用户名: 密码: 验证码:
芸薹属种间关系及其人工合成甘蓝型油菜早期世代蛋白质组学的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芸薹属(Brassica)是十字花科(Cruciferae)植物中最为重要的一属,具有重要的经济价值。本研究采用细胞遗传学、分子生物学以及蛋白质组学等方法,对芸薹属中的A和C基本种及人工合成甘蓝型油菜形成过程中蛋白质组的变化规律进行研究,从而为异源四倍体物种的形成及其表观遗传学的研究提供重要的理论依据。主要研究结果如下:
     1.基本种45S rDNA重复序列的有丝分裂与减数分裂的FISH定位分析
     利用荧光原位杂交(FISH)技术,以标记的45S rDNA重复序列作探针,研究了芸薹属3个基本种Brassica rapa,B. oleracea与B. nigra的根尖体细胞中期染色体杂交信号的分布特点、花粉母细胞减数分裂粗线期染色体的空间分布、终变期染色体的配对构型等。研究结果表明B. rapa的10条(5对)染色体上表现明显而强烈的杂交信号,且分布在着丝粒和亚着丝粒区域;B. nigra的6条(3对)染色体上有杂交信号,主要分布在染色体短臂的近末端处,减数分裂后期I中,3个信号平均分配到细胞两极;B. oleracea中的4个45S rDNA杂交位点与B. nigra中类似,都位于染色体短臂的近末端处。其中B. rapa与B. nigra的45S rDNA的花粉母细胞的减数分裂FISH定位是首次报道。该结果旨在为研究A、B、C基因组间的亲缘关系和进化提供细胞学依据。
     2.着丝粒重复序列FISH及CAPS分析芸薹属A、B和C基因组间的关系
     以来源于B. rapa基因组(AA)的重复序列(151bp)为探针,分别同二倍体白菜型油菜、甘蓝和异源四倍体芥菜型油菜(AABB,2n=36)的中期染色体杂交,白菜型油菜和甘蓝的所有染色体上都有杂交信号,芥菜型油菜的染色体上显示出20个明显的信号,其余染色体上信号弱或无,可以区分出A与B基因组。对来源于油菜3个基本种与3个复合种FAE1基因进行CAPS分析表明,3个基本种表现出不同的酶切式样,用MboI和MspI酶切表现出多态性,基因组A和C非常相似,而基因组B与A、C关系较远,同时3个复合种也并不是2个基本种的简单相加,表明异源四倍体在进化过程中可能发生了重排和重组。
     3.基本种与复合种间种子贮藏蛋白质亚基构成及聚类分析
     根据种子贮藏蛋白形成的蛋白质谱带具有的稳定性、均匀性和可加性的特点,对组成芸薹属3个基本种和3个复合种的种子贮藏蛋白亚基的组成进行了SDS-PAGE比较分析,结果表明:不同种间的种子贮藏蛋白具有一定的差异,表现出丰富的多态性;6个种共有24条亚基带,并各自具有特有的蛋白谱带。利用贮藏蛋白亚基条带的信息,分析了种间的蛋白相似度,并进行了聚类分析,将供试材料分为两类。Ⅰ类为白菜型油菜、甘蓝与甘蓝型油菜。Ⅱ类为为黑芥、芥菜型油菜和埃塞俄比亚芥。
     4.芸薹属A、C基因组间比较蛋白质组学的分析及PCR分子标记的开发
     白菜和甘蓝亲缘关系非常接近。运用蛋白质组学方法比较了芸薹属二倍体种白菜型油菜(AA)和甘蓝(CC)幼苗期叶片蛋白质组学的变化,通过比较研究,以期探寻它们在蛋白组水平上基因表达特征。应用双向电泳对叶片总蛋白进行了分离,从2-D凝胶上各检测到95与111个蛋白点,应用PDQuest软件对凝胶图谱进行分析,二者间匹配到的蛋白质点数为29,占总数的28.2%,其中芸薹与甘蓝的的专化蛋白分别66和82个,分别占蛋白点总数的32.0 %与39.8 %。MALDI-TOF-MS质谱分析和数据库检索鉴定了其中的20个差异表达蛋白,但可靠差异蛋白的鉴定率仅为50%。该研究首次基于两个物种的特征(差异)蛋白,开发出10个用于区分A和C基因组的基于PCR的分子标记。
     5.利用差异蛋白质组对人工合成甘蓝型油菜F1及早期世代蛋白质变化的研究
     多倍化是高等植物进化过程的重要阶段,是植物进化的主要动力之一。研究表明,异源多倍体在形成的早期会出现广泛的基因组遗传和表观遗传变化,这些变化直接关系到物种的形成和稳定。人工合成的异源多倍体则为这方面的研究提供了良好的模式系统。通过这种模式系统,可以精确比较亲本二倍体种与人工异源多倍体早期世代间的基因组变化特点,从而为丰富多倍体物种进化理论提供重要的理论依据。本研究基于人工合成的异源四倍体甘蓝型油菜及其不同自交后代,比较研究杂种F1与双亲间、以及早期1~4代间的的叶片蛋白质组变化,探索种间杂交及其多倍体形成后引发的遗传和表观遗传变化的规律。具体结果如下:
     (1)人工合成甘蓝型油菜F1及其亲本叶片比较蛋白质组学研究
     以芸薹属二倍体B . rapa (AA,2n = 20)和B . oleracea(CC,2n =18)和人工合成甘蓝型油菜为实验材料,由于双亲及后代遗传背景清晰,为研究异源多倍体早期基因组在进化过程中的具体变化提供了良好的实验材料。结合蛋白质组学方法来解析新合成的B. napus F1代与其双亲叶片蛋白质组表达差异,鉴定了一些有价值的蛋白点。首先是亲本间的差异蛋白质几乎都在B. napus中表达,但显著偏离双亲丰度表达均值,表现为非加性表达效应。此外经MALDI-TOF-MS鉴定了杂种中7个有显著性意义的蛋白,其中1个与光合作用相关,推定为景天庚酮糖-1,7-二磷酸酶;2种与能量代谢相关的ATP合酶β-亚基;1个与物质代谢相关ADP-葡萄糖焦磷酸化酶小亚基;1个与转录相关的RNA聚合酶β-链;另1个与抗病相关的丝氨酸/苏氨酸蛋白激酶与1个假定蛋白。这些蛋白与具有杂合子潜力的杂种优势相关,为了解杂种优势在蛋白质组水平上的基因表达基础积累了重要的资料,是前人在转录水平上研究的必要补充,从而为进一步阐明杂种优势的机制提供理论依据。此外实验还表明B. napus在多倍化后可能发生了基因重组,并且新蛋白的功能可能会影响F1杂种的表型性状。
     (2)人工合成甘蓝型油菜早期世代蛋白质组的变化
     我们对人工合成甘蓝型油菜1~4代叶片蛋白质进行了比较分析发现,在后代中发生了非孟德尔式的表观遗传变异,变异主要表现为基因沉默的方式。依据蛋白表达变化特点将F1~F4的差异蛋白质归为五类:1)F2专化类型;2)F3专化类型;3)F1中丢失的蛋白,而F2~F4中表达的类型;4)F1~F2丢失,而F3~F4中表达的类型;5)F1~F4中蛋白丰度逐渐上调的类型。表明丢失的蛋白可能并不是真正的丢失,而可能是发生了基因沉默,而且基因沉默随时可能被激活。在已鉴定的蛋白中,有与物质与能量代谢、信号转导、解毒酶类、蛋白质降解、反转座子相关以及功能未知的假定蛋白。统计后分析尽管基因组早1~4代中发生了随机表观遗传变异,但保证细胞正常基因功能的持家蛋白并没有随基因表达的变化而完全消失,也间接证明了早期多倍化事件中的基因组冲击未必带来蛋白质组上的冲击。相反会有一个新的快速的协调顺序进化在新合成的异源甘蓝型油菜中。
Brassica is the third largest oilseed crop in the world, providing approximately 13% of the world’s supply of vegetable oil. The relationship between three diploids and three allotetraploids was demonstrated in a classical cytogenetic study by U; this relationship is commonly referred to as the“U triangle”. On our research, cytological, molecular biological, and comparative proteome analyses were tentatively applied to study the relationship between them. This studies have provided important basis for Brassica evolution. Main results were described as follows:
     1. Mitotic and meiotic FISH analysis of 45S rDNA in Brassica diploids
     The position and number of 45S rDNA on mitotic and meiotic chromosomes of the three basic diploid species (Brassica rapa, B. oleracea and B. nigra) were detected by FISH analysis using 45S rDNA as probe. Ten out of 20 chromosomes can be easily identified in B. rapa, six out of 16 in B. nigra, and four out of 18 in B. oleracea. Among them, meiotic FISH analysis of 45S rDNA of B. rapa and B. nigra was reported for the first time. These investigations are useful for identifying the chromosomes of genome A, B and C and studying the evolution and phylogeny of the Brassica genomes.
