景华,荣立新等,王广科.散射波地震方法在蔡家营多金属矿区的试验研究[J].物探与化探,2003,27(1):49-54.
    [51]徐明才,高景华,柴铭涛.内蒙古大井铜锡多金属矿区的地震方法实验研究[A].CPS/SEG国际地球物理会议,北京,2004.
    [52]高景华.金属矿勘查中的地震理论模型研究[J].物探与化探,2002,26(5):350-356.
    [53]梁光河,蔡新平.地震勘探在山东蓬家夼金矿深部预测中的应用[J].矿产与地质,15(6):743-748.
    [54]吕庆田,史大年,赵金花等.深部矿产勘查的地震学方法:问题与前景——铜陵矿集区的应用实例[J].地质通报,24(3):212-218.
    [55]吕庆田,侯增谦,史大年等.铜陵狮子山金属矿地震探测结果及对区域找矿的意义[J].矿床地质,2004,23(3):390-398.
    [56]史大年,吕庆田,徐明才等.铜陵矿集区浅部地壳结构的地震层析研究[J].矿床地质,2004,23(3):383-389.
    [57]吕庆田,侯增谦,赵金花等,深地震反射剖面揭示的铜陵矿集区复杂地壳结构形态[J].中国科学(D辑),33(5):442-449.
    [58]吕庆田,侯增谦,史大年等.铜陵狮子山金属矿地震反射结果及对区域找矿的意义[J].矿床地质,23(3):390-398.
    [59]Milkereit B, Eaton D, Wu J et al.,Seismic imaging of massive sulfide deposits:Part Ⅱ,Reflection seismic profiling[J].Econ.Geol.,1996,91:829-834.
    [60]Eaton D,Guest S,Milkereit B,et al., Seismic imaging of massive sulfide deposits:Part Ⅱ,Reflection seismic profiling[J].Econ.Geol.,1996,91:835-840.
    [61]Eaton D, Salisbury M, Forsyth D, et al., Borehole seismic imaging of near-vertical structrues:Acas history [A].Expanded Abstructs of 66th Annual Internat SEG Mtg, 1996b:2072-2075.
    [62]Seifert P.K.,Geller J.T. and Johnson L. R., Effect of P-wave scatting on velocity and attenuation in unconsolidated sand satutated with immiscible liquids[J].Geophysics, 1998,63:161-170.
    [63]Gurevich B., Zyrianov V.B. and Lopatnikov S.L., Seismic attenuation in finely layered porous rocks:Effects of fluid flow and scatting[J]. Geophysics,1997,62:319-324.
    [64]王庆海.抗干扰高分辨率浅层地震勘探[M].北京:地质出版社,1991.
    [65]赵永贵.工程地球物理检测疑难问题研究进展[J].地球物理学进展.2003,18(3):368-369.
    [66]李庆春,刘金兰,丁梁波.浅层双分量地震在黄土公路地质缺陷探测中的应用研究[J].地球物理学进展.2006,21(4):1266-1271.
    [67]王辉,丁志峰.浅层地震勘探资料处理中的速度分析参数选取[J].地震地质.2006,28(6):597-603.
    [68]谢忠球.浅层地震探测技术应用中的分辨率问题[J].矿产与地质.1999,13(2):112-116.
    [69]赵成斌.地震数据叠前偏移成像及其在浅层地震勘探中的应用研究[J].地震地质.2005,27(1):105-114.
    [70]陈蜀俊,罗登贵,甘家思.浅层地震勘探在工程场地地震安全性评价近场工作中的应用[J].物探与化探.2004,28(5):463-466.
    [71]Aki, K., Analysis of the seismic coda of local earthquakes as scattered waves[J]. Geophysics.1969,74:615-631.
    [72]Aki, K.,Scattering of P waves under the Montana Lasa[J].Geophs.Res.1973,78: 1334-1346.
    [73]Aki, K. and Chouet,A. B.,Origin of Coda Waves:Source, Attenuation and Scattering Effects[J]. Geophys. Res.1975,80:3322-3342.
    [74]Haddon, R.A.W., Corrugations on the CMB or transition layers between inner and outer cores[J]. In Trans. Am. Geophys.1972, Union,600.
    [75]Wu, R.S.and Aki, K., Elastic Wave Scattering by a Random Medium and the Small Scale Inhomogeneities in the Lithosphere[J].Geophys. Res.,1985b,90:10261-10273.
    [76]Beylin G. and R. Burridge. Linearlized inverse scatting problems in acoustics and elasticity[J]. Wave motion.1990,12:15-52.
    [77]Flatte, S.M., R. Dashen, W.J. Munk et al., Zachariasen, Sound Transimission Though a Fluctuating Ocean[M]. Cambridge University Press, New York,1979.
