用户名: 密码: 验证码:
多关节式坐标测量系统的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着先进制造技术的快速发展,逆向工程作为一种快速获取物体三维模型的先进技术手段,在现场大型零、部件的几何尺寸检测、质量控制和虚拟现实等众多领域得到了广泛的应用。传统的逆向测量设备是笛卡尔式三坐标测量机,它以其成熟的技术和卓越的性能而享有“测量中心”的美誉,但由于受相互垂直的三轴导轨和安装环境的限制,难以满足工业生产中提出的多种现场测量要求。作为一种新型的多自由度非笛卡尔式坐标测量机,多关节式坐标测量臂应运而生。它以角度测量基准取代三坐标测量机的长度测量基准,具有便携性好、体积小、重量轻、运动灵活、现场测量方便、价格较便宜等优点,因此有着广阔的发展前景。
     本论文主要研究内容包括多关节式坐标测量臂的机械结构、数据采集系统、运动学模型、运动学参数误差分析,系统标定方法关键问题,论文从理论和技术两个层面上在这些问题进行了系统而深入地探讨。
     针对多关节式坐标测量臂的特点,设计了机械结构和数据采集系统。为了保证整个测量设备的测量精度和结构紧凑,关节旋转机构采用了高精度的滚动轴承,并尽可能地减轻旋转机构的晃动;选用滑环结构以实现无限旋转的目的,从而避免了信号线在测量臂内部绞断的问题。数据采集系统采用了先进的嵌入式系统和现场总线技术,减少了信号传输线的数量,降低了机械结构的复杂性,并且提高了数据采集系统的稳定性和可靠性。
     据文献研究表明,测量臂定位误差中的95%是由所建立运动学模型的不准确所引起的。由此可见,运动学模型对测量臂的测量精度极为重要。目前国内外机构或者学者大多仍采用传统的D-H模型来作为测量臂的运动学模型,其缺陷在于它是4自由度参数模型,缺乏完备性。针对这一研究现状,本文提出建立最佳基准位姿原则,便于利用POE公式和Local POE公式来建立测量臂的运动学模型。这两个模型均是6自由度参数模型,可以较好地克服传统D-H模型的缺陷。在所建立的运动学基础上,提出关键杆长的设计原则,以避免测量空间内出现“空腔”现象。
     从三个运动学模型出发,分析了测量臂的误差源成因,建立了运动学修正模型并研究了各运动学参数误差对测量精度的影响规律,为测量臂的设计和制造提供了理论依据。
     为了提高测量臂的测量精度,提出了两种新颖的测量臂标定方法。这两种标定方法的特点是算法易于实现,标定过程简便。它们克服了以往标定方法中所用的优化算法复杂,矩阵病态,初值选取过于苛刻,迭代计算中的求导和求逆会引入较大的计算误差,计算的结果极有可能陷入局部最优解而得不到全局最优解等诸多问题。标定实验结果显示,标定后的测量精度可以满足测量臂的精度要求。
     以上研究工作构成一整套多关节式坐标测量臂所需的关键技术,为测量臂的研发奠定了良好的理论基础和技术支持。本文在上述相关技术的基础上,还对非接触式激光扫描测头中的若干个关键技术做了分析总结和一些探索性的研究,为测量臂整合激光扫描测头作了前瞻性的技术储备。
With the rapid development of advanced manufacture technology, reverse engineering as an advanced technical means to get three-dimensional model of the objects has been widely applied in the field of large parts and components inspection, quality control and virtual reality. Coordinate measuring machine is the traditional Cartesian measurement equipment, and it is called as "Measurement Center" with its mature technology and its superior performance. Due to the constraint of three mutual perpendicular railways and installation environment. It is difficult to meet a variety of on-site measurement requirements in the industry. As a new type of multiple degree of freedom and non-Cartesian coordinate measuring machine, flexible articulated coordinate measuring arm realizes its measuring function via angle measurement, not length measurement. It has vast application and potential prospect, as it possesses the advantages of portability, compact volume, large work range, flexible movement and low price, moreover convenient to on-site measurement.