     2. Relationships among genome A, B and C revealed by centromere repetitive sequence FISH and CAPS analysis
     Physical locatization of repetitive DNA sequence from genome A (151bp) was carried out on the chromosome of the selected Brassica species by FISH (fluorescence in situ hybridization). The signals distributed on all the chromosomes of A (Brassica.rapa, 2n=20) or C genome (B. oleracea, 2n=18). For B. Juncea (AABB,2n=36), the signals were found on all the chromosome of genome A and the strength of signal varied among different chromosomes, while the chromosomes of genome B showed weak or no signals. Application of this method to 151bp centromere satellite repeats distinguished the 10 chromosome of AA from B. juncea (AABB). FAE1 gene is a related-limiting gene for erucic acid synthesis in Brassica. The genes from six Brassica species of U-triangule were cloned by PCR. These PCR products were digested with different restriction endonucleases. MboI and MspI were found to produce informative CAPS patterns of FAE1 gene. Three diploids display different patterns, the pattern of genome A was very similar to that of genome C, while the pattern of genome B was the most diverged out of the patterns of the A and C genomes. Three amphidiploids generally exhibited additive patterns of the progenitors, but not strictly in all cases, indicating that rearrangements and recombinations did occur in the formation and evolution of amphidiploids. Genetic relationships among Brassica species could be demonstrated through CAPS analysis of FAE1 gene and FISH method when repetitive DNA sequence (not ribosomal RNA genes) was used as a probe.
     3. The analysis of constitute of protein subunits and clustering
     Seed storage proteins extracted from six species of Brassica were analysed with SDS-PAGE technique. The constituents of seed storage proteins contained 24 subunits, and polymorphisms and specific protein bands among different species were observed. Prominent bands were characterized at all the diploid species. The result of cluster analysis indicates that 6 species are classified into two types. First type includes B. rapa, B. oleracea and B. napus. The second type includes B. nigra, B. juncea and B. carinata.
     4. Characterization of seedling proteomes and development of markers to distinguish the Brassica A and C genomes
     The diploid species Brassica rapa (genome AA) and B. oleracea (genome CC) were compared by full-scale proteome analyses of developing seedling. A total of 95 and 111 protein spots were detected in Brassica rapa and B. oleracea, correspondingly. Among these were 29 mutual spots, accounting for 28.2 % of the total spots, indicating the existence of a basal or ubiquitous proteome. while 66 spots were specific to the A genome and 82 to the C genome (32.0 % and 39.8 %, respectively). Nine A genome specific spots and eleven C genome specific spots were excised for subsequent MALDI-TOF-MS analyses. Six of the excised nine spots from the A genome and four of the eleven C genome spots could be reliably identified by MALDI-TOF-MS and protein database searching, the identification rate was 50%. Based on the sequences of deduced contrasting AA and CC protein spots, a number of PCR-based markers to distinguish B. rapa (genome AA) and B. oleracea (genome CC) species were developed as well. Ten primer pairs were contrived and tested for their efficiency in detecting polymorphisms between the A and C genomes.
     5. Comparative proteomics in the early generations of newly synthesized Brassica napus allotetraploid
     Polyploidy is a prominent process in higher plants and is often described as a genomic shock that may induce stress and defense responses. Recent studies indicate that extensive genetic and epigenetic changes often occur at the early stage of allopolyploid's genome formation, these changes have played a significant role in stabilization of newly formed genome of species. Synthetic Brassica napus provides a model system to study early events in the evolution of ploidy genomes, because the exact progenitors (B. rapa and B. oleracea) for a synthetic polyploid are known. Large-scale analysis of proteome from leaf organ can be studied accurately compared to their homozygous diploid progenitors B. rapa and B. oleracea, and gene expression changes of F1~F4 generations, which might help enriching the mechanisms of genetic and epigenetic changes. The detailed results are as follows:
     1) Comparative proteomics between newly synthesized B. napus and its progenitors
     Leaf proteins of B. napus and its pprogenitors (B. rapa and B. oleracea) were separated with 2-DE. It was remarkable that the abundance of all these differentially expressed proteins in the hybrid was different from that of corresponding proteins expressed in its progenitors, some of them deviated relatively mid-parent predictions, exhibiting somewhat non-additive expression repatterning. Seven of the differentially expressed proteins were identified by MALDI-TOF-MS and database searching. Biological functional analysis showed these identified proteins were related with substance and energy metabolism: ATP synthase beta subunit was manifested involving in energy metabolism; ADP-glucose pyrophosphorylase small subunit may be an enzyme in substance metabolism; sedoheptulose-bisphosphatase precursor was involving in photosynthesis; DNA-directed RNA polymerase beta-2 chain was related to transcriptional regulation; Serine/Threonine protein kinase, possible related to disease resistance; and a hypothetical unknown protein. The function of these proteins was showed to be related with heterosis, and our explanation of heterosis mechanism was carried out at the protein level. In addition, our analysis of leaf proteome indicated that genome restructuring by recombination occurred in B. napus synthetics the first generation. This process created novel plant phenotypes and should be addressed in terms of evolutionary consequences.
