用户名: 密码: 验证码:
利用碱金属(Li→K)及卤素(F→Br)与含硼、氮酸性分子间相互作用调控非线性光学性质的量子化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硼、氮化合物广泛存在于自然界以及人工合成化合物中,含硼、氮原子的官能团的存在赋予这些化合物体系不同的物理和化学性质。含硼、氮原子的官能团参与的化学反应往往具有独特的化学反应类型,从而在制备合成药物、农用化学品、染料、生物分子以及非线性光学(NLO)材料等方面发挥着重要作用。在暂短的过去的十年里,人们已经成功地合成大量的具有高内禀性非线性光学响应的化合物体系,并且在材料科学领域得到了广泛应用,比如:光学通信、信号处理、数据储存、图像重构、逻辑技术、感应探测以及光学计算等。目前,已有大量关于通过各种常规方法设计合成非线性光学响应增强的非线性光学材料的文献报道,这些设计策略主要有增加分子的π共轭体系、使用电子给体-π共轭桥-电子受体(D-π-A)模型、应用键长交替理论、扭曲π电子体系、将配位金属引入有机化合物以及采用多分枝手段增加电荷转移途径的分子等等。然而分子间相互作用,尤其是原子或离子的电负性以及电正性,对分子第一超极化率的影响,目前尚未得到充分的研究与探讨。
     本论文以碱金属(Li,Na,K)和卤素(F,Cl,Br)原子/离子掺杂在酸性含硼、氮原子基团分子体系为研究对象,旨在通过深入探讨这些掺杂原子/离子与酸性硼、氮基团分子的相互作用本质以及它们的非线性光学响应性质,希望找到一种完全不同于传统方法且能够显著改善材料非线性光学性质的设计策略。本论文主要围绕以下四个方面开展研究:
     1.苯邻二甲酰亚胺是具有“开-闭”(On-Off)特性的感应分子,通过调节各卤素离子与苯邻二甲酰亚胺间相互用来调控非线性光学性质。采用密度泛函理论(DFT)探讨了化学感应分子,N-(2-Methyl-1,3-dioxo-indan-5-yl)-benzamide (1),与各卤素离子(F—,Cl—和Br—)的分子间相互作用。系统地研究了感应阴离子的结合过程。发现色度以及荧光信号的产生是由于Fˉ的引入使感应分子的基态去质子化造成的。与其它卤素离子(Clˉ和Brˉ)相比,Fˉ与感应分子间的结合能要高出两倍。设计的具有高结合能及更长波长吸收谱的体系1的系列衍生物,除化合物分子4-Methyl-N-(2-methyl-1,3-dioxo-indan-5-yl)- benzamide (2)外,均较母体化合物1有更好的感应灵敏度。
     2.理论设计了一系列具有可逆转换和调制的非线性光学(NLO)性质的新型分子化合物。采用密度泛函理论计算了四个dibenzoborole衍生物的静态第一超极化率(β)。结果表明,Fˉ的结合或单电子还原使dibenzoborole衍生物的β值明显增大。例如5-fluoro-5-(2,4,6-triisopropylphenyl)-2,8-dimethoxy-3,7-bithienyl-5H-di-benzo[d,b] borole ion (3·Fˉ)和5-fluoro-5-phenyl-3,7-bis-dinitrothienyl-5H-di-benzo[d,b]bor- ole ion (4·Fˉ)的β值分别增加至64×10~(-30) esu和272×10~(-30) esu,分别是母体5-(2,4,6-triisopropylphenyl)-2,8-dimethoxy-3,7-bithienyl-5H-dibenzo[d,b]borole (3)和5-phenyl-3,7-bis-dinitrothienyl-5H-dibenzo[d,b]borole (4) (无Fˉ)的12倍和4倍。同时单电子还原体系3Red和4Red也显示出相应中性体系化合物的47倍和15倍的β值。有趣的是,这类NLO转换具有二维特性。即大的远对角线超极化率张量与垂直分子偶极对称轴极化的电荷跃迁相关。态密度(DOS)和前线分子轨道(FMOs)分析表明,Fˉ结合于硼原子以及单电子还原过程破坏了硼原子的LUMOs中空的p轨道的Pz→π*共轭,从而导致了更大程度的垂直电荷跃迁和更大的β值的产生。该研究为该系列dibenzoborole化合物分子的多功能应用提出了新思路和新方法。尤其是对于已经被合成出来的具有高笛卡尔非线性各向异性(η= 10.48)的3·Fˉ分子来说,它能够在二维NLO分子转换开关中得到很好的应用。
     3.用氟离子以及酸性氢原子质子提取对不同苯并咪唑发色团NLO性质的调节研究。通过质子化/去质子化过程实现了一系列新型分子化合物的可逆二阶非线性光学转换和调节。密度泛函理论计算结果得出这种NLO转换可以实现第一超极化率(β0)从低至14×10~(-30) esu (关闭状态)到高达1014×10~(-30) esu (打开状态)的转换。在有效取代衍生物1~ˉ(1a~ˉ, 1b~ˉ, 1c~ˉ和1d~ˉ)中β0可被提升到2028×10~(-30) esu。有趣的是,这些取代基化合物分子与它们相应的中性分子体系相比,其关-开NLO转换响应分别高出7、63、85和75倍。TD-DFT计算以及自然键轨道(NBO)、前线分子轨道和分子静电势(MEP)分析结果表明,酰亚胺的质子提取使得到的阴离子分子构型转换为推-拉构型,致使吸收和发射光谱发生红移,进而表现为高的二阶NLO分子转换响应。该类发色团分子的Fˉ复合物显示出类似的NLO转换性质,也具有较高的β_0值和与去质子化阴离子复合物类似的光学性质。并且气相酸度(GPA)计算表明中性分子化合物1及其衍生物(1a, 1b, 1c, and 1d)分子具有典型的氮酸特性,很容易被解离为稳定的去质子化阴离子物种。
     4.研究了多面体硼烷、碳硼烷以及硼烷衍生物与不同碱金属的相互作用及其对非线性光学性质的调控作用。采用量子力学方法设计了含有篮子构型十氢硼烷(B_(10)H_(14))配体的新型锂十氢硼烷(Li@B_(10)H_(14))复合物。Li原子以句柄式封端结合于十氢硼烷篮子的亲电硼原子,其NBO电荷q (Li)为0.876,接近+1.这表明Li原子被离子化形成阳离子并且在B_(10)H_(14)的开口端形成一个阴离子区域。最有趣的是这种掺杂的Li具有松散的价电子构型,并且被拉向B_(10)H_(14)篮子的中心空位,在B_(10)H_(14)篮子开口端的缺电子性质作用下形成离散的电子构型。很明显,Li@B_(10)H_(14)的第一超极化率(β0)高出B_(10)H_(14)近340倍,分别为23075 au (199×10~(-30) esu)和68 au。此外,B_(10)H_(14)篮子中Li的插入导致其Raman光谱、~(11)B NMR和紫外可见光谱随其电子结构的变化而显现出新的特征峰,这使实验工作者能够很容易表征这种新型的Li@B_(10)H_(14)复合物。该研究结果很可能带动一些新兴研究领域的发展,譬如碱金属-硼烷体系在NLO方面的应用。
     5.进一步地,对一系列篮形体系B_(10)H_(14)和Li@B_(10)H_(14)的氟衍生物的非线性光学响应和热稳定性进行了系统的理论研究。结果显示,在推电子和拉电子的双重效应作用下,Li@6,9-F_2B_(10)H_(12),Li@1,3,6,9-F_4B_(10)H_(10)和Li@2,4,6,9-F4B_(10)H_(10)不仅具有非常大的第一超极化率(β0)值181124,133199和32314 au,而且垂直电离势(VIP)较大,分别为6.447,6.302和6.885 eV。与已报道的体系相比,当前体系的第一超极化率和垂直电离势都明显大于Li原子掺杂氟碳链(J. Am. Chem. Soc. 2007,129,2967)以及我们设计的Li@ B_(10)H_(14)篮形体系(J. Am. Chem. Soc. 2009,131,11833)的值。此外,我们首次利用在298 K时的锂化和氟化反应焓(Δ_rH~o)探讨体系的热稳定性。对于B_(10)H_(14) , 6,9-F2B10H12和2,4-F2B10H12锂化反应焓分别是-10.04 , -11.29和-13.18 Kcal/mol,这显示了B_(10)H_(14)的氟衍生物与锂原子反应的机率较高。所得结果不仅解释了氟原子的数量和位置对于B_(10)H_(14),Li@B_(10)H_(14)的影响,而且结合推电子和拉电子两个效应产生更弥散的额外电子,使B_(10)H_(14)和Li@B_(10)H_(14)的氟衍生物具有大的非线性光学响应和高的热稳定性。
Functional groups containing nitrogen and boron atoms are present in a variety of naturally occurring and man made compounds. These functional groups impart different physical and chemical characteristics to these compounds. These groups are responsible for their unique chemical reactivity patterns and play crucial roles in the preparation of drugs, agrochemicals, dyes and molecules of life and nonlinear optical (NLO) materials and so on. There has been considerable success in the past decade at preparing compounds with large intrinsic nonlinear optical properties. Materials exhibiting NLO response are currently of great scientific and technological interest for applications as diverse as optical telecommunications, signal processing, data storage, image reconstruction, logic technologies, sensor protection, and optical computing. A large number of reports have been presented up till now on NLO materials with different conventional strategies to enhance NLO response. These strategies mainly include the use of the molecules with the extendedπ-electron systems, planer donor-πconjugated bridge-acceptor (D-π-A) model, bond length alternation (BLA) theory, twistedπ-electron systems, incorporation of ligated metal into the organic compounds, multi branches molecules with inceasing ability the charge transfer, and so forth. However, the intermolecular interaction effect of electronegative and electropositive atoms/ions on different acidic molecules containing nitrogen and boron atoms has not been studied from electro-optical point of view.
     In this thesis, we have selected first three alkali metals i.e. Li, Na, K and three halogens i.e. F, Cl, Br atoms/ions to dope them with different acidic molecules containing nitrogen and boron atoms. The interactions of these atoms/ions with different acidic molecules containing nitrogen and boron and their effects on the NLO properties of these molecules were investigated to find out a strategy, which is different from the above stated conventional methods for the improvement of significantly large NLO response. Our work will focus on the four different aspects in this regard:
     1. The effect of intermolecular interaction of a phthalimide based“On-Off”sensor with different halides ions (F): Tuning its efficiency and electro- optical properties The interaction between chemosensor, N-(2-Methyl-1,3-dioxo-indan-5-yl)-benzamide (1) and different halides ions (Fˉ, Clˉand Brˉ) has been investigated using density functional theory (DFT). A clear insight of the sensor anion binding process has been presented. Our calculations revealed that the observed colorimetric and fluorescent signals are induced due to the ground state deprotonation of the sensor molecule caused by Fˉwhich has two times higher binding affinity than other halide ions (Clˉand Brˉ). Derivatives of system 1 have been made to find a better sensor with higher binding affinity and longer wavelength of absorption. All the derivatives are better sensors than the parent 1 except 4-Methyl-N-(2-methyl-1,3-dioxo-indan-5-yl)- benzamide (2).
     2. In our second report, a new sequence has been presented for the reversible switching and modulation of NLO. The static first hyperpolarizabilities (β) of four dibenzoborole derivatives have been computed by DFT. Theβvalues of these dibenzoborole derivatives have shown a significant increase with the attachment of Fˉand/or one electron reduction. For example, 5-fluoro-5-(2,4,6-triisopropylphenyl)-2,8-dimethoxy-3,7-bithienyl-5H-di-benzo[d,b] borole ion (3·F~ˉ) and 5-fluoro-5-phenyl-3,7-bis-dinitrothienyl-5H-di-benzo[d,b]borole ion (4·F~ˉ) both showedβvalues as large as 64×10~(-30) esu and 272×10~(-30) esu, that is about 12 times and 4 times larger than their counterparts 5-(2,4,6-triisopropylphenyl)-2,8-dimethoxy-3,7-bithienyl-5H-dibenzo[d,b]borole (3) and 5-phenyl-3,7-bis-dinitrothienyl-5H-dibenzo[d,b]borole (4) (without F~ˉ) respectively. Similarly, systems 3Red and 4Red (one electron reduced) also showed 47 times and 15 times largerβvalues than their neutral forms respectively. Interestingly, this NLO switching is two dimensional in characteristics, in which large off-diagonal hyperpolarizability tensors can be related to the charge-transfer transitions which are polarized perpendicular to the molecular dipolar axis. Density of states (DOS) and frontier molecular orbital (FMO) analysis show that the binding of F~ˉat a boron atom and/or one electron reduction process turn off the Pz→π*conjugation of vacant p-orbital of boron atom in LUMOs, resulting in a higher extent of perpendicular charge transfer (CT) and lagerβvalues. The present investigation reveals a new idea and different means for multifunctional use of the present dibenzoborole class, especially (already synthesized) 3·F~ˉas two-dimensional NLO molecular switch with cartesian nonlinear anisotropy as large asη= 10.48.