     The major issue comprises mechanical structure, data acquisition system, kinematic model, error analysis and calibration technology. The dissertation systematically and deeply discusses these issues through theory and technology levels.
     For the characteristics of the flexible articulated coordinate measuring arm, the mechanical structure and data acquisition system are dexterously designed. To ensure the accuracy and compactness of this measurement equipment, rotation components adopt high-precision bearings and are insured their body to reduce shaking by all means. Slip rings are utilized to realize the purpose of unlimited rotation, so as to avoid the signal line within the measuring arm to break down. Data acquisition system adopts the advanced embedded systems and field bus technology, to reduce the number of signal transmission lines, debase the complexity of the mechanical structure and improve stability and reliability of the data acquisition system.
     According to a great deal of literatures, it is proved that the 95% measurement error are caused by the inaccurate kinematic model. Thus, a right kinematic model is extremely important to a measuring arm. Most institutions or scholars at home and abroad still adopt the traditional D-H model as the kinematic model of the measuring arm. But its shortcoming is that it lackes completeness as a 4 degrees of freedom parameter model. Therefore, this study proposes the principle of establishing benchmark gesture so that it is convenient to set up the kinematics model of a measuring arm via the product-of-exponentials formula and the local product-of-exponentials formula. Because the two models are the model of 6 degrees of freedom parameter, they can overcome the shortcomings of the traditional D-H model. Based on the established kinematic model, the principle of the key pole length is proposed to avoid the cavum phenomena in the measurement range.
     Based on the three aforementioned models, error sources of the measuring arm are analysed, the kinematic correction models are established and the influence of each error of the kinematic parameters on measurement precision is detailedly studied, in order to provide a theoretical basis for the design and manufacture of the measuring arm.
     In order to improve the measurement precision of the measuring arm, two novel calibration methods for measuring arm are presented. The advantages of two calibration methods simplifies calibration process and are easy to implement. Compared to the traditional methods, they overcome some shortcomings such as complicated algorithm, matrix ill condition, initial value sensitive, computational error caused by reverse and differential calculation and the obtainment of the local optimization without the global optimization. Calibration results show that measurement precision after calibration meets the precision requirement of the measuring arm.
     These studies constitute a set of key technologies for flexible articulated coordinate measuring arm, and provide favorable theoretical foundation and technical support for developing a measuring arm. In addition, some key technologies of non-contact laser scanner are analyzed, summarized and exploringly studied to accumulate forward-looking technological reserve for integrating laser scanner into the measuring arm.
引文
[1]M.Levoy, K.Pulli, B.Curless, S.Rusinkiewicz. The Digital Michelangelo Project: 3D scanning of large statues. Computer Graphics (SIGGRAPH'00 Proceedings), 2000:131-144.
    [2]张国雄.三坐标测量机的发展趋势.中国机械工程,2002,11(1-2):222-226.
    [3]Bosch J.A, Coordinate Measuring Machines and Systems. New York,USA: Marcel Decker Inc,1995:15-42.
    [4]Bosch J.A, Evolution of Measurement. Coordinate Measuring Machines and Systems. Marcel Dekker Inc,pl-38,1995:1-38.
    [5]Eversheim W, Auge J, Automatic Generation of Part Programs for CNC-Coordinate Measuring Machines Linked to CAD/CAM Systems. Annals of the CIRP,1986,35(1):341-345.
    [6]McMurtry,DavidR. Touch Probe. USA Patent,1992,No:5146691.
    [7]Peggs G.N,A Review of the Methods for the Accurate Metrology of Complex Three-dimensional Components and Artifacts. NPL Report MOM101,1991.
    [8]Jean V.Owen,Making Virtual Manufacturing Real. Manufacturing Engineering. November,1994:33-37.