     2) Comparative proteomics in early generations of newly synthesized B. napus allotetraploid
     We analyzed genetic and epigenetic changes in resynthesized Brassica napus from the first to forth generations using comparative proteomics. The differentially expressed proteins were sorted into five categories after statistical analyses of the 4 generations: 1) polypeptide specific in F2; 2) polypeptide only occurred in F3; 3) polypeptide loss in F1 and reoccurred in F2~F4; 4) polypeptide loss in F1~F2 and reoccurred in F3~F4; 5) gradually up-regulated polypeptide from F1 to F4. The results indicated that gene silencing was not permanent phenomenon and could be reactivated at any moment. Biological function showed these identified proteins related with substance and energy metabolism, Signal transduction, detoxification enzymes, protein degradation, retrotransposon protein and other unknown proteins. Although leaf proteins were extensively modified in synthetic B. napus, however, the distribution of the“housekeeping”proteins into metabolic pathways, functional categories and signal transduction were not disturbed. Moreover, there is no evidence for chaos or a large disorder following the merging of two genomes. Instead, a novel order established quickly and may evolve in further generations of synthetic B. napus.
引文
1.陈林姣,缪颖,陈德海.原位PCR技术及应用[J].生物工程进展, 2000, 20(2):58-63.
    2.陈晓丹,朱利泉,王永等.芸薹属A基因组DNA封阻下的甘蓝C染色体组核型分析.农业生物技术学报, 2009,17 (3): 504-509.
    3.桂琴,徐延浩,王建波.多倍体植物中基因表达模式的变化[J].武汉植物学研究, 2007, 25 (2): 198-202.
    4.抗艳红,许寅生,龚学臣等.真核生物重复序列的研究进展[J],河北北方学院学报, 2006,22:23-26
    5.孔芳,蒋金金,吴磊,王幼平.利用原位杂交及CAPS标记分析芸薹属A、B和C基因组间的关系.作物学报, 2008, 34(7): 1188-1192.
    6.李懋学,张赞平.作物染色体及其研究技术[M],北京:中国农业出版社,1996.
    7.李宗芸,栗茂腾,黄荣桂,等.基因组原位杂交辨别芸薹属异源四倍体AA、BB、CC基因组研究[J] .中国油料作物学报,2002,24(1):10-14.
    8.李宗芸,伍晓明,王秀琴等.结球甘蓝与芸薹属5个近缘物种的基因组原位杂交分析[J].中国油料作物学报,2003,25(4):16-19.
    9.梁宇,荆玉祥,沈世华,植物蛋白质组学研究进展.2004, 28:114-125.
    10.刘炜,申书兴,王彦华,等.大白菜-甘蓝异附加系的获得与鉴定[J].园艺学报,2008,35(2): 207-212.
    11.罗小敏,崔研,陈彤等.植物蛋白质组学面临的挑战和前景.生物技术通报, 2004(4): 14-18.
    12.宁顺斌,宋运淳,王玲,等.玉米抗病基因myb1和NDR1同源序列的荧光原位杂交物理定位[J].植物学报,2000, 42: 605-610.
    13.阮松林,马华升,王世恒等.植物蛋白质组学研究进展Ⅱ蛋白质组技术在植物生物学研究中的应用.遗传.2006, 28 (12): 1633-1648.
    14.汪良中,刘玉贞,甘蓝型油菜的人工合成(I),西南农业学报,1992,5 (3 ) : 12-17.
    15.汪小全等.植物分子系统学近五年的研究进展[J].植物类学报,1997,35:465-480.
    16.郄丽娟,申书兴,轩淑欣,等.大白菜和结球甘蓝基因组原位杂交及核型分析[J].园艺学报, 2007, 34 (6):1459-1464.
    17.鄢慧民,宋运淳,李立家,等.水稻抗稻瘟病、绿叶蝉和黄萎病基因BAC克隆的物理定位[J].武汉大学学报(自然科学版),1998, 44 (4): 469-473.
    18.余懋群,邓光兵,Cerbah M.等.染色体组荧光原位杂交鉴定小麦中的簇毛麦染色体[J].遗传,1998, 20(增刊):129.
    19.张晓伟,高睦枪等,人工合成甘蓝型油菜研究.河南农业科学,2001,(2): 7-10.
    20.朱红,周海涛,何春涤.蛋白质组学及其主要技术[J].癌变·畸变·突变,2005, 17(5): 318-320.
    21. Abat JK, Deswal R. Differential modulation of S-nitrosoproteome of Brassica juncea by low temperature change in S-nitrosylation of Rubisco is responsible for the inactivation of its carboxylase activity. Proteomics, 2009, 9(18): 4368-4380.
    22. Abbott A. And now for the proteome. Nature, 2001, 409: 747-748.
    23. Adams K L, Wendel J F. Novel patterns of gene expression in polyploid plants[J].Trends Genet 2005,21:539-543.
    24. Adams KL, Cronn R, Percifield R, et al..Genes duplicated by Polyploid show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Natl Acad Sci USA, 2003, 100: 4649-4654.
    25. Agrawal Ganesh Kumar, Yonekura Masami, Iwahashi Yumiko, et al.. System, trends and perspectives of proteomics in dicot plants. PartⅡ: Proteomes of the complex developmental stages. Journal of Chromatography B, Analytical Technologies in theBiomedical and Life Sciences, 2005, 815 (1-2):125-136.
    26. Agrawal Ganesh Kumar, Yonekura Masami, Iwahashi Yumiko, et al.. System, trends and perspectives of proteomics in dicot plants. PartⅠ: Technologies in proteome establishment. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences, 2005, 815(1-2): 109-123.
    27. Albertin W, Langella O, Joets J, Zivy M, Damerval C, Thiellement H. Comparative proteomics of leaf, stem, and root tissues of synthetic Brassica napus. Proteomics, 2009, 9(3): 793-799.
    28. Alix K, Joets J, Ryder CD, Moore J, Barker GC, Bailey JP, King GJ, Heslop-Harrison JS. The CACTA transposon Bot1 played a major role in Brassica genome divergence and gene proliferation. Plant J,2008, 56: 1030-1044.
    29. Alleman M, Doctor J. Genome imprinting in plants: observations and evolutionary implications. Plant Moleculur Biology, 2000, 43: 147-161.
    30. Alvarez S, Berla BM, Sheffield J, Cahoon RE, Jez JM, Hicks LM. Comprehensive analysis of the Brassica juncea root proteome in response to cadmium exposure by complementary proteomic approaches. Proteomics, 2009, 9(9): 2419-2431.
    31. Ambros PF, Matzke MA, Matzke AJM .Detection of a 17 kb unique sequence (T-DNA) in plant chromosomes by in situ hybridization. Chromosoma,1986, 94: 11-18.
    32. Anamthawat-Jónsson K, Heslop-Harrison JS.Isolation and characterization of genome–specific DNA sequences in Triticeae species. Mol Gen Genet ,1993,240:151-158.
    33. Anderson, N.L., and Seilhamer, J. A. Comparison of selected mRNA and protein abundances in human liver. Electrophoresis, 1997, 18:533-537.