     3. Different benzimidazole chromophores have been studied to tune their NLO properties with fluoride ions and on proton abstraction from acidic hydrogen atom. A novel sequence for reversible second-order NLO molecular switching with protonation/deprotonation has been achieved and tuned as well. The NLO switching with first hyperpolarizabilities (β_0) as low as 14×10~(-30) esu (Off-phase) and as large as 1014×10~(-30) esu (On-phase) have been computed by using the density functional theory (DFT). Thisβ_0 value has been tuned up to 2028×10~(-30) esu by effective substitutions in the derivatives of 1~ˉ(1a~ˉ, 1b~ˉ, 1c~ˉ, and 1d~ˉ). Interestingly, the substituted compounds have illustrated robustly large off-on NLO switching with the difference ofβ0 values as 7, 63, 85 and 75 times larger than their neutral counterparts, respectively. TD-DFT calculations along with natural bond orbital (NBO), frontier molecular orbitals (FMOs) and molecular electrostatic potential (MEP) analyses depict that the abstraction of imido proton reverts the push-pull configurations resulting in a red shift for both absorption and emission spectra which leads to a high performance second-order NLO molecular switching. A similar trend of NLO switching in Fˉcompounds of these chromophores has also been observed with significantly largeβ0 values having analogous electro-optical properties like deprotonated anions. Furthermore, gas-phase acidity (GPA) calculations for the neutral molecule 1 and its derivatives (1a, 1b, 1c, and 1d) have also revealed that these are rationally potent nitrogen acids and can easily be dissociated to produce stable deprotonated anions.
     4. Polyhedral boranes, carboranes and borane derivatives have been used to study their interaction with different alkali metals. An innovative type of lithium decahydroborate (Li@B_(10)H_(14)) complex with a basket like complexant of decaborane (B_(10)H_(14)) has been designed using quantum mechanical methods. As Li atom binds in a handle fashion to terminal electrophilic boron atoms of decaborane basket, its NBO charge q (Li) is found to be 0.876, close to +1. This shows that the Li atom has been ionized to form a cation and an anion at the open end of B_(10)H_(14). The most fascinating feature of this Li doping is its loosely bound valence electron, which has been pulled into the cavity of B_(10)H_(14) basket and become diffuse by the electron deficient morphological features of the open end of B_(10)H_(14) basket. Strikingly, the first hyperpolarizability (β0) of Li@B_(10)H_(14) is about 340 times larger than B_(10)H_(14), computed to be 23075 au (199×10~(-30) esu) and 68 au respectively. Besides this, the intercalation of Li atom to the B_(10)H_(14) basket brings some distinctive changes in its Raman, 11B NMR and UV-Visible spectra along with its other electronic properties that might be used by the experimentalists to identify this novel kind of Li@B_(10)H_(14) complex with large electro-optical response. This report may evoke the possibility to explore a new thriving area i.e. alkali metal-boranes for NLO application.
     5. Fluoro derivatives of B_(10)H_(14) and Li@B_(10)H_(14) baskets have been designed to achieve robustly large NLO response and thermal stability under simultaneous effects of conical-push and inward-pull, which have been reported discretely in previous lithium NLO complexes. Among the various derivatives, Li@6,9-F2B10H12, Li@1,3,6,9-F4B10H10 and Li@2,4,6,9-F4B10H10 have shown first hyperpolarizability (β0) values as large as 181124, 133199 and 32314 au along with vertical ionization potentials (VIPs) of 6.447, 6.302, 6.885 eV, respectively. The first hyperpolarizability values and VIPs are significantly larger than previously reported Li-doped fluorocarbon chains at the same MP2/6-31+G* level of theory (J.Am.Chem.Soc. 2007, 129, 2967). These values also exceed from our formerly designed Li@B_(10)H_(14) basket (J.Am.Chem.Soc. 2009, 131, 11833). Further, the enthalpies of lithiation and fluorination reactions (Δ_rH~o) at 298 K are obtained to explore the thermal stability for the first time. The calculated enthalpies of lithiation reactions are -10.04, -11.29 and -13.18 Kcal/mol for B_(10)H_(14), 6,9-F2B10H12, and 2,4-F2B10H12 respectively which demonstrate a higher probability of fluoro decaboranes for reaction with lithium. The obtained results not only explain the effect of positions and number dependence of substituted fluoro atom(s) in B_(10)H_(14) and Li@B_(10)H_(14) but also elucidate a unification of previous two benchmark strategies which have been used independently to polarize lithium excess electron for high NLO response and thermal stability.
引文
[1] Miller I T and Springall, H D. Sidgwick's Organic Chemistry of Nitrogen, 3rd ed., The Clarendon Press, Oxford [M], 1966.
    [2] Ferg-uson L N.,Cancer and Chemicals[J] Chem Soc (London) Rev, 1 975, 4, 289.
    [3] Cope A C and Trumbull E R. Olefins from Amines: The Hofmann Elimination Reaction and Amine Oxide Pyrolysis[J] Org Reactions, 1960, 11, 317.
    [4] Butler R N. Diazotization of heterocyclic primary amines[J]. Chem Rev, 1975, 75 (2): 241-257.
    [5] Cohen S G, Parola A and Parsons G H. Photoreduction by amines[J]. Chem Rev, 1973, 73 (2): 141-161
    [6] Dye J L. Solvated-electron reaction rates in amines[J]. Acc Chem Res, 1968, 1 (10): 306-312.
    [7] Bergstrom F W and Fernelius W C. The Chemistry of the Alkali Amides[J]. Chem Rev, 1933, 12 (1): 43-179.
    [8] Shriner R L and Neumann F W. The Chemistry of the Amidines[J]. Chem Rev, 1944, 35 (3): 351-425.
    [9] Ferm R J and Riebsomer J L. The Chemistry of the 2-Imidazolines and Imidazolidines[J]. Chem Rev, 1954, 54 (4): 593-613.
    [10] Roger R and Neilson D G. The Chemistry of Imidates[J]. Chem Rev, 1961, 61 (2): 179-211.
    [11] Kemnitz C R and Loewen M J.“Amide Resonance”Correlates with a Breadth of C?N Rotation Barriers[J]. J Am Chem Soc, 2007, 129 (9): 2521-2528.
    [12] Kollman P A and Allen L C. Theory of the hydrogen bond[J]. Chem Rev, 1972, 72 (3): 283-303.
    [13] Gilli P, Pretto L, Bertolasi V, et al. Predicting Hydrogen-Bond Strengths from Acid?Base Molecular Properties. The pKa Slide Rule: Toward the Solution of a Long-Lasting Problem[J]. Acc Chem Res, 2008, 42 (1): 33-44.
    [13] Doyle A G and Jacobsen E N. Small-Molecule H-Bond Donors in Asymmetric Catalysis[J]. Chem Rev, 2007, 107 (12): 5713-5743.
    [14] Spencer J N, Berger S K, Powell C R, et al. Amide interactions in aqueous and organic medium[J]. The Journal of Physical Chemistry, 1981, 85 (9): 1236-1241.
    [15] Wright J B. The Chemistry of the Benzimidazoles[J]. Chem Rev, 1951, 48 (3): 397-541.
    [16] Preston P N. Synthesis, reactions, and spectroscopic properties of benzimidazoles[J]. Chem Rev, 1974, 74 (3): 279-314.
    [17] Chen H, Yan T and Voth G A. A Computer Simulation Model for Proton Transport in Liquid Imidazole[J]. The Journal of Physical Chemistry A, 2009, 113 (16): 4507-4517.
    [18] Perez-Ruiz R, Diaz Y, Goldfuss B, et al. Fluoride recognition by a chiral urea receptor linked to a phthalimide chromophore[J]. Organic & Biomolecular Chemistry, 2009, 7 (17): 3499-3504.
    [19] Mashraqui S H, Betkar R, Chandiramani M, et al. A novel fluoride selective optical chemosensor based on internal charge transfer signaling[J]. Tetrahedron Lett, 2010, 51 (4): 596-599.
    [20] Ali H D P, Kruger P E and Gunnlaugsson T. Colorimetric 'naked-eye' and fluorescent sensors for anions based on amidourea functionalised 1,8-naphthalimide structures: anion recognition via either deprotonation or hydrogen bonding in DMSO[J]. New J Chem, 2008, 32 (7): 1153-1161.
    [21] Veale E B and Gunnlaugsson T. Bidirectional photoinduced electron-transfer quenching is observed in 4-amino-1,8-naphthalimide-based fluorescent anion sensors[J]. J Org Chem, 2008, 73 (20): 8073-8076.
    [22] Veale E B, Tocci G M, Pfeffer F M, et al. Demonstration of bidirectional photoinduced electron transfer (PET) sensing in 4-amino-1,8-naphthalimide based thiourea anion sensors[J]. Org Biomol Chem, 2009, 7 (17): 3447-3454.
    [23] Gross D E, Yoon D W, Lynch V M, et al. Anion binding behavior of heterocycle-strapped calix 4 pyrroles[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2010, 66 (1-2): 81-85.
    [24] Chauhan S M S, Garg B and Bisht T. Synthesis and anion binding of 2-arylazo-meso-octamethylcalix 4 pyrroles[J]. Supramolecular Chemistry, 2009, 21 (5): 394-400.
    [25] Kim S H, Hong S J, Yoo J, et al. Strapped Calix 4 pyrroles Bearing a 1,3-Indanedione at a beta-Pyrrolic Position: Chemodosimeters for the Cyanide Anion[J]. Organic Letters, 2009, 11 (16): 3626-3629.
    [26] Kim S-H, Hong S-J, Yoo J, et al. Strapped Calix 4 pyrroles Bearing a 1,3-Indanedione at a beta-Pyrrolic Position: Chemodosimeters for the Cyanide Anion[J]. Organic Letters, 2009, 11 (16): 3626-3629.
    [27] Park J S, Le Derf F, Bejger C M, et al. Positive Homotropic Allosteric Receptors for Neutral Guests: Annulated Tetrathiafulvalene-Calix 4 pyrroles as Colorimetric Chemosensors for Nitroaromatic Explosives[J]. Chemistry-a European Journal, 2010, 16 (3): 848-854.
    [28] Li Z-J, Li Z-R, Wang F-F, et al. A Dependence on the Petal Number of the Static and Dynamic First Hyperpolarizability for Electride Molecules: Many-Petal-Shaped Li-Doped Cyclic Polyamines[J]. The Journal of Physical Chemistry A, 2009, 113 (12): 2961-2966.
    [29] Ma F, Li Z-R, Xu H-L, et al. Lithium Salt Electride with an Excess Electron Pair A Class of Nonlinear Optical Molecules for Extraordinary First Hyperpolarizability[J]. The Journal of Physical Chemistry A, 2008, 112 (45): 11462-11467.
    [30] Chen W, Li Z-R, Wu D, et al. The Structure and the Large Nonlinear Optical Properties of Li@Calix[4]pyrrole[J]. J Am Chem Soc, 2005, 127 (31): 10977-10981.
    [31] Chen W, Li Z-R, Wu D, et al. Nonlinear Optical Properties of Alkalides Li+(calix[4]pyrrole)M- (M = Li, Na, and K):? Alkali Anion Atomic Number Dependence[J]. J Am Chem Soc, 2006, 128 (4): 1072-1073.
    [32] Elbing M and Bazan G C. A new design strategy for organic optoelectronic materials by lateral boryl substitution[J]. Angewandte Chemie-International Edition, 2008, 47 (5): 834-838.
    [33] Liu Y, Xu X, Zheng F K, et al. Chiral octupolar metal-oraganoboran NLO frameworks with (14,3) topology[J]. Angewandte Chemie-International Edition, 2008, 47 (24): 4538-4541.
    [34] Plumley J A and Evanseck J D. Periodic Trends and Index of Boron Lewis Acidity[J]. The Journal of Physical Chemistry A, 2009, 113 (20): 5985-5992.
    [35] Hirao H, Omoto K and Fujimoto H. Lewis Acidity of Boron Trihalides[J]. The Journal of Physical Chemistry A, 1999, 103 (29): 5807-5811.
    [36] Hu T P, Ren F D and Ren J. Theoretical investigation on geometries and aromaticity of mixed boron-, nitrogen- and furanoxo-containing five-membered rings B2N2OHp (p=0-2)[J]. Journal of Molecular Structure-Theochem, 2009, 909 (1-3): 13-18.
    [37] So C W, Watanabe D, Wakamiya A, et al. Synthesis and structural characterization of pentaarylboroles and their dianions[J]. Organometallics, 2008, 27 (14): 3496-3501.
    [38] Wakamiya A and Yamaguchi S. Design and synthesis of boron-containing functional pi-electron materials[J]. Journal of Synthetic Organic Chemistry Japan, 2008, 66 (9): 858-868.
    [39] Braunschweig H, Fernandez I, Frenking G, et al. Structural evidence for antiaromaticity in free boroles[J]. Angewandte Chemie-International Edition, 2008, 47 (10): 1951-1954.
    [40] Schacht W and Kaufmann D. THE 1ST SYNTHESIS OF A BENZOBOROLE[J]. Angewandte Chemie-International Edition in English, 1987, 26 (7): 665-666.