    [9]Wiens G.J. An Overview of Virtual manufacturing. In Virtual Manufacturing-Proceedings of 2nd Agile Manufacturing Conference(AMC 95), Albuquerque New Mexico,USA 1995,ERI Press:233-243.
    [10]H A Elmaraghy, P H Gu, J Bollinger. Expert system for inspection planning. CIRP Annals 1987,36(1):85-90.
    [11]Winner.W.I. et.al. The Role of Concurrent Engineering in Weapons System Acquisition. IDA Report R338,ADA203/615,Dec,1988.
    [12]Su C.J, et.al. An Integrated Form-Feature-based Design System for Manufacturing. J.of Intelligent Manufacting,1995(6):277-290.
    [13]S Kawabe, F Kimura, T Sata. Generation of NC commands for sculptured surface machining from 3-coordinate measuring data. CIRP Annals,1980.29(1):369-372.
    [14]Wen-Der Ueng, Jiing-Yih Lai, Ji-Liang Doong. Sweep-surface reconstruction from three-dimensional measured data. Computer-aided Design,1998,30(10): 791-805.
    [15]NagelRN.21st Century Manufaeturing Enterprise Strategy. Bethehem:Iacocco Institute, Lehigh Universith,1992.
    [16]Kidd P.T. Agile Manufacturing:Forging New Frontiers Wbringham:Addison-Wesley Publishers,1994.
    [17]Tamas Varady,Ralph R martin,Jordan Cox,Reverse Engineering of Geometric Models An Introduction. CAD,1997,29(4):269-277.
    [18]Liang-C.Chen, GrierC.I.Lin. Reverse Engineering in the Design of Turbine Blades Case Study in Applying the MAMDP. Robotics Computer Integrated Manufacting,2000(16):161-167.
    [19]张国雄.误差修正一提高坐标测量机精度的重要方向.机床,1986,(8):37-39.
    [20]Balsamo.A. Effects of Arbitrary Coefficients of CMM Errors Maps on Probe Qualification. CIRP Annals,1995,44(1):475-478.
    [21]Balsmamo.A, Marques.D, Sartori S. A Method for Thermal Deformation Corrections of CMMs. CIRP Annals,1990,39(1):557-560.
    [22]张善钟.精密仪器精度理论.北京:机械工业出版社,1993.
    [23]Estler W.T, et.al. Error Compensation for CMM Touch Probes. Precision Engineering,1996,19:85-97.
    [24]licker J,K. A Very Compact Two-dimensional Triangulation-based Scanning System for Robot Vision SPIE,1992,1822:217-227.
    [25]宋开臣,张亦群,李书和等.三坐标测量机动态误差补偿的研究.仪器仪表学报,1999,20(1):23-26.
    [26]李广云.非正交系坐标测量系统原理及进展.测绘信息与工程,2003.28(001):4-10.
    [27]Everett H.R. Survey of Collision Avoidance and Ranging Sensors for Mobile Robots. Robotics and Autonomous System,1989,5(1):65-67.
    [28]李广云.激光跟踪测量系统的原理及在车身在线检测中的应用.上海计量测试,2002.29(004):14-18.
    [29]陈毅敏.电子经纬仪在工业测量中的一些应用.地矿测绘,2005,21(4):9-11.
    [30]周维虎,大尺寸空间坐标测量系统精度理论若干问题的研究:[博士学位论文].合肥:合肥工业大学,2000.
    [31]张健新.双目立体视觉技术在工业检测中的应用研究:[博士学位论文].天津:天津大学,1997.
    [32]叶声华,邾继贵.视觉检测技术及应用.中国工程科学,1999.1(001):49-52.
    [33]段峰,王耀南.机器视觉技术及其应用综述.自动化博览,2002,19(003):59-61.
    [34]魏振忠.基于机器视觉的在线柔性三坐标测量系统研究:[博士学位论文].北京:北京航空航天大学,2003.
    [35]王春和,邹定海,叶声华.三维视觉检测与结构光传感器的标定.仪器仪表学报,1994,15(2):119-123.