    34. Antonius Koller, Michael P.Washburn B,et al.. From the Cover: Proteomic survey of metabolic pathways in rice.Proc,Nati, Acad, Sci, 2002, 23:647-654.
    35. Appels R,Gerlach WL, Dennis ES, Swift H, Peacock WJ. Molecular and chromosomal organization of DNA sequence coding for the ribosomal RNAs of cereals .Chromosoma, 1980,78:293-311
    36. Armstrong S J, Fransz P, Marshall D. F. et al.. Physical mapping of DNA repetitive sequences to mitotic and meiotic chromosomes of Brassica oleracea var. alboglabra by fluorescence in situ hybridization[J]. Heredity 1998, 81: 666-673.
    37. Arumuganthan, K., and Earle, E.D. Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep.1991, 9: 208–218.
    38. Arumuganthan, K., and Earle, E.D. Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep.1991, 9: 208–218.
    39. Atwood JA 3rd, Weatherly DB, Minning TA, Bundy B, Cavola C, Opperdoes FR, Orlando R, Tarleton RL. The Trypanosoma cruzi proteome. Science,2005, 309(5733):473-476.
    40. B.Liu, J.M.Vega, M.Feldman. Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops.II.changes in low-copy coding DNA sequences. Genome,1998,41:535- 542.
    41. Babula D, Kaczmarek M, Barakat A, Delseny M, Quiros C F, Sadowski J. Chromosomal mapping of Brassica oleracea based on ESTs from Arabidopsis thaliana: complexity of the comparative map. Molecular Genetics and Genomics, 2003, 268: 656-665.
    42. Beguiristain T, Grenbastien M, Puigdomenech. Three Tnt1 subfamilies show different stress different stress-associated pattern of expression in obacc1. Consequences for retrotransposon control and evolution in plants [J]. Plant Physiol, 2001, 127: 212-221.
    43. Blackburn EH. Structure and function of telomers.Nature,1991, 350:569-573.
    44. Blanc G, Barakat A, Guyot R, Cooke R, Delseny M Extensive duplication and reshuf?ing in the Arabidopsis genome. Plant Cell 2000,12:1093–1101.
    45. Bonetta L .Protein purification:proteomics at Harvard. Nature,2006,439(7079):1017.
    46. Bryna E. Donnelly, Robin D.et al..The wheat (Triticum aestivum L.)leaf .proteome,2005, 5: 1624- 1633.
    47. Cardi T, Earle ED, Production of new CMS Brassica oleracea by transfer of Anand cytoplasm from B. rapa through protoplast fusion. Theoretical and Applied Genetics 1997, 94: 204-212.
    48. Castilho A, Heslop-Harrison J S. Physical mapping of SS and 18s-25S rDNA end repetitive DNA sequences in Aegilops unabellula[J].Genome,1995, 38:91-96.
    49. Chen L Z, Lou Q F, Zhuang Y, Chen J, Zhang X Q, Wolukau J N. Cytological diploidization and rapid genome changes of the newly synthesized allotetraploids Cucumis×Hytivus. Planta, 2007, 225:603-614.
    50. Chen PD, Tsujimoto H, Gill BS.Transfer of PhI genes promoting homoeologous pairing from Triticum speltoides to common wheat. Theor Appl Genet ,1994,88:97-101.
    51. Chen Z J. Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids[J]. Annual Review of Plant Biology, 2007, 58: 377-406.
    52. Cheng Z, Duan J, Hao Y, McConkey BJ, Glick BR. Identification of bacterial proteins mediating the interactions between Pseudomonas putida UW4 and Brassica napus (Canola). Mol Plant Microbe Interact, 2009, 22(6): 686-694.
    53. Choi HW, Lemaux PG, Cho M-J. Use of fluorescence in situ hybridization for gross mapping of transgenes and screening for homozygous plants in transgenic barley (Hordeum vulgare L.) Theor Appl Genet ,2002,106:92-100.
    54. Comai L. The advantages and disadvantages of being polyploidy[J]. Nature Reviews Genetics, 2005, 6: 836-846.
    55. Cremer T., Landegent J., Bruckner A., Scholl H P, et al.. Detection of chromosome aberrations in the human interphase nucleus by visualization of specific target DNA's with radioactive and non-radioactive in situ hybridization techniques:Diagnosis of trisomy 18 with probe Ll X84 [J]. Hum.Genet, 1986, 74 346-352.
    56. Cronn R C, et al.. Polymorphism and concerted evolution in a tandemly repeated gene family:5S ribosomal DNA in diploid and allopolyploid cottons[J].Mol Evol, 1996,42:685-705.
    57. Cronn R C, et al.. Polymorphism and concerted evolution in a tandemly repeated gene family:5S ribosomal DNA in diploid and allopolyploid cottons[J].Mol Evol, 1996,42:685-705.
    58. Desclos M, Dubousset L, Etienne P, Caherec FL, Satoh H, Bonnefoy J, Ourry A, Avice JC. A proteomic profiling approach to reveal a novel role of Brassica napus drought 22 kD /water-soluble chlorophyll-binding protein in young leaves during nitrogen remobilization induced by stressful conditions. Plant Physiology, 2008, 147: 1830-1844.
    59. Desclos M, Etienne P, Coquet L, Jouenne T, Bonnefoy J, Segura R, Reze S, Ourry A, Avice JC. A combined 15N tracing proteomics study in Brassica napus reveals the chronology of proteomics events associated with N remobilisation during leaf senescence induced by nitrate limitation or starvation. Proteomics, 2009, 9(13): 3580-3608.
    60. Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS, Wendel JF. Evolutionary genetics of genome merger and doubling in plants. Annual Review of Genetics ,2008,42: 443-461.
    61. Dumas-Gaudot E, Amiour N, Weidmann S, et al..A technical trick for studying proteomics in parallel to transcriptomics in symbiotic root-fungus interactions, Proteomics,2004, 4:451-453.
    62. Evans H J., Pearson P L. Proceedings: Report of the Committee on Chromosome Markers [J]. Cytogenet Cell Genet. 1974, 13(1): 58-62.
    63. Feuillet C, Keller B. Comparative genomics in the grass family: Molecular characterization of grass genome structure and evolution. Annals of Botany, 2002, 89 (1): 3-10
    64. Fida, Mohammad, Abbasi, Setsuko Komatsu. Q proteomic approach to analyze salt– responsive proteins in rice leaf sheath. Proteomics, 2004, 4:2027-2081.
    65. Fields, S. Proteomics in genomeland. Science,2001, 291: 1221.
    66. Flavell RB . Repeated sequences and chromosome evolution in plants. Trans R Soc Lond B,1986, 312: 227-242.
    67. Fransz PF, Alonso-Blanco C, Liharska TB, et al. High-resolution physical mapping in Arabidopsis thaliana and tomato by fluorescence in situ hybridization to extended DNA fibres. The Plant Journal , 1996,9(3) : 421-430.