    [41] Kaufmann D E and Schacht W. BENZOANNULATED CYCLOBORANES[J]. Pure Appl Chem, 1991, 63 (3): 383-386.
    [42] Herberich G E, Eigendorf U and Englert U. 2-BORAINDANES AND 2-(DIALKYLAMINO)-2-BENZOBOROLE DIANIONS[J]. Chemische Berichte-Recueil, 1993, 126 (6): 1397-1402.
    [43] Kiani F A and Hofmann M. Structural paradigms in macropolyhedral boranes[J]. Chemistry-a European Journal, 2008, 14 (9): 2886-2893.
    [44] Shameema O and Jemmis E D. Orbital compatibility in the condensation of polyhedral boranes[J]. Angewandte Chemie-International Edition, 2008, 47 (30): 5561-5564.
    [45] Jemmis E D and Prasad D. Unknowns in the chemistry of boron[J]. Curr Sci, 2008, 95 (9): 1277-1283.
    [46] Aihara J, Kanno H and Ishida T. Aromaticity of planar boron clusters confirmed[J]. J Am Chem Soc,2005, 127 13324-13330.
    [47] Aihara J-i, Kanno H and Ishida T. Aromaticity of Planar Boron Clusters Confirmed[J]. J Am Chem Soc, 2005, 127 (38): 13324-13330.
    [48] Gaines D F. Chemistry of pentaborane(9)[J]. Acc Chem Res, 1973, 6 (12): 416-421
    [49] Brain P T, Hnyk D, Rankin D W H, et al. The molecular structures of pentaborane(11), B5H11, and hexaborane(12), B6H12, in the gas phase as determined by electron diffraction and ab initio calculations[J]. Polyhedron, 1994, 13 (9): 1453-1466.
    [50]Stanko V I, Chapovskii Y A, Brattsev V A, and Zakharkin L I. THE CHEMISTRY OF DECABORANE AND ITS DERIVATIVES[J] Russ Chem. Rev, 1965, 34, 424–439
    [51] Gaines D F and Beall H. Hydrogen?Deuterium Exchange in Decaborane(14): Mechanistic Studies[J]. Inorg Chem, 2000, 39 (8): 1812-1813.
    [52] Wermer J R, Hollander O, Huffman J C, et al. Iodide Complexes of Decaborane(14) and 2,4-Diiododecaborane(14). The X-ray Crystal Structure of [P(C6H5)3CH3][2,4-I2B10H12I][J]. Inorg Chem, 1995, 34 (11): 3065-3071.
    [53] Pimentel G C and Pitzer K S. The Ultraviolet Absorption and Luminescence of Decaborane[J]. The Journal of Chemical Physics, 1949, 17 (10): 882-884.
    [54] Sioutis I and Pitzer R M. Theoretical Investigation of the Binding Energies of the Iodide Ion and Xenon Atom with Decaborane[J]. The Journal of Physical Chemistry A, 2006, 110 (45): 12528-12534.
    [55] Kleinberg J. Reactions of the Halogens with the Silver Salts of Carboxylic Acids[J]. Chem Rev, 1947, 40 (3): 381-390.
    [56] Watson H B. Reactions of Halogens with Compounds Containing the Carbonyl Group[J]. Chem Rev, 1930, 7 (2): 173-201.
    [57] Anantakrishnan S V and Venkataraman R. The Reaction between Ethylene Derivatives and the Halogens[J]. Chem Rev, 1943, 33 (1): 27-55.
    [58] Spinks J W T. Photoreactions Sensitized by the Halogens[J]. Chem Rev, 1940, 26 (1): 129-139.
    [59] Ruhlandt-Senge K, Henderson K W and Andrews P C. Alkali Metal Organometallics - Structure and Bonding[M]. Comprehensive Organometallic Chemistry III, 2007, 1-65
    [60] Fromm K M and Gueneau E D. Structures of alkali and alkaline earth metal clusters with oxygen donor ligands[J]. Polyhedron, 2004, 23 (9): 1479-1504.
    [61] Chen X H, Peng J C and Li W Z. The locations of alkali cations in alkali-metal-fullerides[J]. Physica B: Condensed Matter, 2000, 291 (3-4): 285-291.
    [62] Franken P A, Hill A E, Peters C W, et al. Generation of Optical Harmonics[J]. Phys Rev Lett, 1961, 7 (Copyright (C) 2010 The American Physical Society): 118.
    [63] Narazaki A, Tanaka K, Hirao K, et al. Induction and relaxation of optical second-order nonlinearity in tellurite glasses[J]. J Appl Phys, 1999, 85 (4): 2046-2051.
    [64] Rice A. et al. Terahertz optical rectification from <110> zinc-blende crystals[J] Appl Phys Lett, 1994, 64, 1324–1326.
    [65] Bass et al. Optical rectification, Phys Rev Lett, 1962, 9, 446.
    [66] Tonouchi M, Cutting-edge terahertz technology, Nat. Photonic, 2007, 1, 97.
    [67] Gott J R M M J P and Murrell J N. Effect of molecular structure on optical second-harmonic generation from organic crystals Mol. Phys[J], 1967, 12 (3): 295.
    [68] Wolff J J, L?ngle D, Hillenbrand D, et al. Dipolar NLO-phores with large off-diagonal components of the second-order polarizability tensor[J]. Adv Mater, 1997, 9 (2): 138-143.
    [69] Traber B, Oeser T, Gleiter R, et al. Donor-Substituted Heptaazaphenalene as a Nonlinear Optically Active Molecule with Multiple Charge-Transfer Transitions[J]. European Journal of Organic Chemistry, 2004, 2004 (21): 4387-4390.
    [70] Y Kawabe and Ikeda, H et al. Second-order non-linear optical properties of new organic conjugatedmolecules[J] J Mater Chem, 1992, 2, 1025
    [71] Kanis D R, Ratner M A and Marks T J. Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects[J]. Chem Rev, 1994, 94 (1): 195-242.
    [72] Brooker L G S. The Cyanine Dyes and Related Compounds[J]. J Am Chem Soc, 1965, 87 (4): 937-938.
    [73] Serrano A and Canuto S. Effect of bond-length alternation on the dipole hyperpolarizability of phenol blue[J]. Int J Quantum Chem, 2002, 87 (5): 275-279.
    [74] Cheng L T, Tam W, Marder S R, et al. Experimental investigations of organic molecular nonlinear optical polarizabilities. 2. A study of conjugation dependences[J]. The Journal of Physical Chemistry, 1991, 95 (26): 10643-10652.
    [75] Kinnibrugh T L, Salman S, Getmanenko Y A, et al. Dipolar Second-Order Nonlinear Optical Chromophores Containing Ferrocene, Octamethylferrocene, and Ruthenocene Donors and Strongπ-Acceptors: Crystal Structures and Comparison ofπ-Donor Strengths[J]. Organometallics, 2009, 28 (5): 1350-1357.
    [76] Bublitz G U, Ortiz R, Runser C, et al. Stark Spectroscopy of Donor?Acceptor Polyenes: Correlation with Nonlinear Optical Measurements[J]. J Am Chem Soc, 1997, 119 (9): 2311-2312.
    [77]Sen R, Majumdar D, Bhattacharyya S P, et al. Modeling hyperpolarizabilities of some TICT molecules and their analogs[J]. The Journal of Physical Chemistry, 1993, 97 (29): 7491-7498.
    [78] Majumdar D, Sen R, Bhattacharyya K, et al. Twisted intramolecular charge transfer of p-(N,N-dimethylamino)benzonitrile: an approximate quantum mechanical study including solvation effects[J]. The Journal of Physical Chemistry, 1991, 95 (11): 4324-4329.
    [79] Albert I D L, Marks T J and Ratner M A. Conformationally-Induced Geometric Electron Localization. Interrupted Conjugation, Very Large Hyperpolarizabilities, and Sizable Infrared Absorption in Simple Twisted Molecular Chromophores[J]. J Am Chem Soc, 1997, 119 (13): 3155-3156.
    [80] Albert I D L, Marks T J and Ratner M A. Large Molecular Hyperpolarizabilities in“Push?Pull”Porphyrins. Molecular Planarity and Auxiliary Donor?Acceptor Effects[J]. Chem Mater, 1998, 10 (3): 753-762.
    [81] Coe B J, Curati N R M, Fitzgerald E C, et al. Syntheses and Properties of Bimetallic Chromophore-Quencher Assemblies Containing Ruthenium(II) and Rhenium(I) Centers[J]. Organometallics, 2007, 26 (9): 2318-2329.
    [82] Coe B J, Harris J A, Hall J J, et al. Syntheses and Quadratic Nonlinear Optical Properties of Salts Containing Benzothiazolium Electron-Acceptor Groups[J]. Chem Mater, 2006, 18 (25): 5907-5918.
    [83] Coe B J, Foxon S P, Harper E C, et al. Nonlinear Optical and Related Properties of Iron(II) Pentacyanide Complexes with Quaternary Nitrogen Electron Acceptor Units[J]. Inorg Chem, 2009, 48 (4): 1370-1379.
    [84] Coe B J, Foxon S P, Harper E C, et al. Nonlinear Optical and Related Properties of Iron(II) Pentacyanide Complexes with Quaternary Nitrogen Electron Acceptor Units[J]. Inorg Chem, 2009, 48 (4): 1370-1379.
    [85] Coe B J, Fielden J, Foxon S P, et al. Combining Very Large Quadratic and Cubic Nonlinear Optical Responses in Extended, Tris-Chelate Metallochromophores with Sixπ-Conjugated Pyridinium Substituents[J]. J Am Chem Soc, 2010, 132 (10): 3496-3513.
    [86] Ledoux I and Zyss J, From one- to two-dimensional complexes for quadratic nonlinear optics: the influence of ligand and complexing metal atoms[J]Pure Appl Opt, 5, 1996 603–612.
    [87] Blanchard-Desce M, Baudin J-B, Ruel O, et al. New non-dipolar structures with significant quadratic hyperpoiarizabilites[J]. Optical Materials, 1998, 9 (1-4): 276-279.
    [88] Zyss J, Dhenaut C, Chauvan T, et al. Quadratic nonlinear susceptibility of octupolar chiral ions[J]. Chem Phys Lett, 1993, 206 (1-4): 409-414.
    [89] Zyss J. Molecular engineering implications of rotational invariance in quadratic nonlinear optics:From dipolar to octupolar molecules and materials[J]. The Journal of Chemical Physics, 1993, 98 (9): 6583-6599.
    [90] Dhenaut C, Ledoux I, Samuel I D W, et al. Chiral metal complexes with large octupolar optical nonlinearities[J]. Nature, 1995, 374 (6520): 339-342.
    [91] Li D Q, and Marks T. J at al. Nonlinear Optical Phenomena in Conjugated Organic Chromophores. TheoreticalInvestigations via aπ-Electron Formalism [J] J.Phys. Chem. 1992, 96, 4325-4336
    [1] Anisimov V M, Lamoureux G, Vorobyov I V, et al. Determination of Electrostatic Parameters for a Polarizable Force Field Based on the Classical Drude Oscillator[J]. Journal of Chemical Theory and Computation, 2004, 1 (1): 153-168.
    [2] Harder E, Anisimov V M, Vorobyov I V, et al. Atomic Level Anisotropy in the Electrostatic Modeling of Lone Pairs for a Polarizable Force Field Based on the Classical Drude Oscillator[J]. Journal of Chemical Theory and Computation, 2006, 2 (6): 1587-1597.
    [3] Ahmen A D and Boudreaux E A. Semi-empirical molecular orbital methods. I. Theoretical considerations of a parameter-free method for inorganic systems[J]. Inorg Chem, 1973, 12 (7): 1590-1597.
    [4] M?ller C, Plesset M. S. Note on an Approximation Treatment for Many-Electron Systems[J]. Phys. Rev. 1934, 46: 618.
    [5] Head-Gordon M, Pople J A, Frisch M. J. MP2 energy evaluation by direct methods[J]. Chem. Phys. Lett. 1988, 153: 503.
    [6] Cizek J. On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods[J]. J. Chem. Phys. 1966, 45: 4256.
    [7] Koch W, Holthausen M C. A Chemist’s Guide to Density Functional Theory, Wiley-VCH, Weinheim, Germany, 2000.
    [8] Grimme S. Semiempirical hybrid density functional with perturbative second-order correlation[J]. J. Chem. Phys. 2006, 124: 034108.
    [9] Neese F. ORCA– an ab initio, density functional and semiempirical program package, University of Bonn, Germany, 2007.
    [11] Hohenberg P, and Kohn W. Inhomogeneous Electron Gas[J]. Phys. Rev. B. 1964, 136: B864.
    [12] Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Phys. Rev. A, 1988, 38: 3098.
    [13] Lee C, Yang W, and Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Phys. Rev. B. 1988, 37: 785.
    [14] Miehlich B, Savin A, Stoll H, and Preuss H. Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr[J]. Chem. Phys. Lett. 1989, 157: 200.
    [15] Becke A D. Density-functional thermochemistry. III. The role of exact exchange[J]. J. Chem. Phys. 1993, 98: 5648.
    [16] Stephens P J, Devlin F J, Chabalowski C F, and Frisch M J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields[J]. J. Phys. Chem. 1994, 98: 11623.