    [78]Miles,J.W, Scattering of Elastic Waves by Small Inomogeneities[J], Geophysics,1960, 25:642-648.
    [79]Herrear, I., Mal,A.K.,A Perturvation Method for Elastic Wave Propagation Ⅱ-Small Inhomogeneities[J].Geophys.Res,1965,70:871-873.
    [80]Herrear, I., Aperturbation Method for Elastic Wave Propagation Ⅲ-Thin Inomogeneities[J], Geogit.Int.19655:1-14.
    [81]Haddon,R.A.W.,and Cleary,J.R.,Evidence for Scattering of Seismic PKP Waves near the Mantle-core Bounder[J].Phys.Earth and Planet.Int,1974,8:211-234.
    [82]Hudson, J.A., Scattering Surface Waves from a Surface Obstacle, Geophys[J].1967,13, 441-458.
    [83]Hudson,J.A., The Scattering of Elastic Waves by Granual Media,Qu[J]. Mech. Appl. Math,1968,21:478-502.
    [84]Hudson,J.A., Knopoff,L., Statistical Properties of Rayleigh Waves by Small Inhomogeneities[J]. Acoust.Soc. Am.1964,42:18-20.
    [85]Hudson,J.A.,Scattered Waves in the Coda of P[J].Geophys.1977,43:359-374.
    [86]Gubernatis,J E, Domany E and Krumlansl, J A. Formal aspects of the theory of the scattering of ultrasound by flows in elastic materials[J]. Appl. Phys.1977a 48: 2804-2811.
    [87]Aki, K.,Scattering and Attenuation of Shear Waves in the Lithosphere[J]. Geophys. Res, 1980,85:6496-6504.
    [88]Sato, H., Attenuation and envelope formation for three-component seismograms of small local earthquakes in randomly inhomogeneous lithosphere[J]. Geophys, Res.,1984,89: 1221-1241.
    [89]Wu, R.S., Aki, K., Scattering characteristics of elastic waves by an elastic heterogeneity [J]. Geophysics,1985a:582-595.
    [90]Wu,R.S.and Huang,L.J., Scattered field calculation in heterogenous media using a phase-screen propagator:Expanded Abstracts of the Technical Program[A]. SEG'62nd Annual Meeting,1992:1289-1292.
    [91]Wu,R.S., Huang,L.J.and Xie,X.B., Backscattered Wave calculation using the DE Wolf approximation and a phase-screen propagator:Expanded Abstracts of the Technical Program[A].SEG'65th Annual Meeting,1995:1293-1296.
    [92]David,W.Eaton, Weak elatic-wave scattering from massive sulfide orebodies[J]. Geophysics,1998,64:289-299.
    [93]符力耘,杨慧珠,牟永光.非均匀介质散射问题的体积分方程数值解法[J],力学学报,1998,30(4):488-494.
    [94]黄雪继.地震波散射场相位移法波动方程正演模拟[D].北京:中国地质大学(北京),2003.
    [95]杨文采,杜剑渊.高分辨率地震层析成像和级联法[M].计算地球物理丛书,1993:189-222.
    [96]黄联捷,吴如山,李幼铭.广义全息术和多维逆散射[J].计算地球物理丛书,1993:142-163.
    [97]Eaton D., Milkereit B., Adam E.,3-D seismic exploration[A]:Gubius A G. Geophysics and gechemistry at the millennium[C].Canada:Prospectorts and Developers Assn,1997, 65-80.
    [98]Valmore Celis, Ken Larner, Selective-correlation velocity analysis[C], SEG International Exposition and 72nd Annual Meeting,2002.
    [99]Kirling, R. L., Dewey, L. A., Bradley, J. N., Optimum seismic velocity estimators[J], Geophysics,1984,49:1861-1868.
    [100]De Vries, D., Berkhout, A. J., Velocity analysis based on minimum entropy[J], Geophysics,1984,49:2132-2142.
    [101]Toldi, J. L., Velocity analysis without picking[J], Geophysics,1989,54:191-199.
    [102]Biondi, B. L., and Kostov, C., High resolution velocity spectra using eigenstructure methods[J], Geophysics,1989,54:832-842.
    [103]Beylin, G.and R.Burridge.Linearlized inverse scattering problems in acoustics and elasticity [J]. Wave Motion,1990,12:15-52.
    [104]Wu,R.S. and Toksoz,M.N., Diffraction tomography and multisource holography applied to seismic imaging[J]. Geophysics,1987,52:11-25.
    [105]Sato, H.[孙福梁译].研究随机非均匀岩石层中尾波激发和振幅衰减的统一方法.地震波的散射衰减[M],北京:地震出版社,1993:95-118.