    68. Friebe B, Zhang P, Linc G, Gill BS. Robertsonian translocations in wheat arise by centric misdivision of univalents at anaphase I and rejoining of broken centromeres during interkinesis of meiosis II. Cytogenet Genome Res ,2005,109:1-3.
    69. Gaeta RT and Pires JC. Homoelogous recombination in allopolyploids: the polyploidy ratchet. New Phytologist, 2010, 186: 18-28.
    70. Gavin AC, Aloy P, Grandi P, et al.. Proteome survey reveals modularity of the yeast cell machinery. Nature, 2006,440(7084):631-636.
    71. Gerlach WL, Appels R, Dennis ES, Swift H, Peacock WJ. Molecular and chromosomal organization of DNA sequence coding for the ribosomal RNAs of cereals .Chromosoma, 1980,78:293-311.
    72. Gosden G, Hanratty D. PCR in situ: A rapid alternative to in situ hybridization for mapping short, lowcopy number sequences without isotopes [J]. Biotechniques,1993, 15: 78-80.
    73. Haase A T, Retzel E F, Stakus K A. Amplification and detection of lentiviral DNA inside cells [J]. Proc Natl Acad Sci USA, 1990, 87: 4791.
    74. Hanson R E, Zwick M S, Choi S D et al.. Fluorescent in situ hybridization of a Bacterial artificial chromosome [J]. Genome, 1995, 38: 646-651.
    75. Hasterok R, Jerkins G,Langdon T, et al.. Ribosomal DNA is an effective marker of Brassica chromosomes[J].Theor Appl Genet, 2001, 103: 486-490.
    76. Hasterok R, Maluszynska J. Cytogenetic analysis of diploid Brassica species[J]: Acts Biological Cracoviensia Series Botanica, 2000b, 42: 145-163.
    77. Hasterok R, Maluszynska J. Cytogenetic markers of Brassica napus chromosomes[J]. Jappl Genet, 2000a, 41: 1-9.
    78. Hasterok R, Maluszynska J. Nucleolar dominance does not occur in root tip cells of allotetraploid Brassica species[J].Genome, 2000c,43:574-579.
    79. He P, Friebe B R, Gill B S, et al.. Allopolyploidy alters gene expression in the highly stable hexaploid wheat [J]. Plant Mol Bio, 2003, 52: 401-414.
    80. Heath DW, Earle E D, Synthesis of Ogura male sterile rapeseed (Brassica napus L.) with cold tolerance by protoplast fusion and effects of atrazine resistance on seed yield. Plant Cell Rep. 1996, 15: 939-944.
    81. Henikoff S and Matzke M A. Exploring and explaining epigenetic effects[J].Trends Genet, 1997,13 (8):293-295.
    82. Henry Y, Bedhomme M, Blanc G. History, hybridization to free chromatin [J]. protohistory and prehistory of the Arabidopsis thaliana chromosome complement. Trends Plant Sci.,2006,11:267-273.
    83. Hoda B.M.Ali, Martin A. Lysak, Ingo Schubert .Chromosomal localization of rDNA in the Brassicaceae [J]. Genome, 2005, 48: 341-346.
    84. Houston NL, Hajduch M, Thelen JJ. Quantitative proteomics of seed filling in castor comparison with soybean and rapeseed reveals differences between photosynthetic and nonphotosynthetic seed metabolism. Plant Physiol, 2009, 151(2): 857-868.
    85. Hubbard, J. M. Functional proteomics: The goalposts are moving. Proteomics 2002, 2:1069-1078.
    86. Jolivet P, Boulard C, Bellamy A, Barre M, Rogniaux H, Chardot T, Nesi N. Protein composition of oil bodies from mature Brassica napus seeds. Proteomics, 2009, 9(12): 3268-3284.
    87. Joshua L, Heszlewood, Katharine A.et al.. Towards an analysis of the rice mitochondria proteome. Plant physiology,2003,132:230-242.
    88. Joshua L,Heazlewood, Julian S. Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins. The plant cell, 2004,16:241-256.
    89. Juliette Bardel,Mathilde Louwagie,Michel Faquinod,et al..A survey of the plant mitochondrial proteome in relation to development. Proteomics,2002, 2:880-898.
    90. Kakutani T, Munakata K, Richards E, et al.. Meiotically and mitotically stable inheritance of DNA hypomethylation induced by ddml mutation of Arabidopsis thaliana[J]. Genetics, 1999, 151: 831- 838.
    91. Karp A. (ed.) .Molecular tools for screening biodiversity (Plants and animals). 1st edn. Chapmann andHall,1998,London, UK.
    92. Karpechenko G. D. Konstantwerdenvon Art-und Gattungsbastarden durch Verdoppelung der Chromosome nkomplexe. Der Züchter. 1929, 4:133-140.
    93. Karpechenko,K.D. The number of chromosomes and the genetic correlation of cultivated Crucifera. Bull.appl.Bot., St Petersb.,1922,13:1-14.
    94. Kashkush K, Feldman M, Levy A A. Gene loss, silencing and activation in newly synthesized wheat allopolyploid [J]. Genetics, 2002, 160: 1651-1659.
    95. Kassie F, Anderson LB, Scherber R, Yu NX, Lahti D, Upadhyaya P, Hecht SS. Indole-3-carbinol inhibits 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone plus benzo(a)pyrene-induced lung tumorigenesis in A/J mice and modulates carcinogen-induced alterations in protein levels. Cancer Res, 2007, 67(13): 6502-5611.
    96. Kavanagh TA, Timmis JN. Heterogeneity in cucumber ribosomal DNA. Theor. Appl. Genet. 1986, 72: 337-348
    97. King I P, Reader S M, Purdoe K A, et al.. Study of the effect of a homoeologous pairing promoter on chromosome pairing in wheat-rye hybrids using genomic in situ hybridization [J]. Heredity, 1994, 72: 318-321
    98. Komatsu S, Muhammad A, Rakwal R. Separation and characterization of proteins from green and etiolated shoots of rice (Oryzasativa L.): towardsariceproteome. Electrophoresis,1999, 20: 630- 636.
    99. Koo D-H, Plaha P, Lim Y. P. et al.. A high resolution karyotype of Brassica rapa ssp. pekinensis revealed by pachytene analysis and multicolour fluorescence in situ hybridisation[J]. Theor Appl Genet, 2004, 109: 1346-1352.
    100. Kristo?erson K. B. Contributions to the genetics of Brassica oleracea. Hereditas,1924,5: 297-364.
    101. Kulak S, Hasterok R,Maluszynska J. Karyotyping of Brassica amphidiploids using 5S and 25S rDNA as chromosome markers[J]. Hereditas, 2002, 136: 144-150.
    102. Lagercrantz U.Comparative mapping between Arabidopsis thaliana and Brassica nigra indicate that Brassica genomes have evolved through extensive genome replication aeeompanied by Chromosome fusions and frequent rearrangements[J].Geneties,1998,150:1217-1228.