    [17] Boese D A, Martin J M L, Handy N C. The roles of the basis set: assessing density functional theory [J]. J. Chem. Phys. 2003, 119: 3005.
    [18] Maximoff S N, Scuseria G E. Exchange energy functionals based on the full fourth order density matrix expansion [J]. J. Chem. Phys. 2001, 114: 10591.
    [19] Grabowski I, Hirata S, Ivanov S, Bartlett R J. Ab initio density functional theory: OEP-MBPT(2). A new orbital-dependent correlation functional [J]. J. Chem. Phys. 2002, 116: 4415.
    [20] von Barth U, Hedin L. A local exchange-correlation potential for the spin polarized case [J]. J. Phys. C, 1972, 5: 1629.
    [22] Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Phys. Rev. Lett. 1996, 77: 3865.
    [23] Tao J, Perdew J P, Staroverov V N, Scuseria G E. Climbing the Density Functional Ladder: Nonempirical Meta–Generalized Gradient Approximation Designed for Molecules and Solids[J]. Phys. Rev. Lett. 2003, 91: 146401.
    [24] Maximoff S N, Ernzerhof M, Scuseria G E. Functionals of the square kinetic energy density[J]. J. Chem. Phys. 2002, 117: 3074.
    [25] Staroverov V N, Scuseria G E, Tao J, Perdew J P. Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes[J]. J. Chem. Phys. 2003, 119: 12129.
    [26] Schwabe T, Grimme S. Towards chemical accuracy for the thermodynamics of large molecules: new hybrid density functionals including non-local correlation effects[J]. Phys. chem. chem. phys. 2006, 8: 4398.
    [27] Grimme S J. Accurate description of van der Waals complexes by density functional theory including empirical corrections [J]. Comput. Chem. 2004, 25: 1463.
    [28] Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. J. Comput. Chem. 2006, 27: 1787.
    [29] Perdew J P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas[J]. Phys. Rev. B 1986, 33: 8822.
    [30] Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Phys. Rev. Lett. 1996, 77: 3865.
    [31] Tao J, Perdew J, Staroverov V, Scuseria G E. Climbing the Density Functional Ladder: Nonempirical Meta–Generalized Gradient Approximation Designed for Molecules and Solids[J]. Phys. Rev. Lett. 2003, 91: 146401.
    [32] Boys SF and Bernardi F, The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors [J]. Molecular Physics: An International Journal at the Interface Between Chemistry and Physics, 1970, 19 (4): 553 - 566.
    [1] Hulanicki A, Glab S and Ingman F. CHEMICAL SENSORS DEFINITIONS AND CLASSIFICATION[J]. Pure and Applied Chemistry, 1991, 63 (9): 1247-1250.
    [2] Stibor I and Zlatuskova P. Chiral recognition of anions[M]. Anion Sensing, 2005, 255, 31-63
    [3] Liu B and Tian H. A ratiometric fluorescent chemosensor for fluoride ions based on a proton transfer signaling mechanism[J]. J Mater Chem, 2005, 15 (27-28): 2681-2686.
    [4] Kleerekoper M. The role of fluoride in the prevention of osteoporosis[J]. Endocrinology and Metabolism Clinics of North America, 1998, 27 (2): 441-442.
    [5]. Cho E J, Ryu B J, Lee Y J, et al. Visible Colorimetric Fluoride Ion Sensors[J]. Org Lett, 2005, 7 (13): 2607-2609.
    [6] Thiagarajan V, Ramamurthy P, Thirumalai D, et al. A Novel Colorimetric and Fluorescent Chemosensor for Anions Involving PET and ICT Pathways[J]. Org Lett, 2005, 7 (4): 657-660.
    [7] Niikura K, Metzger A and Anslyn E V. Chemosensor ensemble with selectivity for inositol-trisphosphate[J]. J Am Chem Soc, 1998, 120 (33): 8533-8534.
    [8] Gunnlaugsson T, Ali H D P, Glynn M, et al. Fluorescent photoinduced electron transfer (PET) sensors for anions; From design to potential application[J]. Journal of Fluoresc, 2005, 15 (3): 287-299.
    [9] Lin Z H, Zhao Y G, Duan C Y, et al. A highly selective chromo- and fluorogenic dual responding fluoride sensor: naked-eye detection of F- ion in natural water via a test paper[J]. Dalton Trans, 2006 (30): 3678-3684.
    [10] Choi K and Hamilton A D. A dual channel fluorescence chemosensor for anions involving intermolecular excited state proton transfer[J]. Angew Chem, Int Ed, 2001, 40 (20): 3912-+.
    [11]. Wallace K J, Belcher W J, Turner D R, et al. Slow Anion Exchange, Conformational Equilibria, and Fluorescent Sensing in Venus Flytrap Aminopyridinium-Based Anion Hosts[J]. J Am Chem Soc, 2003, 125 (32): 9699-9715.
    [12] Amendola V, Esteban-Gómez D, Fabbrizzi L, et al. What Anions Do to N?H-Containing Receptors[J]. Acc Chem Res, 2006, 39 (5): 343-353.
    [13] Boiocchi M, Del Boca L, Gomez D E, et al. Nature of Urea?Fluoride Interaction: Incipient and Definitive Proton Transfer[J]. J Am Chem Soc, 2004, 126 (50): 16507-16514.
    [14] Boiocchi M, Boca L D, Esteban-Gómez D, et al. Anion-Induced Urea Deprotonation[J]. Chem-Eur J, 2005, 11 (10): 3097-3104.
    [15] Tong H, Zhou G, Wang L, et al. Novel highly selective anion chemosensors based on 2,5-bis(2-hydroxyphenyl)-1,3,4-oxadiazole[J]. Tetrahedron Lett, 2003, 44 (1): 131-134.
    [16] Zhang X, Guo L, Wu F-Y, et al. Development of Fluorescent Sensing of Anions under Excited-State Intermolecular Proton Transfer Signaling Mechanism[J]. Org Lett, 2003, 5 (15): 2667-2670.
    [17]. Boiocchi M, Fabbrizzi L, Foti F, et al. Dramatically Enhanced Carbon Acidity of the Nitrobenzyl Fragment in a Nickel(II) Scorpionate Complex[J]. Org Lett, 2005, 7 (16): 3417-3420.
    [18] Gomez D E, Fabbrizzi L, Licchelli M, et al. Urea vs. thiourea in anion recognition[J]. Org & Biomole Chem, 2005, 3 (8): 1495-1500.
    [19] Hirano J, Hamase K and Zaitsu K. Evaluation of a simple and novel fluorescent anion sensor, 4-quinolone, and modification of the emission color by substitutions based on molecular orbital calculations[J]. Tetrahedron, 2006, 62 (43): 10065-10071.
    [20] Li Z and Zhang J. An efficient theoretical study on host-guest interactions of a fluoride chemosensor with F-, Cl- and Br[J]. Chem Phys, 2006, 331 (1): 159-163.
    [21] Neumann T, Dienes Y and Baumgartner T. Highly Sensitive Sensory Materials for Fluoride Ions Based on the Dithieno[3,2-b:2‘,3‘-d]phosphole System[J]. Org Lett, 2006, 8 (3): 495-497.
    [22] Hudnall T W, Mela?mi M and Gabba? F P. Hybrid Lewis Acid/Hydrogen-Bond Donor Receptor for Fluoride[J]. Org Lett, 2006, 8 (13): 2747-2749.
    [23] Liu X Y, Bai D R and Wang S. Charge-Transfer Emission in Nonplanar Three-Coordinate Organoboron Compounds for Fluorescent Sensing of Fluoride13[J]. Angew Chem, Int Ed, 2006, 45 (33): 5475-5478.
    [24] Wiskur S L, Floriano P N, Anslyn E V, et al. A Multicomponent Sensing Ensemble in Solution: Differentiation between Structurally Similar Analytes13[J]. Angew Chem, Int Ed, 2003, 42 (18): 2070-2072.
    [25] Sarkar M, Yellampalli R, Bhattacharya B, et al. Ratiometric fluorescence signalling of fluoride ions by an amidophthalimide derivative[J]. J Chem Sci, 2007, 119 (2): 91-97.
    [26] Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar, SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman, JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 03, Revision C.02 Gaussian Inc Wallingford CT, 2004.
    [27] Becke A D. DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE[J]. J Chem Phys, 1993, 98 (7): 5648-5652.
    [28] Lee C, Yang W and Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Phys Rev B, 1988, 37: 785-789.
    [29] Stephens P J, Devlin F J, Chabalowski C F, et al. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields[J]. J Phys Chem, 1994, 98 (45): 11623-11627.
    [30] van der Wijst T, Guerra C F, Swart M, et al. Performance of various density functionals for the hydrogen bonds in DNA base pairs[J]. Chem Phys Lett, 2006, 426 (4-6): 415-421.
    [31] Park Y C and Lee J S. MP2 basis set limit binding energy estimates of hydrogen-bonded complexes from extrapolation-oriented basis sets[J]. Bull Korean Chem Soc, 2007, 28 (3): 386-390.
    [32] Haranczyk M, Rak J, Gutowski M, et al. Intermolecular Proton Transfer in Anionic Complexes of Uracil with Alcohols[J]. J Phys Chem B, 2005, 109 (27): 13383-13391.
    [33] Rak J, Skurski P, Simons J, et al. Low-Energy Tautomers and Conformers of Neutral and Protonated Arginine[J]. J Am Chem Soc, 2001, 123 (47): 11695-11707.
    [34] Daübkowska I, Rak J and Gutowski M. Computational Study of Hydrogen-Bonded Complexes between the Most Stable Tautomers of Glycine and Uracil[J]. J Phys Chem A, 2002, 106 (32): 7423-7433.
    [35] van Mourik T, Price S L and Clary D C. Ab Initio Calculations on Uracil?Water[J]. J Phys Chem A, 1999, 103 (11): 1611-1618.
    [36] Foresman J B, Head-Gordon M, Pople J A, et al. Toward a systematic molecular orbital theory for excited states[J]. J Phys Chem, 1992, 96 (1): 135-149.
    [37] Stratmann R E, Scuseria G E and Frisch M J. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules[J]. J Chem Phys, 1998, 109 (19): 8218-8224.
    [38] Bauernschmitt R and Ahlrichs R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory[J]. Chem Phys Lett, 1996, 256 (4-5): 454-464.
    [39] Cossi M, Rega N, Scalmani G, et al. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model[J]. J Comput Chem, 2003, 24 (6): 669-681.
    [40] Eckert F and Klamt A. Fast solvent screening via quantum chemistry: COSMO-RS approach[J]. AIChE J, 2002, 48 (2): 369-385.
    [41] Wyman J. Polarization and Dielectric Constant of Liquids[J]. J Am Chem Soc, 1936, 58 (8): 1482-1486.
    [42] Rutkowski K S, Melikova S M, Rodziewicz P, et al. Solvent effect on the blue shifted weakly H-bound F3 CH...FCD3 complex[J]. J Mol Struct, 2008, 880 (1-3): 64-68.
    [43]. Araujo-Andrade C, Ruiz F, Martinez-Mendoza J R, et al. Infrared and Raman spectra, conformational stability, ab initio calculations of structure, and vibrational assignment of alpha and beta glucose[J]. J Mole Struc: Theochem, 2005, 714 (2-3): 143-146.
    [44] Boys SF and Bernardi F, The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors [J]. Molecular Physics: An International Journal at the Interface Between Chemistry and Physics, 1970, 19 (4): 553 - 566.
    [45] Jose D A, Singh A, Das A, et al. A density functional study towards the preferential binding of anions to urea and thiourea[J]. Tetrahedron Lett, 2007, 48 (21): 3695-3698.
    [46] Johansson P, Abrahamsson E and Jacobsson P. A novel field of ab initio studies: complexation of simple anions within neutral cryptands[J]. J Mole Struc-Theochem, 2005, 717 (1-3): 215-221.
    [47] Johansson P and Jacobsson P. Ab initio studies of complexation of anions to neutral species[J]. Electrochim Acta, 2005, 50 (19): 3782-3787.
    [48] Solimannejad M, Alkorta I and Elguero J. A comparative ab initio study of SF6...X- and CF4...X- complexes (X = H, F, Cl, CN, NC, N3 and NCO)[J]. J Mole Struc: Theochem, 2007, 819 (1-3): 136-141.
    [49] Shang X F, Xu X F, Lin H, et al. Efficient fluoride-selective receptor: experiment and theory[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 58 (3-4): 275-281.
    [50] Brooks S J, Evans L S, Gale P A, et al. 'Twisted' isophthalamide analogues[J]. Chem Comm, 2005 (6): 734-736.
    [51] Steiner T. The hydrogen bond in the solid state[J]. Angew Chem, Int Ed, 2002, 41 (1): 48-76.
    [52] Domenicano A and Hargittai I. More on the ROTAS magic square[J]. Mathematical Intelligencer, 2002, 24 (3): 47-49.
    [53] Chen F and Davidson E R. The effect of the basis set superposition error on the geometry optimization of the p-DFB-N2 complex[J]. Chem Phys Lett, 2002, 360 (1-2): 99-103.