    [36]邹定海.用于在线测量的视觉检测系统.仪器仪表学报,1995,16(4):337-341.
    [37]C Bradley, G W Vickers. Automated rapid prototyping utilizing laser scanning and free form machining. Annals of the CIRP,1992,41(1):437-440.
    [38]刘得军.三自由度并联机构坐标测量机建模理论及其虚拟原型研究:[博士学位论文].哈尔滨:哈尔滨工业大学,2001.
    [39]B.Parry, D.Beutel. Methods for Performance Evaluation of Articulated Arm Coordinate Measuring Machines.2004,ASME B89.4.22-2004.
    [40]小美濃武久.多闗節型三次元测定楼精度向上.精密工学会志,1986,52(8):1300-1304.
    [41]Werner Lotze. ScanMax-a Novel 3D Coordinate Measuring Machine for the Shop-floor Environment. Measurement,1996,8(1):17-25.
    [42]http://www.faro.com/
    [43]http://www.fexagonmetrology.com/
    [44]http://www.cimcore.com/
    [45]http://www.romer.com/
    [46]http://www.china-aeh.com/
    [47]叶东.多关节坐标测量机的理论和技术:[博士学位论文].哈尔滨:哈尔滨工业大学,1999.
    [48]付中正,叶东,张之江,车仁生.新型关节式三坐标测量机的研究.工具技术,1997,31(1):38-40.
    [49]王学影.关节臂式坐标测量机系统研究:[博士学位论文].天津:天津大学,2008.
    [50]WANG Xueying, LIU Shugui, ZHANG Guoxiong, WANG Bin. Error Analysis of the Articulated Arm Flexible CMM Based on Geometric Method. ISICT2006, 2006,6357Ⅱ:35-39.EI070610408449,ISTP:BFM84.
    [51]汪平平.柔性坐标测量机精度理论及应用技术研究:[博士学位论文].合肥: 合肥工业大学,2006.
    [52]汪平平,费业泰,林慎旺.柔性三坐标测量臂精度的优化设计.应用科学学报.2006,24(4):410-414.
    [53]胡寅.三维扫描仪与逆向工程关键技术研究:[博士学位论文].武汉:华中科技大学,2005.
    [54]Hu Yin, Li Dehua, Chen Zhenyu. A New Calibration Algorithm for Contact 3D Scanner. Advances in System Science and Applications,2003,3(3):390-397.
    [55]胡寅,李德华,肖明智,陆济湘,徐银霞.接触式多关节三维扫描仪研究.计算机工程与应用,2003,39(22):12-15.
    [56]Guanbin Gao, Wen Wang, Keng Lin, et al. Structural parameter identification for articulated arm coordinate measuring machines. Measuring Technology and Mechatronics Automation.2009. ICMTMA'09. International Conference on, Zhangjiajie, Hunan,2009,2:128-131.
    [57]http://www.royalmeasure.com/
    [58]Alamgir Choudhury,Joseph Genin.Kinematics of an N-Degree-of-Freedom Multi-Link Robotic System, The International Journal of Robotics Research, 1989,8(6):132-140.
    [59]马香峰,机器人机构学,北京:机械工业出版社,1991.
    [60]曲庆文,刘源勇,钟振远.关节轴承的设计特点及分析.润’滑与密封,2004,7:102-105.
    [61]http://www.szjingpei.cn/
    [62]薛福连.碳素纤维展新姿.材料开发与应用,2002,17(3):43.
    [63]W.Lotze. Multidimensional measuring probe head improves accuracy and functionality of coordinate measuring machines. Measurement,1994,13(2):91-97.
    [64]Marek Dobosz, Eugeniusz Ratajczyk. Interference Probe Head for Coordinate Measuring Machine. Measurement,1994,14(10):117-123.
    [65]http://www.renishaw.com
    [66]Judd R P, Knasinski. A technique to calibrate industrial robots with experimental verfication. IEEE Trans On Robotics & Automation,1991,6(1):20-30.