    103. Lagudah ES, Appels R. Mcneil D. The Nor-D3 locus of Triticum tauschii:natural variation and genetic linicage to markers in chromosome 5,Genome,1991,34:387-395
    104. Lan T H, Delmonte T A, Reischmann K P, Hyman J, Owalski S P, Mcferson J, Kresovich S, Paterson A H. An EST-enriched comparative map of Brassica oleracea and Arabidopsis thaliana. Genome Research, 2000, 10: 776-788.
    105. Landry B S and Hubert N. A genetic map for Brassica napus based on restriction fragment length polymorphisms detected with expressed DNA sequences. Genome, 1991, 34: 543-552.
    106. Langer PR, Waldrop AA, Ward DC. Enzymatic synthesis of biotin-labeled polynucleotides: Novel nucleic acid affinity probes [J]. Proc Natl Acad Sci USA, 1981,78: 6633-6637.
    107. Lapitan NLV, Ganal MW, Tanksley SD . Organization of the 5S ribosomal RNA genes in the genome of tomato. Genome,1991, 34:509-514.
    108. Leszczynski D, Nylund R, Joenvaara S, et al.. Applicability of discovery science approach to determine biological effects of mobile phone radiation. Proteomics, 2004, 4:426-431.
    109. Levin D. A. The role of chromosomal change in plant evolution. Oxford University Press, 2002, Oxford, UK.
    110. Levois Lukens, Fei zou, Derek Lydiate, et al.. Comparison of a Brassica oleracea genetic map with the genome of Arabidopsis thaliana[J]. Genetics, 2003, 164: 359-372.
    111. Li G, Gao M, Yang B, Quiros C F. Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping. Theoretical and Applied Genetics, 2003, 107: 168-180.
    112. Li M, Li Z, Qian W, et al.. Production and cytogenetic studies of hybrids derived from crosses between Brassica trigenomic diploids and B. napus. Chromosome Research, 2004, 12:417-426
    113. Liang Y, Srivastava S, Rahman MH, Strelkov SE, Kav NNV. Proteome changes in leaves of Brassica napus L. as a result of Sclerotinia sclerotiorum challenge. J. Agric Food Chem, 2008, 56(6): 1963-1976.
    114. Liang Y, Strelkov SE, Kav NN. Oxalic acid-mediated stress responses in Brassica napus L. Proteomics, 2009, 9(11): 3156-3173.
    115. Liao CS, Yen JH, Wang YS. Growth inhibition in Chinese cabbage (Brassia rapa var. chinensis) growth exposed to di-n-butyl phthalate. Jurnal of Hazardous Materials, 2009, 163: 625-631.
    116. Liu Z L, Han F P, Tan M, et al.. Activation of a rice endogenous retrotransposon Tos17 in tissue culture is accompanied by cytosine demethylation and causes heritable alteration in methylation pattern of flanking genbmic regions [J]. Theor Appl Genet, 2004, 109: 200-209.
    117. Long A A, et al.. Comparison of indirect and direct in situ polymerase chain reaction in cell preparation and tissue sections: Detection of viral DNA gene rearrangements and chromosomal translocations [J]. Histochmistry, 1993, 99: 151-162.
    118. Lukens L N, Pires J C, Leon E, Vogelzang R, Oslach L, Osborn T. Patterns of sequence loss and cytosine methylation within a population of newly resynthesized Brassica napus allopolyploids. Plant Physiol, 2006, 140:336-348.
    119. Lukens L. N., Quijada P. A., Udall J., Pires J. C.,Schranz M. E., Osborn T. C.Genome redundancy and plasticity within ancient and recent Brassica crop species. Biol. J. Linn. Soc.2004,82: 665-674.
    120. Lysak M. A., Lexer C.Towards the era of comparative evolutionary genomics in Brassicaceae. Pl. Syst.Evol. 2006, 259:175-198.
    121. Lysak MA, Cheung K, Kitschke M, Bures P. Ancestral chromosomal blocks are triplicated in Brassiceae species with varying chromosome number and genome size. Plant Physiology, 2007, 145: 402-410.
    122. Ma, X F, Gustafson J P. Genome evolution of allopolyploids: a process of cytological and genetic diploidization. Cytogenet Genome Res, 2005, 109:236-249.
    123. Maluszynska J, Heslop-Harrison P. Physical mapping of rDNA loci in Brassica species[J]. Genome, 1993, 36: 774- 781.
    124. Manning J E, Hershey W D, et al.. A new method of in situ hybridization [J]Chromosoma, 1975, 53:107-117.
    125. Marmagne A, Brabant P, Thiellement H, Alix K. Analisis of gene expression in resynthesized Brassicanapus allotetraploids: transcriptional changes do not explain differential protein regulation. PloS One, 2009, 4(3): e4760. Epub 2009.
    126. McClintock B. The significance of responses of the genome to challenge. Science 1984, 226, 792-801.
    127. McGrath J. M., Quiros C. F., Harada J. J., Landry B. S. Identification of Brassica oleracea monosomic alien chromosome addition lines with molecular markers reveals extensive gene duplication. Mol. Gen. Genetics,1990, 223: 198-204.
    128. McNeil J A, Johnson C V, Carter K C. et al.. Localizing DNA and RNA with nuclei and chromosomes by FISH [J]. Genet Anal Tech Appl., 1991, 8: 41-58.
    129. Morinaga T. Preliminary note on interspecific hybridization in Brassica. Proc Imp Acad 1928, 4: 620-622.
    130. Morinaga T. The cytology of F1 hybrids of B.nupella ang various other species with tenchromosomes. Cytologia, 1929, 1:16-27.
    131. Murata M., Motoyoshi F. Floral chromosomes of Arabidopsis thaliana for detecting low copy DNA sequences by FISH [J]. Chromosoma, 1995, 104 :39-43.
    132. Naughton I H. Swedes and rapes Brassica rapus(Cruciferae). Cited from Simmonds N W (ed.) Evolution of Crop Plants, 1976, Lougman. Inc.,N. Y.
    133. Navas A, Albar J.P. Application of proteomics in phylogenetic and evolutionary studies. Proteomics, 2004, 4:299-302.
    134. Nederlof P M, van der Flier S, Wiegant J, Raap A K, Tanke H J, Ploem J S, van der Ploeg M. Multiple fluorescence in situ hybridization [J]. Cytometry 1990; 11:126-131.
    135. Nuovo G J, et al.. Detection of human papilloma virus DNA in formalin-fixed tissues by in situ hybridization after amplification by polymerase chain reaction [J]. 1991,139: 847-854.
    136. O'Donovan, C, Apweiler, R, Bairoch, A, et al.. The human proteomics initiative (HPI).Trends in Biotechnology, 2001, 19(5):178-181.
    137. Olsson G. Crosses between Brassica napus and Japanese Brassica napella. Hereditas, 1954, 40: 243-252.
    138. Olsson G. Species crosses within the genus Brassica II. Artificial B.napus L. Hereditas, 1960, 46: 351-386.
    139. Osborn TC, Pires J C, Birchler LA, Auger DL, Chen ZJ, et al... Understanding mechanisms of novel gene expression in polyploids. Trends Genet, 2003, 19:141-147.