    [54] Greenwood NN, Earnshaw A (1997). Chemistry of the Elements, 2nd Edition, Oxford:Butterworth-Heinemann.
    [55] Peng X, Wu Y, Fan J, et al. Colorimetric and Ratiometric Fluorescence Sensing of Fluoride: Tuning Selectivity in Proton Transfer[J]. J Org Chem, 2005, 70 (25): 10524-10531.
    [56] Thiagarajan V and Ramamurthy P. Specific optical signalling of anions via intramolecular charge transfer pathway based on acridinedione fluorophore[J]. J Lumin, 2007, 126 (2): 886-892.
    [57] Chaignon N M, Fairlamb I J S, Kapdi A R, et al. Bis(triphenylphosphine)palladium(II)phthalimide - an easily prepared precatalyst for efficient Suzuki-Miyaura coupling of aryl bromides[J]. J Mol Catal A Chem, 2004, 219 (2): 191-199.
    [58] Hu A and Lin W. Ru-Catalyzed Asymmetric Hydrogenation ofα-Phthalimide Ketones and 1,3-Diaryl Diketones Using 4,4‘-Substituted BINAPs[J]. Org Lett, 2005, 7 (3): 455-458.
    [59] Ernzerhof M, Perdew J P and Burke K. Coupling-constant dependence of atomization energies[J]. Int J Quantum Chem, 1997, 64 (3): 285-295.
    [60] Amendola V, Boiocchi M, Fabbrizzi L, et al. What Anions Do Inside a Receptor's Cavity: A Trifurcate Anion Receptor Providing Both Electrostatic and Hydrogen-Bonding Interactions[J]. Chem-Eur J, 2005, 11 (19): 5648-5660.
    [61] Morley J O. Theoretical studies on the structure and electronic properties of 1,3,4-triazolium-2-amidines[J]. J Mole Struc: Theochem, 1996, 365 (1): 1-7.
    [62] Verbiest T, Houbrechts S, Kauranen M, et al. Second-order nonlinear optical materials: recent advances in chromophore design[J]. J Mater Chem, 1997, 7 (11): 2175-2189.
    [63] Lambert C, Stadler S, Bourhill G, et al. Polarized pi-Electron Systems in a Chemically Generated Electric Field: Second-Order Nonlinear Optical Properties of Ammonium/Borate Zwitterions[J]. Angew Chem, Int Ed Engl, 1996, 35 (6): 644-646.
    [64] Abbotto A, Bradamante S, Facchetti A, et al. Very large second order non-linear optical activity shown by heterocycle-based dicyanomethanide zwitterions[J]. J Metr Res Soc Symp Soc 1998, 488, 819-822.
    [65] Abbotto A, Beverina L, Bradamante S, et al. A Distinctive Example of the Cooperative Interplay of Structure and Environment in Tuning of Intramolecular Charge Transfer in Second-Order Nonlinear Optical Chromophores[J]. Chem-Eur J, 2003, 9 (9): 1991-2007.
    [66] Oudar J L and Chemla D S. HYPERPOLARIZABILITIES OF NITROANILINES AND THEIR RELATIONS TO EXCITED-STATE DIPOLE-MOMENT[J]. J Chem Phys, 1977, 66 (6): 2664-2668.
    [67]. Bhanuprakash K and Laxmikanth Rao J. Theoretical studies on the nonlinear optical properties of zwitterionic organic molecules: effect of [pi]-[sigma]-[pi] through-bond coupling on the first hyperpolarizability[J]. Chem Phys Lett, 1999, 314 (3-4): 282-290.
    [68] Abe J, Shirai Y, Nemoto N, et al. Heterocyclic Pyridinium Betaines, A New Class of Second-Order Nonlinear Optical Materials: Combined Theoretical and Experimental Investigation of First-Order Hyperpolarizability through ab Initio, INDO/S, and Hyper-Rayleigh Scattering[J]. J Phys Chem B, 1997, 101 (4): 576-582.
    [69] Yang G C, Su Z M, Qin C S, et al. Predication of second-order optical nonlinearity of (Bu-2(t) Im)AuX (X=halogen) using time-dependent density-functional theory combined with sum-over-states method[J]. J Chem Phys, 2005, 123 (13).
    [70] Yang G, Su Z and Qin C. Theoretical Study on the Second-Order Nonlinear Optical Properties of Asymmetric Spirosilabifluorene Derivatives[J]. J Phys Chem A, 2006, 110 (14): 4817-4821.
    [71] Yang G, Liao Y, Su Z, et al. Theoretical Study on Photophysical and Charge Transport Properties of 1,6-Bis(2-hydroxyphenol)pyridylboron Bis(4-n-butylphenyl)phenyleneamine Compound[J]. J Phys Chem A, 2006, 110 (28): 8758-8762.
    [72] Yang G, Guan W, Yan L, et al. Theoretical Study on the Electronic Spectrum and the Origin of Remarkably Large Third-Order Nonlinear Optical Properties of Organoimide Derivatives of Hexamolybdates[J]. J Phys Chem B, 2006, 110 (46): 23092-23098.
    [73] Yang G C, Shi S Q, Guan W, et al. Hyperpolarizabilities of para-nitroaniline and bis[4-(dimethylamino)phenyl] squaraine: The effects of functional/basis set based on TDDFT-SOS method[J]. J Mole Struc: Theochem, 2006, 773 (1-3): 9-14.
    [1] Verbiest T, Houbrechts S, Kauranen M, et al. Second-order nonlinear optical materials: recent advances in chromophore design[J]. J Mater Chem, 1997, 7 (11): 2175-2189.
    [2] Ward M D. METAL-METAL INTERACTIONS IN BINUCLEAR COMPLEXES EXHIBITING MIXED-VALENCY - MOLECULAR WIRES AND SWITCHES[J]. Chem Soc Rev, 1995, 24 (2): 121-134.
    [3] Samoc M, Gauthier N, Cifuentes M P, et al. Electrochemical Switching of the Cubic Nonlinear Optical Properties of an Aryldiethynyl-Linked Heterobimetallic Complex between Three Distinct States13[J]. Angew Chem Int Ed, 2006, 45 (44): 7376-7379.
    [4] Gilat S L, Kawai S H and Lehn J-M. Light-Triggered Molecular Devices: Photochemical Switching Of optical and Electrochemical Properties in Molecular Wire Type Diarylethene Species[J]. Chem Eur J, 1995, 1 (5): 275-284.
    [5] Houbrechts S, Clays K, Persoons A, et al. Hyper-Rayleigh scattering investigation of nitrobenzyl pyridine model compounds for optical modulation of the hyperpolarisability[J]. Chem Phys Lett, 1996, 258 (3-4): 485-489.
    [6] Costes J P, Lamere J F, Lepetit C, et al. Synthesis, Crystal Structures, and Nonlinear Optical (NLO) Properties of New Schiff-Base Nickel(II) Complexes. Toward a New Type of Molecular Switch?[J]. Inorg Chem, 2005, 44 (6): 1973-1982.
    [7] Coe B J, Harris J A, Jones L A, et al. Syntheses and Properties of Two-Dimensional Charged Nonlinear Optical Chromophores Incorporating Redox-Switchable cis-Tetraammineruthenium(II) Centers[J]. J Am Chem Soc, 2005, 127 (13): 4845-4859
    [8] Coe B J, Harris J A, Brunschwig B S, et al. Molecular Salts with Diquat-Based Electron Acceptors for Nonlinear Optics[J]. J Am Chem Soc, 2005, 127 (10): 3284-3285.
    [9] Liu C-G, Qiu Y-Q, Su Z-M, et al. Computational Study on Second-Order Nonlinear Response of a Series of Two-Dimensional Carbazole-Cored Chromophores[J]. The Journal of Physical Chemistry C, 2008, 112 (17): 7021-7028.
    [10] Qiu Y-Q, Fan H-L, Sun S-L, et al. Theoretical Study on the Relationship between Spin Multiplicity Effects and Nonlinear Optical Properties of the Pyrrole Radical (C4H4N.)[J]. The Journal of Physical Chemistry A, 2007, 112 (1): 83-88.
    [11] Janjua M R S A, Liu C-G, Guan W, et al. Prediction of Remarkably Large Second-Order Nonlinear Optical Properties of Organoimido-Substituted Hexamolybdates[J]. The Journal of Physical Chemistry A, 2009, 113 (15): 3576-3587.
    [12] Muhammad S, Liu C, Zhao L, et al. A theoretical investigation of intermolecular interaction of a phthalimide based“on–off”sensor with different halide ions: tuning its efficiency and electro-optical properties[J]. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), 2009, 122 (1): 77-86.
    [13] Coe B J. Switchable Nonlinear Optical Metallochromophores with Pyridinium Electron Acceptor Groups[J]. Acc Chem Res, 2006, 39 (6): 383-393.
    [14] Yamaguchi S, Shirasaka T, Akiyama S, et al. Dibenzoborole-Containingπ-Electron Systems: Remarkable Fluorescence Change Based on the“On/Off”Control of the pπ?π* Conjugation[J]. J Am Chem Soc, 2002, 124 (30): 8816-8817.
    [15] Yamaguchi S, Wakamiya A. Boron as a key component for newπ-electron material[J] Pure Appl Chem2006, 78, 1413
    [16] Yamaguchi S, Akiyama S and Tamao K. Colorimetric Fluoride Ion Sensing by Boron-Containingπ-Electron Systems[J]. J Am Chem Soc, 2001, 123 (46): 11372-11375.
    [17] Allinger N L and Siefert J H. Organic quantum chemistry. XXXIII. Electronic spectra and rotational barriers of vinylborane, allyl cation, and related compounds[J]. J Am Chem Soc, 1975, 97 (4): 752-760.
    [18] Thanthiriwatte K S and Gwaltney S R. Excitation Spectra of Dibenzoborole Containingπ-Electron Systems:? Controlling the Electronic Spectra by Changing the pπ?π* Conjugation[J]. The Journal of Physical Chemistry A, 2006, 110 (7): 2434-2439.
    [19] Shcheslavskiy V I, Petrov G I and Yakovlev V V. Nonlinear optical properties of collagen in solution[J]. Chem Phys Lett, 2005, 402 (1-3): 170-174.
    [20] Ghosh S, Krishnan A, Das P K, et al. Determination of Critical Micelle Concentration by Hyper-Rayleigh Scattering[J]. J Am Chem Soc, 2003, 125 (6): 1602-1606
    [21] Asselberghs I, Clays K, Persoons A, et al. Switching of molecular second-order polarisability in solution[J]. J Mater Chem, 2004, 14 (19): 2831-2839.
    [22] Frisch et al. Gaussian 03, rev. C.02; Gaussian, Inc.: Pittsburgh, PA, 2003.
    [23] Gorelsky S I and Lever A B P. Electronic structure and spectra of ruthenium diimine complexes by density functional theory and INDO/S. Comparison of the two methods[J]. J Organomet Chem, 2001, 635 (1-2): 187-196.
    [24] Jacquemin D, Preat J, Wathelet V, et al. Thioindigo Dyes:? Highly Accurate Visible Spectra with TD-DFT[J]. J Am Chem Soc, 2006, 128 (6): 2072-2083.
    [25] Gahungu G, Zhang B and Zhang J. Design of Tetrathiafulvalene-Based Phosphazenes Combining a Good Electron-Donor Capacity and Possible Inclusion Adduct Formation (Part II)[J]. The Journal of Physical Chemistry C, 2007, 111 (12): 4838-4846.
    [26] Onsager L. Electric Moments of Molecules in Liquids[J]. J Am Chem Soc, 1936, 58 (8): 1486-1493.
    [27] Rutkowski K S, Melikova S M, Rodziewicz P, et al. Solvent effect on the blue shifted weakly H-bound F3 CH...FCD3 complex[J]. J Mol Struct, 2008, 880 (1-3): 64-68.
    [28] Dehu C, Meyers F and Bredas J L. Donor-acceptor diphenylacetylenes: geometric structure, electronic structure, and second-order nonlinear optical properties[J]. J Am Chem Soc, 1993, 115 (14): 6198-6206.
    [29] Srinivasan P, Kanagasekaran T and Gopalakrishnan R. A Highly Efficient Organic Nonlinear Optical Donor?Acceptor Single Crystal: l-Valinium Picrate[J]. Crystal Growth & Design, 2008, 8 (7): 2340-2345.
    [30] Ahmed A B, Feki H, Abid Y, et al. Structural, vibrational and theoretical studies of l-histidine bromide[J]. J Mol Struct, 2008, 888 (1-3): 180-186.
    [31] Yang M and Champagne B. Large Off-Diagonal Contribution to the Second-Order Optical Nonlinearities ofΛ-Shaped Molecules[J]. The Journal of Physical Chemistry A, 2003, 107 (19): 3942-3951.
    [32] Kawachi A, Tani A, Shimada J, et al. Synthesis of B/Si Bidentate Lewis Acids, o-(Fluorosilyl)(dimesitylboryl)benzenes, and Their Fluoride Ion Affinity[J]. J Am Chem Soc, 2008, 130 (13): 4222-4223.