    [106]张楚汉,赵崇斌.河谷形态对平面SH波散射的影响[J].岩土工程学报,990,12(1):1-11.
    [107]赵成刚,杜修力,李小军.用三维半解析边界元的子结构法分析凸起山包对地震波的散射[J].中国地震,1993,9(2):154-162.
    [108]Rose, J.H.[卢寿德译].研究随机非均匀岩石层中尾波激发和振幅衰减的统一方法.地震波的散射衰减[M],北京:地震出版社,1993:78-94.
    [109]郭向宇,凌云,魏修成.近地表散射波的叠后衰减[J].石油地球物理勘探,2002,37(3):201-208.
    [110]王勇,朱亚平,杨慧珠.共散射点成像及其在低信噪比三维地震数据处理中的应用[J].石油地球物理勘探,2000,35(1):20-26.
    [112]刁顺,杨慧珠,许云.裂缝及介质非均匀散射[J].石油物探,1994,33(4):49-55.
    [113]Ernst, F. and Blonk, B.(陈军强译).降低地震资料中的近地表散射影响[J].国外油气勘探,1999,11(2):223-229.
    [114]杨旭明,周熙襄,王克斌等.近地表地震散射噪声的正反演方法[J].石油物探,2002,41(3):312-316.
    [115]刁顺,杨慧珠,许云.TI介质裂纹散射研究[J].石油地球物理勘探,1994,29(5):545-551.
    [116]John C. Bancroft, Review of seismic imaging[J].Prestack.CREWES Research Report, 13(2001):511-571.
    [117]John C. Bancroft, Hugh D. Geiger and Gary F. Margrave. The equivalent offset method of prestack time migration[J].Geophysics,1998,63(6):2042-2053.
    [118]Bancroft, J.C., Natural anti-aliasing in equivalent offset prestack migration [A].66th Ann. Internat. Mtg., Soc.Expl.Geophys.,Expanded Abstract,1996,1465-1466b.
    [119]Bancroft, J.C. and Geiger, H. D., Equivalent offsets and CRP gathers for prestack migration[A].64th.Ann.Internat.Mtg.,Soc.Expl.Geophysics,Expanded,Abstracts,1994: 672-675.
    [120]Geiger, H, Bancroft, J.C. and FoltinekmD., Prestack migration ofcrustal data using common scatterpoint(CSP) migration technique[A].Can.Sco.Expl:Geophysics. National Convention, Expanded Abstracts,1995.
    [121]Bancroft, J.C., A Practical Understanding of Pre-and Postack Migrations[J]. Vol. Ⅰ and Vol. Ⅱ, SEG,1998.
    [123]Geiger, H, Bancroft, J.C., Equivalent offset prestack migration application to regged topography and formation of unmigrated zero offset section[A].58th Eur.Assn.Geosci. and Eng. Conference.Extended Abstracts,1996,P098.
    [124]Li,X., and Geiger, H, Bancroft, J.C.,E quivalent offset migration(EMO) enhancement by residual statics correction[A].Can.Expl.Geophys. National Convention[C], Expanded Abstracts,1997.
    [125]John C. Bancroft. The equivalent offset method of pre-stack time migration[J]. Geophysics,1998,63(6):2042-2053.
    [126]John C. Bancroft and Zhihong (Nancy) Cao, A comparison of CMP and EO gathers for multiple-attenuation[J].2004 CSEG national convention.
    [127]John C. Bancroft and Hugh D. Geiger, Anatomy of common scatterpoint (CSP) gathers formed during equivalent offset prestack migration (EOM) [A]. CREWES Research Report — Volume 9 [C],1997.
    [128]Bancroft, J. C., Geiger, H. D., Margrave, G. F. et al., Prestack migration byequivalent offsets and CSP gathers[A]. CREWES 1996 Research Report[C],1996.
    [129]Bancroft, J. C. and, Geiger, H. D., Energy concentration as a function of dip on Cheop's phyramid and CSP gathers[A]. CREWES 1996 Research Report[C],1996.
    [130]Gubernatis, J.E., Domany, E., and Krcmhansl,J.A., Formal Aspects of the Theory of the Scattering of Ultrasound by Flows in Elastic Materials[J].Appl.Phys.1977a,48: 2804-2811.
    [131]Gubernatis,J.E.,Domany,E.,Krcmhansl,J.A.,and Huberamn,M.,The Born Approximation in Theory of the Scattering of Elastic Waves by Flows[J].Appl.Phys.1977b,48: 2812-2819.
    [132]Bancroft, J. C., Geiger, H. D., and Margrave, G. F., The equivalent offset method of prestack time migration[J]. Geophysics,1998,63:2042-2053.