    140. Ozkan H, Levv A A, Feldman M. Allopolyploidy-induced rapid genorne evolution in the wheat(Aegilops-Triticum) group[J].Plans Cell. 2001. 13(8):1735-1747.
    141. Pandey A, Mann M. Proteomics to study genes and genomes [J]. Nature, 2000, 405: 837-846.
    142. Panjabi P, Jagannath A, Bisht NC, Padmaja K L, Sharma S, Gupta V, Pradhan A K, Pental D. Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genomics, 2008, 9: 113.
    143. Park JY, Koo DH, Hong CP, Lee SJ, Jeon JW, Lee SH, Yun PY, Park BS, Kim HR, Bang JW, Plaha P, Bancroft I, Lim YP. Physical mapping and microsynteny of Brassica rapa ssp. pekinensis genome corresponding to a 222 kb gene-rich region of Arabidopsis chromosome 4 and partially duplicated onchromosome 5. Mol Genet Genomics,2005, 274:579-588.
    144. Park Ohkmae K. Proteomic studies in plants. Journal of Biochemistry and Molecular Biology, 2004,37(1): 133-138.
    145. Pedersen C., Linde-Laursen I. Chromosomal locations of four minor rDNA loci and a marker satellite sequence in barley [J]. Chrom Res, 1994, 2: 65-71.
    146. Pikaard C S. Nucleolar dominance: uniparental gene silencing on a multi-megabase scale in genetic hybrids. Plant Mol Biol, 2000, 43:163-177.
    147. Price H J, Crane C F, Stelly D M. Development of PCR in situ hybridization for physical mapping of single copy DNA sequences on meiotic chromosomes of cotton[J].American Journal of Botany, 1993, 80 (Supp 1. 6): 78.
    148. Quiros C F, Ochoa O, Douches D S. Exploring the role of n=7 species in Brassica evolution: Hybridization with B.nigra and B.oleracea. J Hered, 1988, 79: 351-358.
    149. Rǎbbelen G Beitrage zur analyse des Brassica-genomes. Chromosoma,1960,11:205-228.
    150. Rahman M H.Production of yellow-seeded Brassica napus through interspecific crosses[J]. Plant Breeding, 2001,120:463-472.
    151. Rana D, van den Boogaart T, O’Neill CM, Hynes L, Bent E. Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J,2004, 40:725-733.
    152. Rayburn A L, Gill B S. Use of biotin labeled probes to map specific DNA sequenceon wheat chromosome [J]. Heredity, 1985, 76: 78-81.
    153. rHong CP, Plaha P, Koo DH, Yang TJ, Choi SR, et al.. A survey of the Brassica rapa genome by BAC-end sequence analysis and comparison with Arabidopsis thaliana. Mol Cells,2006, 22:300-307.
    154. Riano-Pachon DM, Nagel A, Neigenfind J, Wagner R, Basekow R, Weber E, Mueller-Roeber B, Diehl S, Kersten B. GabiPD: the GABI primary database--a plant integrative omics database. Nucleic Acids Res, 2009, 37: D954-D959.
    155. Robert Hasterok, Elzbieta Wolny, Marta Hosiawa, et al.. Comparative analysis of rDNA distribution in chromosomes of various species of Brassicaceae. Annals of Botany, 2006, 97: 205-216.
    156. Salekdeh G H., Siopongco J.,Wade L. J., et al.. Proteomics analysis of rice leaves during stress and recovery. Proteomics. 2002, 2:31-45.
    157. Salekdhe, Gh,H.,Siopongco J,et al.. Progress in breeding for salinity tolerance and associated abiotic stresses in rice. Field crops research.2002,76:199-219.
    158. Sang T,et al.. Documentation of reticulate evolution in penoies (Paeonia)using internal transcribed spacer sequences of nuclear rDNA: implication for biogeography and concerted evolution [J]. Proc Natl Acad Sci USA,1995,92:6813-6817.
    159. SanMiguel P, Bennetzen J L. Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons[J].Ann Bot, 1998, 82:37-44.
    160. Sastri D C, et al.. An overview of evolution in plant 5SrDNA[J]. Plant Sysy Evol, 1992, 183: 169–181.
    161. Schmidt R, Acarkan A, Boivin K, Clarenz O, Rossberg M. The sequence of the Arabidopsis genome as a tool for comparative structural genomics in Brassicaceae. In: Nagata T, Tabata S (eds) Biotechnology inagricultural and forestry (BAF), vol 52. Springer, Heidelberg, 2003, 52: 19-38.
    162. Schmidt UG, Endler A, Schelbert S, Brunner A, Schnell M, Neuhaus HE, Marty-Mazars D, Marty F, Baginsky S, Martinoia E. Novel tonoplast transporters identified using a proteomic approach with vacuoles isolated from cauliflower buds. Plant Physiology, 2007, 145: 216-229.
    163. Schnable P S, Hochholdinger F, Nakazono M. Global expression profiling applied to plant development [J]. Current Opinion in Plant Biology, 2004, 7(1):50-56.
    164. Schrader, Budahn H ,Ahne R. Detection of 5S and 25S rRNA genes in Sinapis alba, Raphanus Sativus and Brassica napus by double fluorescence in situ hybridization[J]. Theor Appl Genet,2000,100:665-669.
    165. Sersuko Komatsu, Hirosato Konishi, Shihua Shen, et al.. Rice proteomics, Mocellular and cellular proteomics.2003,2:2-10.
    166. Shaked H, Kashkush, K., Ozkan, H., Feldman, M., and Levy, A A. Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat[J]. Plant Cell, 2001, 13:1749-1759.
    167. Sharma N, Hotte N, Rahman MH, Mohammadi M, Deyholos MK, KavDr NNV. Towards identifying Brassica proteins involved in mediating resistance to Leptosphaeria maculans a proteomics-based approach. Plant Proteomics, 2008, 8(17): 3516-3535.
    168. Shebm S,Sharma, Komatsu S, et al.. Characterization of proteins responsive to gibberellin in the leaf-sheath of rice (Irtza astuva L.)seeding using proteome analysis .Biol. Pharm. Bull,2003, 26:129-136.
    169. Snowdon R J,Kohler W,Kohler A.Genomic in situ hybridization in Brassica amphidiploids and interspecific hybrids[J].Theor Appl Genet,1997,95:1320-1324.
    170. Snowdon R.J, Friedrich T, Friedt W. et al.., Identifying the chromosomes of the A- and C-genome diploid Brassica species B. rapa (syn. campestris) and B. oleracea in their amphidiploid B. napus [J]. Theor Appl Genet 2002,104: 533-538.
    171. Soltis D E, et al.. Chloroplast DNA and nuclear rDNA variation: insights into autopolyploid and allopolyploid evolution. In: Kawano S(ed), Biological Approaches and Evolutionary Trands in Plants(M). London: Academic press,1990,97-118.
    172. Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, Pamphilis CWD, Wall PK, Soltis PS. Polyploidy and angiosperm diversification. American Journal of Botany,2009, 96: 336-348.