    [33] Boys S F and Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors[J]. Molecular Physics: An International Journal at the Interface Between Chemistry and Physics, 1970, 19 (4): 553 - 566.
    [34] Kawachi A, Tani A, Shimada J, et al. Synthesis of B/Si Bidentate Lewis Acids, o-(Fluorosilyl)(dimesitylboryl)benzenes, and Their Fluoride Ion Affinity[J]. J Am Chem Soc, 2008, 130 (13): 4222-4223.
    [35] Boys S F and Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors[J]. Molecular Physics: An International Journal at the Interface Between Chemistry and Physics, 1970, 19 (4): 553 - 566.
    [36] Li Z and Zhang J. An efficient theoretical study on host-guest interactions of a fluoride chemosensor with F-, Cl- and Br[J]. Chem Phys, 2006, 331 (1): 159-163.
    [37] Hirano J, Hamase K and Zaitsu K. Evaluation of a simple and novel fluorescent anion sensor, 4-quinolone, and modification of the emission color by substitutions based on molecular orbital calculations[J]. Tetrahedron, 2006, 62 (43): 10065-10071.
    [1] de la Torre G, Vazquez P, Agullo-Lopez F, et al. Role of Structural Factors in the Nonlinear Optical Properties of Phthalocyanines and Related Compounds[J]. Chem Rev, 2004, 104 (9): 3723-3750.
    [2] Goodson T G. Optical Excitations in Organic Dendrimers Investigated by Time-Resolved and nonlinear Optical Spectroscopy[J]. Acc Chem Res, 2004, 38 (2): 99-107.
    [3] Shelton D P and Rice J E. Measurements and calculations of the hyperpolarizabilities of atoms and small molecules in the gas phase[J]. Chem Rev, 1994, 94 (1): 3-29.
    [4] Coe B J, Foxon S P, Harper E C, et al. Nonlinear Optical and Related Properties of Iron(II) Pentacyanide Complexes with Quaternary Nitrogen Electron Acceptor Units[J]. Inorg Chem, 2009, 48 (4): 1370-1379.
    [5] Janjua M R S A, Liu C-G, Guan W, et al. Prediction of Remarkably Large Second-Order Nonlinear Optical Properties of Organoimido-Substituted Hexamolybdates[J]. J Phys Chem A, 2009, 113 (15): 3576-3587.
    [6] Muhammad S, Xu H, Liao Y, et al. Quantum Mechanical Design and Structure of the Li@B10H14 Basket with a Remarkably Enhanced Electro-Optical Response[J]. J Am Chem Soc, 2009, 131 (33): 11833-11840.
    [7] Ward M D. METAL-METAL INTERACTIONS IN BINUCLEAR COMPLEXES EXHIBITING MIXED-VALENCY - MOLECULAR WIRES AND SWITCHES[J]. Chem Soc Rev, 1995, 24 (2): 121-134.
    [8] Malaun M, Reeves Z R, Paul R L, et al. Reversible switching of the first hyperpolarisability of an NLO-active donor-acceptor molecule based on redox interconversion of the octamethylferrocene donor unit[J]. Chem Comm, 2001 (1): 49-50.
    [9] Samoc M, Gauthier N, Cifuentes M P, et al. Electrochemical Switching of the Cubic Nonlinear Optical Properties of an Aryldiethynyl-Linked Heterobimetallic Complex between Three Distinct States13[J]. Angewandte Chemie International Edition, 2006, 45 (44): 7376-7379.
    [10] Gilat S L, Kawai S H and Lehn J M. LIGHT-TRIGGERED MOLECULAR DEVICES - PHOTOCHEMICAL SWITCHING OF OPTICAL AND ELECTROCHEMICAL PROPERTIES IN MOLECULAR WIRE TYPE DIARYLETHENE SPECIES[J]. Chemistry-a European Journal, 1995, 1 (5): 275-284.
    [11] Muhammad S, Janjua M R S A and Su Z. Investigation of Dibenzoboroles Havingπ-Electrons: Toward a New Type of Two-Dimensional NLO Molecular Switch?[J]. J Phys Chem C, 2009, 113 (28): 12551-12557.
    [12] Houbrechts S, Clays K, Persoons A, et al. Hyper-Rayleigh scattering investigation of nitrobenzyl pyridine model compounds for optical modulation of the hyperpolarisability[J]. Chem Phys Lett, 1996, 258 (3-4): 485-489.
    [13] Asselberghs I, Zhao Y, Clays K, et al. Reversible switching of molecular second-order nonlinear optical polarizability through proton-transfer[J]. Chem Phys Lett, 2002, 364 (3-4): 279-283.
    [14] Coe B J. Molecular materials possessing switchable quadratic nonlinear optical properties[J]. Chemistry-a European Journal, 1999, 5 (9): 2464-2471.
    [15] Delaire J A and Nakatani K. Linear and Nonlinear Optical Properties of Photochromic Molecules and Materials[J]. Chem Rev, 2000, 100 (5): 1817-1846.
    [16] Man?ois F, Pozzo J-L, Pan J, et al. Two-Way Molecular Switches with Large Nonlinear Optical Contrast[J]. Chemistry - A European Journal, 2009, 15 (11): 2560-2571.
    [17] Coe B J. Switchable Nonlinear Optical Metallochromophores with Pyridinium Electron AcceptorGroups[J]. Acc Chem Res, 2006, 39 (6): 383-393.
    [18] Plaquet A, Guillaume M, Champagne B, et al. In silico optimization of merocyanine-spiropyran compounds as second-order nonlinear optical molecular switches[J]. Physical Chemistry Chemical Physics, 2008, 10 (41): 6223-6232.
    [19] Aubert V, Guerchais V, Ishow E, et al. Efficient Photoswitching of the Nonlinear Optical Properties of Dipolar Photochromic Zinc(II) Complexes13[J]. Angewandte Chemie International Edition, 2008, 47 (3): 577-580.
    [20] Lacroix P G, Lepetit C and Daran J C. Switching nonlinear optical properties by proton transfer in hydrogen-bonded merocyanine dyes: a theoretical investigation at the semi-empirical level[J]. New J Chem, 2001, 25 (3): 451-457.
    [21] Spassova M, Kolev T, Kanev I, et al. Structure and nonlinear electrical properties of squaric acid derivatives: a theoretical study of the conformation and deprotonation effects[J]. Journal of Molecular Structure: THEOCHEM, 2000, 528 (1-3): 151-159.
    [22] Muhammad S, Liu C G, Zhao L, et al. A theoretical investigation of intermolecular interaction of a phthalimide based "on-off" sensor with different halide ions: tuning its efficiency and electro-optical properties[J]. Theoretical Chemistry Accounts, 2009, 122 (1-2): 77-86.
    [23] Li Z and Zhang J. An efficient theoretical study on host-guest interactions of a fluoride chemosensor with F-, Cl- and Br[J]. Chem Phys, 2006, 331 (1): 159-163.
    [24] Zhang M, Li M, Li F, et al. A novel Y-type, two-photon active fluorophore: Synthesis and application in ratiometric fluorescent sensor for fluoride anion[J]. Dyes and Pigments, 2008, 77 (2): 408-414.
    [25] Abe J, Shirai Y, Nemoto N, et al. Heterocyclic Pyridinium Betaines, A New Class of Second-Order Nonlinear Optical Materials: Combined Theoretical and Experimental Investigation of First-Order Hyperpolarizability through ab Initio, INDO/S, and Hyper-Rayleigh Scattering[J]. J Phys Chem B, 1997, 101 (4): 576-582.
    [26] Abe J, Shirai Y, Nemoto N, et al. Manipulation of Dipole Moment and Hyperpolarizability Based on Heterocyclic Pyridinium Betaine Structures: Ab Initio and INDO/S MO Calculations[J]. J Phys Chem B, 1997, 101 (10): 1910-1915.
    [27] Batista R M F, Costa S P G, Belsley M, et al. Synthesis and second-order nonlinear optical properties of new chromophores containing benzimidazole, thiophene, and pyrrole heterocycles[J]. Tetrahedron, 2007, 63 (39): 9842-9849.
    [28] Becke A D. DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE[J]. J Chem Phys, 1993, 98 (7): 5648-5652.
    [29] Lee C T, Yang W T and Parr R G. DEVELOPMENT OF THE COLLE-SALVETTI CORRELATION-ENERGY FORMULA INTO A FUNCTIONAL OF THE ELECTRON-DENSITY[J]. Physical Review B, 1988, 37 (2): 785-789
    [30] Stephens P J, Devlin F J, Chabalowski C F, et al. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields[J]. J Phys Chem, 1994, 98 (45): 11623-11627.
    [31] Chen W, Li Z-R, Wu D, et al. The Structure and the Large Nonlinear Optical Properties of Li@Calix[4]pyrrole[J]. J Am Chem Soc, 2005, 127 (31): 10977-10981.
    [32] Liu C-G, Qiu Y-Q, Su Z-M, et al. Computational Study on Second-Order Nonlinear Response of a Series of Two-Dimensional Carbazole-Cored Chromophores[J]. J Phys Chem C, 2008, 112 (17): 7021-7028.
    [33] Davies J A, Elangovan A, Sullivan P A, et al. Rational Enhancement of Second-Order Nonlinearity: Bis-(4-methoxyphenyl)hetero-aryl-amino Donor-Based Chromophores: Design, Synthesis, and Electrooptic Activity[J]. J Am Chem Soc, 2008, 130 (32): 10565-10575.
    [34] van Mourik T, Price S L and Clary D C. Ab Initio Calculations on Uracil?Water[J]. J Phys Chem A, 1999, 103 (11): 1611-1618.
    [35] Hirano J, Hamase K and Zaitsu K. Evaluation of a simple and novel fluorescent anion sensor, 4-quinolone, and modification of the emission color by substitutions based on molecular orbital calculations[J]. Tetrahedron, 2006, 62 (43): 10065-10071.
    [36] Roothaan C C J. New Developments in Molecular Orbital Theory[J]. Reviews of Modern Physics, 1951, 23 69.
    [37] Perdew J P, Burke K and Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Phys Rev Lett, 1996, 77 3865.
    [38] Foresman J B, Head-Gordon M, Pople J A, et al. Toward a systematic molecular orbital theory for excited states[J]. J Phys Chem, 1992, 96 (1): 135-149.
    [39] Stratmann R E, Scuseria G E and Frisch M J. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules[J]. J Chem Phys, 1998, 109 (19): 8218-8224.
    [40] Cossi M, Rega N, Scalmani G, et al. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model[J]. J Comput Chem, 2003, 24 (6): 669-681.
    [41] Andrade S G, Gon?alves L C S and Jorge F E. Scaling factors for fundamental vibrational frequencies and zero-point energies obtained from HF, MP2, and DFT/DZP and TZP harmonic frequencies[J]. Journal of Molecular Structure: THEOCHEM, 2008, 864 (1-3): 20-25.
    [42] Boys, S F and Bernardi, F[J] Mol Phy, 1970, 19,553-556.
    [43] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03, Revision C. 02, Gaussian, Inc., Wallingford, CT 2004.
    [44] Kanis D R, Ratner M A and Marks T J. Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects[J]. Chem Rev, 1994, 94 (1): 195-242.
    [45] Oudar J L and Chemla D S. HYPERPOLARIZABILITIES OF NITROANILINES AND THEIR RELATIONS TO EXCITED-STATE DIPOLE-MOMENT[J]. J Chem Phys, 1977, 66 (6): 2664-2668.
    [46] Zhang T-G, Zhao Y, Asselberghs I, et al. Design, Synthesis, Linear, and Nonlinear Optical Properties of Conjugated (Porphinato)zinc(II)-Based Donor?Acceptor Chromophores Featuring Nitrothiophenyl and Nitrooligothiophenyl Electron-Accepting Moieties[J]. J Am Chem Soc, 2005, 127 (27): 9710-9720.
    [47] Buckingham A D. Molecular quadrupole moments. [J]. Quart. Rev. Chem. Soc., (London), 1959, 13 183.
    [48] Rodembusch F S, Buckup T, Segala M, et al. First hyperpolarizability in a new benzimidazole derivative[J]. Chem Phys, 2004, 305 (1-3): 115-121.
    [49] Carella A, Centore R, Mager L, et al. Crosslinkable organic glasses with quadratic nonlinear optical activity[J]. Organic Electronics, 2007, 8 (1): 57-62.
    [50] Huang Y and Kenttamaa H. Theoretical Estimations of the 298 K Gas-Phase Acidities of the Purine-Based Nucleobases Adenine and Guanine[J]. J Phys Chem A, 2004, 108 (20): 4485-4490.
    [51] Kumari S, Devi C L, Prabhakar S, et al. Estimation of Gas-Phase Acidities of Deoxyribonucleosides: An Experimental and Theoretical Study[J]. J Am Soc Mass Spectrom, 2010, 21 (1): 136-143.
    [52] Linstrom P J and Mallard W G. Eds., NIST Chemistry WebBook, NIST Standard Reference Database Number 69; July 2001, National Institute of Standards and Technology, Gaithersburg MD, 20899 (http://webbook.nist.gov).