    [67]Everett L J, Driels M, Mooring B W. Kinematic modelling for robot calibration. Proceeding 1987 IEEE international Confenrence on Robotics and Automation. New York:IEEE,1987:183-189.
    [68]刘振宇,陈英林,曲道奎等.机器人标定方法研究.机器人,2002,24(5):447-450.
    [69]Denavit J, Hartenberg R S. A kinematic notation for lower pair mechanism based on matrices. J Appl Mech Trans ASME 77(2) (1955), pp:215-221.
    [70]Hayati S A. Robot arm geometric link parameter estimation. Proceeding of the IEEE Confenrence on Decision and Control Including The Symposium on Adaptive Processes 22nd New York:IEEE,1983,3:1477-1483.
    [71]J. Ziegert, P. Datseris. Basic Consideration for Robot Calibration. Proc.1998 IEEE Int.Conf.on Robotics and Automation. Pennsylvania,1998.
    [72]H. Zhuang,Z.S.-Roth. Robot calibration using the CPC error model. Robotics and Computer-Integrated Manufacturing,1992,9(3):227-237.
    [73]H. Zhuang,Z.S. Roth, H. Fumio. A complete and parametrically continuous kinematic model for robot manipulators. IEEE Transactions on Robotics and Automation,1992,8(4):451-463.
    [74]Stone, H., Sanderson, A., Neuman, C., Arm signature identification. IEEE Transactions on Robotics and Automation,1986,3:41-48.
    [75]K. Kazerounian, G.Z. Qian, Kinematic calibration of robotics manipulators. in: ASME Design Technology Conferences:Biennial Mechanisms Conference,1988: 261-266.
    [76]B.W. Mooring, An improved method for identifying the kinematic parameters in a six-axis robot. in:Proceedings of Computers in Engineering Conference and Exhubit,1984:79-84.
    [77]Jorge Santolaria, Juan-Jose Aguilar, Jose-Antonio Yague, Jorge Pastor, Kinematic parameter estimation technique for calibration and repeatability improvement of articulated arm coordinate measuring machines, Precision Engineering,2008,32(4): 251-268.
    [78]理查德·摩雷,李泽湘,夏恩卡·萨斯特里.机器人操作的数学导论,北京:机械工业出版社,1998.
    [79]黄志东.关节式坐标测量机机械结构和测量误差研究: [硕士学位论文].武汉:华中科技大学,2005.
    [80]魏霖,关节式坐标测量机标定的研究:[硕士学位论文].武汉:华中科技大学,2006.
    [81]李中伟.多关节坐标测量机的软件研究:[硕士学位论文].武汉:华中科技大 学,2006.
    [82]于靖军,刘辛军,丁希仑,戴建生.机器人机构学的数学基础.北京:机械工业出版数,2008.
    [83]黄真,赵永生,赵铁石.高等空间机构学.北京:高等教育出版社,2006.
    [84]R S Ball. The theory of screws. Cambridge University Press,1998.
    [85]I-Ming Chen, Guilin Yang, Chee Tat Tan, Song Huat Yeo. Local POE model for robot kinematic calibration. Mechanism and Machine Theory 2001,36(11-12): 1215-1239.
    [86]Roth B,Performance of Manipulators from a Kinematics Viewpoint,NBS Special Publication.NBS,1975:39-61.
    [87]郭丽峰,张国雄,郑志翔.关节臂式坐标测量机数据采集系统的研制.中国机械工程,2007,18(7):829-832.
    [88]Homer L. Eaton. Spatial measuring device. USA Patent,1998,No:5829148
    [89]钟华,吴镇炜,李斌,卜春光.基于CAN的仿人机器人控制器的设计与实现.仪器仪表学报,2005(4):913-915.
    [90]吴元亮,陈小平.基于ARM微控制器LPC2119的CAN总线节点设计.微电子学与计算机,2009,26(6):183-188.