    [133]Pavan Elapavuluri and John C. Bancroft, John C. Bancroft, Dip limits on pre-and poststack Kirchhoff migrations [A]. CREWES Research Report — Volume 10[C],1998.
    [134]Jeff K. Beckett and John C. Bancroft, Event detection in P-SV prestack time migration using matched filters [A]. CREWES Research Report — Volume 13[C],2001.
    [135]John C. Bancroft. Review of seismic imaging[A]. Prestack. CREWES Research Report, Volume 13[C],2001.
    [136]John C. Bancroft, Hugh D. Geiger, and Gary F., Margrave.The equivalent offset method of prestack time migration[J]. Geophysics,1998:63(6):2042-2053.
    [137]李信富,李小凡,李米田.地震波散射研究回顾与展望.物探化探计算技术[J],29(4):286-295.
    [138]秦雪霏,韩立国,单刚义.关于地震波散射波场属性的基本研究.吉林大学学报(地球科学版)[J].2006.11,40-43.
    [139]王伟,尹军杰,刘学伟等.等效偏移距方法及应用[J].地球物理学报,2007,50(6):1823-1830.
    [140]王勇.地震成像新方法[M].北京:石油工业出版社.
    [141]尹军杰.地震散射波场特征的数值模拟研究[D]:北京:中国地质大学(北京),2005.
    [142]潘纪顺,张先康,刘保金等.城市活断层的抗干扰高分辨率浅层地震勘探研究[J].中国地震,2003,19(2):148-157.
    [143]刘保金,朱金芳.城市活断层探测的高分辨率浅层地震数据采集技术[J].地震地质,2002,24(4):524-532.
    [144]潘纪顺,朱金芳.城市活断层高分辩率地震勘探震源对比试验研究[J].地震地质,2002,24(4):533-541.
    [145]何正勤,叶太兰.城市活断层探测中的浅层地震勘探方法[J].国际地震动态,2001,3:1-6.
    [146]邓起东.城市活动断裂控制和地震危险性评价问题[J].地震地质,2002,24(4):601-605.
    [147]都兴蜂,刘颖新,屈学贤等.城市活断层控制性浅层地震勘探成果分析[J].长春工业大学学报:自然科学版,2007,28(3):320-322.
    [148]赵根模,任峰.城市活断层探查与评价[J].城市与减灾.2003,(1):22-24.
    [149]方盛明,张先康,刘保金等.探测大城市活断层的地球物理方法[J].地震地质,2002,24(4):606-613.
    [150]李少英.陆上三分两P-SV转换波Kirchhoff积分法二维叠前深度偏移[D].西安:长安大学硕士学位文,2000.
    [151]阎世信,吕其鹏.黄土塬地震勘探技术[M].石油工业出版社,2002.
    [152]蒋加钰.鄂尔多斯盆地储层横向预测技术[M].石油工业出版社,2005.
    [153]Korn M. Seismic wave in random media[J] Journal of Applied Geophysics,1993,29: 247-269
    [154]Kneib G, Shapiro S. Viscoacoustic wave propagation in 2D random media and separation of absorption and scattering attenuation[J].Geophysics,1995,60(2):451-461.
    [155]Shapiro S, Schwarz R, Gold, N. The effect of random isotropic inhomogeneities on the phase velocity of seismic waves[J].Geophysical Journal International,1996,127: 783-794
    [156]姚姚,奚先.区域多尺度随机介质模型及其波场分析[J].石油物探,2004,43(1):1-7.
    [157]奚先,姚姚.弹性随机介质模型的特征频率[J].地球物理学进展,2005,20(3):681-687.
    [158]奚先,姚姚.二维粘弹性随机介质中的波场特征分析[J].地球物理学进展,2004,19(3):608-615.
    [159]奚先,姚姚.二维横各向同性弹性随机介质中的波场特征[J].地球物理学进展,2004,19(4):924-932.
    [160]奚先,姚姚.二维弹性随机介质中的波场特征[J].地球物理学进展,2005,20(1):147-154.
    [161]奚先,姚姚,顾汉明.随机溶洞介质模型及其波场模拟[J].地球物理学进展,2005,20(2):365-369.
    [162]奚先,姚姚.二维随机介质及波动方程正演模拟[J].石油地球物理勘探,,2001,36(5):546-552.
    [163]奚先,姚姚.随机介质模型的模拟与混合型随机介质[J].地球科学——中国地质大学学报,2002,27(1):67-71.
    [1641 L. Braile.Seismic Wave Demonstrations and Animations. http://web.ics.purdue.edu/ ~braile/edumod/waves/WaveDemo.htm,2004.
    [165]李剑峰,赵群等.油气勘探地震物理模型图集[M].石油工业出版社,2006,P20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700