    [53] Wiberg K B. Substituent Effects on the Acidity of Weak Acids. 2. Calculated Gas-Phase Acidities of Substituted Benzoic Acids[J]. J Org Chem, 2002, 67 (14): 4787-4794.
    [54] Pan F, Wong M S, Gramlich V, et al. A Novel and Perfectly Aligned Highly Electro?Optic Organic Cocrystal of a Merocyanine Dye and 2,4-Dihydroxybenzaldehyde[J]. J Am Chem Soc, 1996, 118 (26): 6315-6316.
    [55] Champagne, B Legrand, T Perpete, et al. Coll. Czech, Chem. Commun., 1998, 63, 1295-1308.
    [1] Kirtman B, Champagne B and Bishop D M. Electric Field Simulation of Substituents in Donor-Acceptor Polyenes: A Comparison with Ab Initio Predictions for Dipole Moments, Polarizabilities, and Hyperpolarizabilities[J]. J Am Chem Soc, 2000, 122 (33): 8007-8012.
    [2] Champagne B, Spassova M, Jadin J-B, et al. Ab initio investigation of doping-enhanced electronic and vibrational second hyperpolarizability of polyacetylene chains[J]. The Journal of Chemical Physics, 2002, 116 (9): 3935-3946.
    [3] Marder S R, Torruellas W E, Blanchard-Desce M, et al. Large Molecular Third-Order Optical Nonlinearities in Polarized Carotenoids[J]. Science, 1997, 276 (5316): 1233-1236.
    [4] Avramopoulos A, Reis H, Li J, et al. The Dipole Moment, Polarizabilities, and First Hyperpolarizabilities of HArF. A Computational and Comparative Study[J]. J Am Chem Soc, 2004, 126 (19): 6179-6184.
    [5] Le Bouder T, Maury O, Bondon A, et al. Synthesis, Photophysical and Nonlinear Optical Properties of Macromolecular Architectures Featuring Octupolar Tris(bipyridine) Ruthenium(II) Moieties: Evidence for a Supramolecular Self-Ordering in a Dentritic Structure[J]. J Am Chem Soc, 2003, 125 (40): 12284-12299.
    [6] Clays K, Wostyn K, Persoons A, et al. Experimental study of the second-order non-linear optical properties of tetrathia-[7]-helicene[J]. Chem Phys Lett, 2003, 372 (3-4): 438-442.
    [7] Coe B J, Harris J A, Asselberghs I, et al. Quadratic Nonlinear Optical Properties of N-Aryl Stilbazolium Dyes[J]. Adv Funct Mater, 2002, 12 (2): 110-116.
    [8] Datta A. Role of Metal Ions (M = Li+, Na+, and K+) and Pore Sizes (Crown-4, Crown-5, and Crown-6) on Linear and Nonlinear Optical Properties: New Materials for Optical Birefringence[J]. J Phys Chem C, 2009, 113 (8): 3339-3344.
    [9] Marder S R, Gorman C B, Meyers F, et al. A Unified Description of Linear and Nonlinear Polarization in Organic Polymethine Dyes[J]. Science, 1994, 265 (5172): 632-635.
    [10] Blanchard-Desce M, Alain V, Bedworth P V, et al. Large Quadratic Hyperpolarizabilities with Donor-Acceptor Polyenes Exhibiting Optimum Bond Length Alternation: Correlation Between Structure and Hyperpolarizability[J]. Chem Eur J, 1997, 3 (7): 1091-1104.
    [11] Zyss J and Ledoux I. Nonlinear optics in multipolar media: theory and experiments[J]. Chem Rev, 1994, 94 (1): 77-105.
    [12] Janjua M R S A, Liu C-G, Guan W, et al. Prediction of Remarkably Large Second-Order Nonlinear Optical Properties of Organoimido-Substituted Hexamolybdates[J]. J Phys Chem A, 2009, 113 (15): 3576-3587.
    [13] Yang J-S, Liau K-L, Li C-Y, et al. Meta Conjugation Effect on the Torsional Motion of Aminostilbenes in the Photoinduced Intramolecular Charge-Transfer State[J]. J Am Chem Soc, 2007, 129 (43): 13183-13192.
    [14] Maury O, Viau L, Sénéchal K, et al. Synthesis, Linear, and Quadratic-Nonlinear Optical Properties of Octupolar D3 and D2d Bipyridyl Metal Complexes [J]. Chem Eur J, 2004, 10 (18): 4454-4466.
    [15] Lee M J, Piao M, Jeong M Y, et al. Novel azo octupoles with large first hyperpolarizabilities[J]. J Mater Chem, 2003, 13 (5): 1030-1037.
    [16] Lee S H, Park J R, Jeong M-Y, et al. First Hyperpolarizabilities of 1,3,5-Tricyanobenzene Derivatives: Origin of Largerβ0 Values for the Octupoles than for the Dipoles[J]. ChemPhysChem, 2006, 7 (1): 206-212.
    [17] Coe B J, Jones L A, Harris J A, et al. Highly Unusual Effects ofπ-Conjugation Extension on the Molecular Linear and Quadratic Nonlinear Optical Properties of Ruthenium(II) Ammine Complexes[J]. J Am Chem Soc, 2002, 125 (4): 862-863.
    [18] Coe B J, Foxon S P, Harper E C, et al. Nonlinear Optical and Related Properties of Iron(II) Pentacyanide Complexes with Quaternary Nitrogen Electron Acceptor Units[J]. Inorg Chem, 2009, 48 (4): 1370-1379.
    [19] Meyers F, Marder S R, Pierce B M, et al. Electric Field Modulated Nonlinear Optical Properties of Donor-Acceptor Polyenes: Sum-Over-States Investigation of the Relationship between Molecular Polarizabilities (.alpha., .beta., and .gamma.) and Bond Length Alternation[J]. J Am Chem Soc, 1994, 116 (23): 10703-10714.
    [20] Di Bella S. Second-order nonlinear optical properties of transition metal complexes[J]. Chem Soc Rev, 2001, 30 (6): 355-366.
    [21] Lacroix Pascal G. Second-Order Optical Nonlinearities in Coordination Chemistry: The Case of Bis(salicylaldiminato)metal Schiff Base Complexes[J]. European Journal of Inorg. Chem., 2001, 2001 (2): 339-348.
    [22] Coe B J. Switchable Nonlinear Optical Metallochromophores with Pyridinium Electron Acceptor Groups[J]. Acc Chem Res, 2006, 39 (6): 383-393.
    [23] Kanis D R, Ratner M A and Marks T J. Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects[J]. Chem Rev, 1994, 94 (1): 195-242.
    [24] Jing Y-Q, Li Z-R, Wu D, et al. What Is the Role of the Complexant in the Large First Hyperpolarizability of Sodide Systems Li(NH3)nNa (n = 1?4)?[J]. J Phys Chem B, 2006, 110 (24): 11725-11729.
    [25] Chen W, Li Z-R, Wu D, et al. The Structure and the Large Nonlinear Optical Properties of Li@Calix[4]pyrrole[J]. J Am Chem Soc, 2005, 127 (31): 10977-10981.
    [26] Li Z-J, Li Z-R, Wang F-F, et al. A Dependence on the Petal Number of the Static and Dynamic First Hyperpolarizability for Electride Molecules: Many-Petal-Shaped Li-Doped Cyclic Polyamines[J]. J Phys Chem A, 2009, 113 (12): 2961-2966.
    [27] Xu H-L, Li Z-R, Wu D, et al. Lithiation and Li-Doped Effects of [5]Cyclacene on the Static First Hyperpolarizability[J]. J Phys Chem C, 2009, 113 (12): 4984-4986.
    [28] Chen W, Li Z-R, Wu D, et al. Inverse Sodium Hydride: Density Functional Theory Study of the Large Nonlinear Optical Properties[J]. J Phys Chem A, 2005, 109 (12): 2920-2924.
    [29] Xu H-L, Li Z-R, Wu D, et al. Structures and Large NLO Responses of New Electrides:? Li-Doped Fluorocarbon Chain[J]. J Am Chem Soc, 2007, 129 (10): 2967-2970.
    [30] Chen W, Li Z-R, Wu D, et al. Theoretical Investigation of the Large Nonlinear Optical Properties of (HCN)n Clusters with Li Atom[J]. J Phys Chem B, 2004, 109 (1): 601-608.
    [31] Ma F, Li Z-R, Xu H-L, et al. Lithium Salt Electride with an Excess Electron Pair A Class of Nonlinear Optical Molecules for Extraordinary First Hyperpolarizability[J]. J Phys Chem A, 2008, 112 (45): 11462-11467.
    [32] Chen W, Li Z-R, Wu D, et al. Nonlinear Optical Properties of Alkalides Li+(calix[4]pyrrole)M- (M = Li, Na, and K):? Alkali Anion Atomic Number Dependence[J]. J Am Chem Soc, 2006, 128 (4): 1072-1073.
    [33] Wang F-F, Li Z-R, Wu D, et al. Structures and Considerable Static First Hyperpolarizabilities: New Organic Alkalides (M+@n6adz)M‘- (M, M‘= Li, Na, K; n = 2, 3) with Cation Inside and Anion Outside of the Cage Complexants[J]. J Phys Chem B, 2008, 112 (4): 1090-1094.
    [34] Dye J L. Electrides: From 1D Heisenberg Chains to 2D Pseudo-Metals?[J]. Inorg Chem, 1997, 36 (18): 3816-3826.
    [35] Ichimura, A S Dye, J L. J. Am. Chem. Soc. 2002, 124, 1170-1171.
    [36] Dye, J L. Science 2003, 301, 607-608
    [37] Nguyen K A and Lammertsma K. Structure, Bonding, and Stability of Small Boron?Lithium Clusters[J]. J Phys Chem A, 1998, 102 (9): 1608-1614.
    [38] Srinivas G N, Hamilton T P, Boatz J A, et al. Theoretical Studies of B2Lin (n = 1?4)[J]. J Phys Chem A, 1999, 103 (48): 9931-9937.
    [39] Wasczcak M D, Wang Y, Garg A, et al. Syntheses and Structural and Electrochemical Characterizations of Vanadatricarbadecaboranyl Analogues of Vanadocene and the Structural Characterization of the [Li(CH3CN)2+](6-CH3-nido-5,6,9-C3B7H9-) Tricarbadecaboranyl Anion[J]. J Am Chem Soc, 2001, 123 (12): 2783-2790.
    [40] Hong E, Kim Y and Do Y. A Neutral Group 4 Poly(methyl methacrylate) Catalyst Derived from o-Carborane[J]. Organometallics, 1998, 17 (14): 2933-2935. Gaines D F. Chemistry of pentaborane(9)[J]. Acc Chem Res, 1973, 6 (12): 416-421.
    [41] Nguyen, K. A.; Lammertsma, K. J. Phys. Chem. A 1998, 102, 1608-1614.
    [42] Srinivas, G. N.; Hamilton, T. P.; Boatz, J. A.; Lammertsma, K. J. Phys. Chem. A. 1999, 103, 9931-9937.
    [42] Brain P T, Hnyk D, Rankin D W H, et al. The molecular structures of pentaborane(11), B5H11, and hexaborane(12), B6H12, in the gas phase as determined by electron diffraction and ab initio calculations[J]. Polyhedron, 1994, 13 (9): 1453-1466.
    [43] Wasczcak M D, Wang Y, Garg A, et al. Syntheses and Structural and Electrochemical Characterizations of Vanadatricarbadecaboranyl Analogues of Vanadocene and the Structural Characterization of the [Li(CH3CN)2+](6-CH3-nido-5,6,9-C3B7H9-) Tricarbadecaboranyl Anion[J]. J Am Chem Soc, 2001, 123 (12): 2783-2790.
    [44] Williams R. E.: Adv. Inorg. Chem. Radiochem. 1976, 18, 67-142.
    [45] Gaines D F and Beall H. Hydrogen?Deuterium Exchange in Decaborane(14): Mechanistic Studies[J]. Inorg Chem, 2000, 39 (8): 1812-1813.
    [46] Parry R W and Edwards L J. Systematics in the Chemistry of the Boron Hydrides[J]. J Am Chem Soc, 1959, 81 (14): 3554-3560.
    [47] Brain, P T Hnykt, D Rankins, DW H et al. Polyhedron 1994, 13, 1453-1466.
    [48] Stanko, V I Chapovskii, Yu A Brattsev, V A Zakharkin, L I Russ. Chem. Rev. 1965, 34, 424-439.
    [49] Laws, E A Stevens, R M Lipscomb, W N J. Am. Chem. Soc. 1972, 94, 4467-4474.
    [50] Sioutis, I and Pitzer, R M J. Phys Chem A 2006, 110, 12528-12534.
    [51] Gaines, D.F. Inorg. Chem. 2000, 39, 1812-1813.
    [52] Kasper J S, Lucht C M and Harker D. The crystal structure of decaborane, B10H14[J]. Acta Crystallographica, 1950, 3 (6): 436-455.
    [53] Wermer J R, Hollander O, Huffman J C, et al. Iodide Complexes of Decaborane(14) and 2,4-Diiododecaborane(14). The X-ray Crystal Structure of [P(C6H5)3CH3][2,4-I2B10H12I][J] Inorg Chem, 1995, 34 (11) 3065-3071
    [54] Keller W E and Johnston H L. A Note on the Vibrational Frequencies and the Entropy of Decaborane[J]. The Journal of Chemical Physics, 1952, 20 (11): 1749-1751.