    [91]方舟,深入浅出Visual C++动态链接库(DⅡ)编程,北京:电子工业出版社.
    [92]Shen-wang Lin, Ping-ping Wang, Ye-tai Fei, et al. Simulation of the errors transfer in an articulation-type coordinate measuring machine. The International Journal of Advanced Manufacturing Technology.2006,30:879-886.
    [93]王学影,刘书桂,王斌,张国雄.关节臂式柔性三坐标测量系统的数学模型及误差分析.纳米技术及精密工程,2005,3(4):262~267.
    [94]王学影,刘书桂,张洪涛,张国雄.多关节柔性三坐标测量系统误差分析研究.传感技术学报,2007,20(2):435~438.
    [95]高贯斌,王文,林铿,陈子辰.关节臂式坐标测量机误差仿真系统建模与分析.计算机集成制造系统,2009,15(8):1534-1540.
    [96]Miha Vrhovec, Marko Munih. Improvement of coordinate measuring arm accuracy. Intelligent Robots and Systems,2007. IROS 2007. IEEE/RSJ International Conference on, Oct.29 2007-Nov.2 2007 Page(s):697-702.
    [97]张广军,机器视觉.北京:科学出版社,2005.
    [98]叶东,车仁生.仿人多关节坐标测量机的数学建模及其误差分析.哈尔滨工业大学学报,1999,31(2):28-32.
    [99]叶东,黄庆成,车仁生.多关节坐标测量机的误差模型.光学精密工程,1999,7(2):92-96.
    [100]叶东,陈丽艳,车承钧,车仁生.坐标测量机组合系统.宇航计测技术,1995,15(2):21-26.
    [101]王学影,刘书桂,张国雄,王斌.多关节柔性三坐标测量系统标定方法研究.哈尔滨工业大学学报,2008,40(9):1439-1442.
    [102]WANG Xueying, LIU Shugui, ZHANG Guoxiong, WANG Bin,Guo Lifeng. Calibration Technology of the Articulated Arm Flexible CMM. ISMTII2007, 2007:731-734.
    [103]汪平平,费业泰,林慎旺.柔性三坐标测量臂的标定方法研究.西安交通大学学报,2006,40(3):284-288.
    [104]汪平平,费业泰,尚平,程文涛.柔性坐标测量机参数辨识方法.农业机械学报,2007,38(7):129-132.
    [105]D. Whitney, C. Losinsky, J. Rourke. Industrial Robot forward Calibraion Method and Results. ASME Journal of Dynamic System, Measurement and Control. 1986,108(3):1-8.
    [106]张国雄,林永兵,李杏华等.四路激光跟踪干涉三维坐标测量系统.光学学报,2003,24(3):166-73.
    [107]叶声华,王一,任永杰.基于激光跟踪仪的机器人运动学参数标定方法.天津大学学报,2007,40(2):202-205.
    [108]Ying Bai, Hanqi Zhuang, Zvi S. Roth. Experiment study of PUMA robot calibration using a laser tracking system. IEEE International Workshop on Soft Computing in Industrial Applications,2003:139-144.
    [109]M.Driels, U.Pathre. Vision Based Automatic Theodolite for Robot Calibration. IEEE Journal of Robotics and Automation.1991,7(3):351-360.
    [110]K.Lau, R.Hocken, L.Haynes. Robot Performance Measurements Using Automatic Laser Tracking Techniques. Robotics and Computer Integrated Manufacturing, 1985,2:227-236.
    [111]B.Preising, T.C. Hsia. Robot Performance Measurement and Calibration Using a 3D Computer Vision System. Robotica,1995,13:327-337.
    [112]C.Y. Chen, Y.F. Zheng. A New Robotic Hand/Eye Calibration Method by Active Viewing of a Checkerboard PatternC. IEEE Trans. On Pattern Analysis and Machine Intelligence,1993,15:770-775.
    [113]Louis J.Everett, Thomas w.Ives. A sensor used for measurements in the calibration of production robots. IEEE International Conference on Robotics and Automation, 1993:174-179.
    [114]Robert P.Judd, AI B.Knasinski. A technique to calibrate industrial robots with experimental verification. IEEE Trans. Robot & Automation,1990,6(1):20-30.
    [115]M.R.Driels, L.W.Swayze, L.S.Potter. Full-Pose Calibration of a Robot Manipulator Using a Coordinate-Measuring Machine. Int.J.Adv.Manuf.Technol, 1993,(8):34-44.
    [116]H.W.Stone,A.C.Sanderson,A Prototype Arm Signature Identification System. Proc.1987 IEEE Int.Conf.on Robotics and Automation,Raleigh,1987:175-182.
    [117]Mooring B W, Padavala S S. The effect of kinematics model complexity on manipulator accuracy. IEEE International Conference on Robotics and Automation. Scottsdale, Arizona:IEEE,1989:593-598.
    [118]Kyle S A. Optical methods for calibrating and inspecting robots. Computing and Control Engineering Journal,1995,6(4):166-173.
    [119]吴汉欣,张启先,郑时雄.关节式三坐标测量机系统误差的补偿及其实验.机器人,1988,2(5):50-54.
    [120]M. Z. Huang, D. Masory. A Simple Method of Accuracy Enhancement for Industrial Manipulators. Int.J.Adv.Manuf.Technol.1993,(8):114-122.
    [121]Tang Geo-Ry, Liu Lu-Sin. Calibration methods based on flat surfaces. Mech Mach Theory,1994,29(2):195-206.
    [122]周学才,张启先.距离误差模型在机器人精度研究中的应用.机器人,1995,17(1):1-6.
    [123]Vira N. Spherical coordinate automatic measurement system for robots'end-point sensing. Precision Engineering,1989,11 (3):151-164.
    [124]叶东,黄庆生,车仁生.多关节坐标测量机结构参数的校准.宇航计测技术,1999,19(6):12-16.
    [125]邹璇,李德华.多关节机械臂的坐标模型和参数标定.光学精密工程,2001,9(3):252-256.
    [126]胡寅,肖坤,李德华.基于混合智能算法的参数标定方法.计算机应用,2005,25(8):1913-1915.
    [127]高贯斌,王文,林铿,陈子辰.应用改进模拟退火算法实现关节臂式坐标测量机的参数辨识.光学精密工程,2009,17(10):2499-2505.
    [128]王从军,魏霖,李中伟.仿人关节式坐标测量机的数学建模及标定方法.华中科技大学学报,2007,35(11):1-4.
    [129]龚纯,王正林.精通MATLAB最优化计算.北京:电子工业出版社,2009.
    [130]Eberhart R, Kennedy J. A new optimizer using particle swarm theory. Micro Machine and Human Science,1995, MHS'95, Proceedings of the Sixth International Symposium on, Nagoya,1995:39-43.
    [131]刘怀亮.模拟退火算法及其改进.广州大学学报,2005,4(6):503-506.
    [132]李中伟.基于数字光栅投影的结构光三维测量技术与系统研究:[博士学位论文].武汉:华中科技大学,2009.
    [133]谢勇辉.三维激光扫描系统的标定自动化技术及精度研究:[硕士学位论文].武汉:华中科技大学,2003.
    [134]N. Otsu. A threshold selection method from gray-level histograms. IEEE Trans. on Systems, Man, and Cybernetics,9(1):62-66,1979.
    [135]高鹰,谢胜利.免疫粒子群优化算法.计算机工程与应用,2004,6:4-33.
    [136]李中伟,王从军,史玉升.3D测量系统中的高精度摄像机标定算法.光电工程,2008,35(4):58-63.
    [137]Jorge Santolaria, Jose-Antonio Yague, Roberto Jimenez, Juan-Jose Aguilar. Calibration-based thermal error model for articulated arm coordinate measuring machines, Precision Engineering,2009,33(4):476-485.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700