    [55] Pimentel G C and Pitzer K S. The Ultraviolet Absorption and Luminescence of Decaborane[J]. The Journal of Chemical Physics, 1949, 17 (10): 882-884.
    [56] Ionov S P and Kuznetsov N T. Energetic aspects in description of metal-hydrogen-boron bonds in (B10H14)2Pt and (B8C12H14)2Pt complexes[J] Russ. J. Coord. Chem. 2005, 31, 138– 141
    [57] Rasul G, Prakash G K S and Olah G A. Protonated Borane?Lewis Base Complexes BH4X+ (X = NH3, PH3, H2O, H2S, CO)1[J]. Inorg Chem, 1998, 38 (1): 44-47.
    [58] Rasul G Prakash G K S and Olah G A. Ab initio/GIAO-MP2-calculated structures and (11)B-(13)C NMR chemical shift relationship in hypercoordinate onium-carbonium dications and isoelectronic onium-boronium cations[J] Natl. Acad. Sci. U.S.A. 2002, 99, 9635– 9638.
    [59] Buhl M, Gauss J, Hofmann M, et al. Decisive electron correlation effects on computed boron-11 and carbon-13 NMR chemical shifts. Application of the GIAO-MP2 method to boranes and carbaboranes[J]. J Am Chem Soc, 1993, 115 (26): 12385-12390.
    [60] Frisch et al. Gaussian 03, revision C.02; Gaussian, Inc.: Pittsburgh, PA, 2003.
    [61] Bondi A. van der Waals Volumes and Radii[J]. J Phys Chem, 1964, 68 (3): 441-451.
    [62] Rowland R S and Taylor R. Intermolecular Nonbonded Contact Distances in Organic Crystal Structures: Comparison with Distances Expected from van der Waals Radii[J]. J Phys Chem, 1996, 100 (18): 7384-7391.
    [63] Li Y, Carroll P J and Sneddon L G. Ionic-Liquid-Promoted Decaborane Dehydrogenative Alkyne-Insertion Reactions: A New Route to o-Carboranes[J]. Inorg Chem, 2008, 47 (20): 9193-9202.
    [64] Saika A and Slichter C P. A Note on the Fluorine Resonance Shifts[J]. The Journal of Chemical Physics, 1954, 22 (1): 26-28.
    [65] Wiberg K B, Hammer J D, Keith T A, et al. NMR Chemical Shifts. 2. Interpretation of the Carbon Chemical Shifts in Monocyclic Aromatic Compounds and Carbenes[J]. J Phys Chem A, 1998, 103 (1): 21-27.
    [66] Ramsey N F. Magnetic Shielding of Nuclei in Molecules[J]. Physical Review, 1950, 78 (Copyright (C) 2010 The American Physical Society): 699.
    [67] Wiberg K B, Hammer J D, Zilm K W, et al. NMR Chemical Shifts. 1. The Role of Relative Atomic Orbital Phase in Determining the Sign of the Paramagnetic Terms: ClF, CH3F, CH3NH3+, FNH3+, and HC?CF[J]. J Phys Chem A, 1998, 102 (45): 8766-8773.
    [68] Wiberg K B, Hammer J D, Keith T A, et al. NMR Chemical Shifts. 2. Interpretation of the Carbon Chemical Shifts in Monocyclic Aromatic Compounds and Carbenes[J].Journal Phys Chem A, 1998, 103 (1): 21-27.
    [69] Oudar J L and Chemla D S. Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment[J]. J Chem Phys, 1977, 66 (6): 2664-2668.
    [70] Oudar J L. Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds[J]. The Journal of Chemical Physics, 1977, 67 (2): 446-457.
    [71] Politzer P, Jin P and Murray J S. Atomic polarizability, volume and ionization energy[J]. J Chem Phys, 2002, 117 (18): 8197-8202.
    [1] Bossi A, Licandro E, Maiorana S, et al. Theoretical and Experimental Investigation of Electric Field Induced Second Harmonic Generation in Tetrathia[7]helicenes?[J]. J. Phys. Chem.C, 2008, 112 (21): 7900-7907.
    [2] Plaquet A, Guillaume M, Champagne B, et al. Investigation on the Second-Order Nonlinear Optical Responses in the Keto?Enol Equilibrium of Anil Derivatives[J]. J. Phys. Chem.C, 2008, 112 (14): 5638-5645.
    [3] Coe B J, Fielden J, Foxon S P, et al. Combining Very Large Quadratic and Cubic Nonlinear Optical Responses in Extended, Tris-Chelate Metallochromophores with Sixπ-Conjugated Pyridinium Substituents[J]. J. Am. Chem. Soc., 2010, 132 (10): 3496-3513.
    [4] Coe B J, Foxon S P, Harper E C, et al. Evolution of Linear Absorption and Nonlinear Optical Properties in V-Shaped Ruthenium(II)-Based Chromophores[J]. J. Am. Chem. Soc., 2010, 132 (5): 1706-1723.
    [5] Devi T U, Lawrence N, Ramesh Babu R, et al. Synthesis, Crystal Growth and Characterization of l-Proline Lithium Chloride Monohydrate: A New Semiorganic Nonlinear Optical Material[J]. Crystal Growth & Design, 2009, 9 (3): 1370-1374.
    [6] Dinakaran S and Jerome Das S. Uniaxial growth of nonlinear optical active lithium para-nitrophenolate trihydrate single crystal by Sankaranarayanan–Ramasamy (SR) method [J] J. Cryst. Growth. 2008, 310, 410.
    [7] Cooper S and Dutta P K. 4-Nitrohippuric acid in layered lithium aluminates: onset of nonlinear optical properties[J]. The Journal of Physical Chemistry, 1990, 94 (1): 114-118.
    [8] Sannigrahi A B, Kar T, Niyogi B G, et al. The lithium bond reexamined[J]. Chemical Reviews, 1990, 90 (6): 1061-1076.
    [9] Tong J, Li Y, Wu D, et al. Lithium Bonding Interaction Hyperpolarizabilities of Various Li-Bond Dimers[J]. J. Phys. Chem.A, 2010, 114 (18): 5888-5893.
    [10] Ault B S and Pimentel G C. Matrix isolation infrared studies of lithium bonding[J]. The Journal of Physical Chemistry, 1975, 79 (6): 621-626.
    [11] Chen W, Li Z-R, Wu D, et al. The Structure and the Large Nonlinear Optical Properties of Li@Calix[4]pyrrole[J]. J. Am. Chem. Soc., 2005, 127 (31): 10977-10981.
    [12] Chen W, Li Z-R, Wu D, et al. Inverse Sodium Hydride: Density Functional Theory Study of the Large Nonlinear Optical Properties[J]. J. Phys. Chem.A, 2005, 109 (12): 2920-2924.
    [13] Chen, W.; Li, Z. R.; Wu, D.; Li, Y.; Sun, C. C.; Gu, F. L.; Aoki, Y. J. Am. Chem. Soc. 2006, 128, 1072.
    [14] Xu H-L, Li Z-R, Wu D, et al. Lithiation and Li-Doped Effects of [5]Cyclacene on the Static First Hyperpolarizability[J]. J. Phys. Chem.C, 2009, 113 (12): 4984-4986.
    [15] Ma F, Li Z-R, Xu H-L, et al. Lithium Salt Electride with an Excess Electron Pair A Class of Nonlinear Optical Molecules for Extraordinary First Hyperpolarizability[J]. J. Phys. Chem.A, 2008, 112 (45): 11462-11467.
    [16] Wang F-F, Li Z-R, Wu D, et al. Structures and Considerable Static First Hyperpolarizabilities: New Organic Alkalides (M+@n6adz)M‘- (M, M‘= Li, Na, K; n = 2, 3) with Cation Inside and Anion Outside of the Cage Complexants[J]. J. Phys. Chem.B, 2008, 112 (4): 1090-1094.
    [17] Li Y, Wu D and Li Z-R. Compounds of Superatom Clusters: Preferred Structures and Significant Nonlinear Optical Properties of the BLi6-X (X = F, LiF2, BeF3, BF4) Motifs[J]. Inorg. Chem., 2008, 47 (21): 9773-9778.
    [18] Li Z-J, Li Z-R, Wang F-F, et al. A Dependence on the Petal Number of the Static and Dynamic FirstHyperpolarizability for Electride Molecules: Many-Petal-Shaped Li-Doped Cyclic Polyamines[J]. J. Phys. Chem.A, 2009, 113 (12): 2961-2966.
    [19] Xu H-L, Li Z-R, Wu D, et al. Lithiation and Li-Doped Effects of [5]Cyclacene on the Static First Hyperpolarizability[J]. J. Phys. Chem.C, 2009, 113 (12): 4984-4986.
    [20] Dye J L. Electrides: From 1D Heisenberg Chains to 2D Pseudo-Metals?[J]. Inorg Chem, 1997, 36 (18): 3816-3826.
    [21] Ichimura, A S Dye, J L. J. Am. Chem. Soc. 2002, 124, 1170-1171.
    [22] Dye, J L. Science 2003, 301, 607-608
    [23] Muhammad S, Xu H, Liao Y, et al. Quantum Mechanical Design and Structure of the Li@B10H14 Basket with a Remarkably Enhanced Electro-Optical Response[J]. J. Am. Chem. Soc., 2009, 131 (33): 11833-11840.
    [24] Ewing W C, Carroll P J and Sneddon L G. Crystallographic Characterizations and New High-Yield Synthetic Routes for the Complete Series of 6-X-B10H13 Halodecaboranes (X = F, Cl, Br, I) via Superacid-Induced Cage-Opening Reactions of closo-B10H102?[J]. Inorg. Chem., 2008, 47 (19): 8580-8582.
    [25] Ewing W C, Carroll P J and Sneddon L G. Efficient Syntheses of 5-X-B10H13 Halodecaboranes via the Photochemical (X = I) and/or Base-Catalyzed (X = Cl, Br, I) Isomerization Reactions of 6-X-B10H13[J]. Inorg. Chem., 2010, 49 (4): 1983-1994.
    [26] Kusari U, Carroll P J and Sneddon L G. Ionic-Liquid-Promoted Decaborane Olefin-Hydroboration: A New Efficient Route to 6-R-B10H13 Derivatives[J]. Inorg. Chem., 2008, 47 (20): 9203-9215.
    [27] Li Y and Sneddon L G. Synthesis, Characterization, and Computational Studies of 6-(RR′N)-nido-5,7-C2B8H11: A Polyborane Cluster with a Cage-Boron Having an Exopolyhedral Dative Boron?Nitrogen Double Bond[J]. J. Am. Chem. Soc., 2008, 130 (34): 11494-11502.
    [28] Mazighi K, Carroll P J and Sneddon L G. Transition metal promoted reactions of boron hydrides. 13. Platinum catalyzed synthesis of 6,9-dialkyldecaboranes[J]. Inorg. Chem., 1993, 32 (10): 1963-1969.
    [29] Kusari U, Li Y, Bradley M G, et al. Polyborane Reactions in Ionic Liquids:
    [41] P. Flukiger, H.P. Luthi, S. Portmann, J. Weber, MOLEKEL 4.3, Swiss Center for Scientific Computing, Manno (Switzerland), 2000-2002; S. Portmann, H.P. Luthi. MOLEKEL: An Interactive Molecular Graphics Tool. Chimia 54 (2000) 766.
    [42] Bondi A. van der Waals Volumes and Radii[J]. J Phys Chem, 1964, 68 (3): 441-451.
    [43] Rowland R S and Taylor R. Intermolecular Nonbonded Contact Distances in Organic Crystal Structures: Comparison with Distances Expected from van der Waals Radii[J]. J Phys Chem, 1996, 100 (18): 7384-7391.
    [44] Rice, J. E.; Handy, N. C. J. Chem Phys., 1991, 94, 4959.
    [45] Rice, J. E.; Handy, N. C. Int. J. Quantum Chem. 1992, 43, 91
    [46] Jacquemin, D.; Quinet, O.; Champagne, B.; Andre, J. M. J. Chem. Phys. 2004, 120, 9401. [48] Jacquemin, D.; Champagne, B.; Hattig, C. Chem. Phys. Lett. 2000, 319, 327.
    [49] VIP is calculated in present study by using the previously optimized coordinates at the same MP2/6-31+G* level of theory.
    [50] Oudar J L and Chemla D S. Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment[J]. J Chem Phys, 1977, 66 (6): 2664-2668.
    [51] Oudar J L. Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds[J]. The Journal of Chemical Physics, 1977, 67 (2): 446-457.
    [52] Wu J A, Metiu H, Kirtman B, CLUSTER-MODEL CALCULATION OF RAMAN INTENSITY FOR VIBRATION OF CO ADSORBED ON COPPER[J] Surf. Sci. 1986, 177, 101.
    [53] Librando V and Alparone A. Prediction of mutagenic activity of nitronaphthalene isomers by infrared and Raman spectroscopy[J] (2008), pp.1158-1165.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700