    173. Song K M, Lu P, Tang k, Osborn T C. Rapid genome change in synthetic polyploids of Brassica and its implications for polyploids evolution. Proc Natl Acad Sci USA, 1995, 92: 7719-7723.
    174. Song K M, Slocum M K, Osborn T C. Molecular marker analysis of genes controlling morphological variation in Brassica rapa (syn. Campestris). Theor Appl Genet, 1995, 90: 1-10.
    175. Song K M,Osborn T C,W illaims P H. Brassica taxonomy base on nuclear restriction fragment length polymorisms(RFLPs)I.genome evolution of diploid and amphidiploid species[J].Theor Appl Genet,1988,75:651-656.
    176. Speele J M, Hopman A H N, Kom minoth P. Amplification methods to increase the sensitivity of in situ hybridization: play cards [J]. Histochem Cytochem, 1999, 47:281-288.
    177. Speicher M., Ballard S G, Ward D C. Computer image analysis of combinatorial multi-fluor FISH [J].Bioimaging, 1996, 4: 52-64.
    178. Szadkowski E, Eber F, Huteau V, Lode M, Huneau C, Belcram H, Coriton O, Manzanares-Dauleux MJ, Delourme R, King GJ, Chalhoub B, Jenczewski E, Chevre AM. The first meiosis of resynthesized Brassica napus, a genome blender. New Phytol, 2010, [Epub ahead of print].
    179. Thouraya Majoul, Emmanuelle Bancel, Jeannette Ben Hamida, et al.. Proteomic analysis of the effect of heat stress on hexaploid wheat grain:Characterization of heat-responsive proteins from non-prolamins fraction.Proteomics,2004, 4: 505-513.
    180. Town C D, Cheung F, Maiti R, Crabtree J, Haas B J, Wortman J R, Hine E E, Althoff R, Arbogast T S, Tallon L J, Vigouroux M, Trick M, Bancroft I. Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell, 2006, 18: 1348-1359.
    181. Troyer DL, Goad DW, Xie H., Rohrer GA, Alexander LJ, Beattie CW. Use of direct in situ single-copy (DISC) PCR to physically map five porcine microsatellites [J].Cytogenet Cell Genet, 1994, 67, 199-204.
    182. Tsuchiya. Barley Newsletter,1968,12:8-9.
    183. U, Nagahara. Genome analysis in Brassica with special reference to the experimental formation of B.napus and peculiar mode of fertilization. Japan. J Bot, 1935, 7:389-452.
    184. Uchiumi T., Kuwashiro R., Miyamoto J., et al.. Detection of the leghemoglobin gene on two chromosomes of Phaseolus vulgaris by in situ PCR linked-fluorescent in situ hybridization (FISH) [J]. Plant Cell Physiology, 1998, 39 (7): 790-794.
    185. Udall JA, Quijada PA, Osborn TC. Detection of chromosomal derived from homologous recombination in four mapping populations of Brassica rapes L..Genetics, 2005, 169:967-979.
    186. Ulrike B,Heiko C B.Evaluation B-genome intergration in Brassica napus with GISH. Proceeding of the
    10th international Rapseed Congress,Canberra,Australia.1999.
    187. Van de Peer Y, Maere S, Meyer A. OPINION The evolutionary significance of ancient genome duplications. Nature Reviews Genetics ,2009,10: 725-732.
    188. Van Wij1c.K. J. Proteomics of the chloroplast: experimentation and prediction. Trends in Plant Science, 2000,5: 420-425.
    189. Vener A V, Harms A, Sussman M R, et al.. Mass spectrometric resolution of reversible protein phosphorylation in photosynthetic membranes of Arabidopsis thaliana. J Biol Chem,2001,276: 6959-6966.
    190. Venkateswarlu J, Kamala T. Pachytene chromosome complements and genome analysis in Brassica [J]. Ind. Bot Soc,1971, 50: 442-449.
    191. Vrolijk J., Florijn R J, van de RijkeF M, van Ommen G J, Bden Dunnen J T, Raap A K, Tanke H J. Microscopy and image analysis of fiber-FISH [J]. Bioimaging, 1996,4: 84-92.
    192. Walters E R, et al.. Biased gene conversion is not occuring among rDNA repeats in the Brassica triangle(J).Genome, 1996,39:150-154.
    193. Wang J, Long Y, Wu B, Liu J, Jiang C, Shi L, Zhao J, King GJ, Meng J. The evolution of Brassica napus FLOWERING LOCUS T paralogues in the context of inverted chromosomal duplication blocks. BMC Evol Biol, 2009, 9: 271.
    194. Wang L, Ning S B, SongY C, LuY T. The progress and application of fluorescent in situ hybridization [J]. Acta Bot Sin, 2000, 42: 1 101-1 107
    195. Wendel J F. Genome evolution in polyploids[J]. Plant Molecular Biology 2000, 42:225-249.
    196. Wickware P, Smaglik P. Proteomics technology character references [J]. Nature, 2001, 413: 869- 875.
    197. Wilkins MR, Lindskog I, Gasteiger E, et al..Detailed peptide characterization using PEPTIDEMASS-a World-Wide-Web-accessible tool. Electrophoresis, 1997b, 18: 403-408.
    198. Wilkins MR, Sanchez JG, Gooley A, et al.. Biotechnology and genetic engineering reviews, 1995,13:19-50.
    199. William H,Vensel ,Hurkman, et al..Developmental changes in the metabolic protein profiles of wheat endosperm, Proteomics, 2005, 5:1594-1611.
    200. Wolffe A.P. and Matzke M.A. Epigenetics: regulation through repression.Science 1999, 286, 481- 486.
    201. Yang TJ, Kim JS, Lim KB, Kwon SJ, Kim JA, Jin M, Park JY, Lim MH, Kim H, Kim SH, Lim YP, Park BS. The Korea Brassica genome project: a glimpse of the Brassica genome based on comparative genome analysis with Arabidopsis. Comp Funct Genomics,2005, 6:138-146.
    202. Yang Y, Thannhauser TW, Li L, Zhang S. Development of an integrated approach for evaluation of 2-D gel image analysis: impact of multiple proteins in single spots on comparative proteomics in conventional 2-D gel/MALDI workflow. Electrophoresis, 2007, 28, 2080-2094.
    203. Yu MQ, Deng GB, Zhang XP, Ma XR, Chen J. Effect of the ph1b mutant on chromosome pairing in hybrids between Dasypyrum villosum and Triticum aestivum. Plant Breed, 2001, 120:285-289.
    204. Zevallos E A, et al.. Detection of HIV-1 sequences in placentas of HIV-infected mother by in situ PCR [J]. Cell Vision, 1994, 1:116-121.
    205. Zhu T., Shi L., Keim P. Detection by in situ Fluorescence of Short, Single-Copy Sequences of Chromosomal DNA [J]. Plant Mol Biol Rep, 1995, 13:270-277.
    206. Ziolkowski P A, Kaczmarek M, Babula D, Sadowski J. Genome evolution in Arabidopsis/Brassica: conservation and divergence of ancient rearranged segments and their breakpoints. Plant J, 2006, 47: 63-74.
    1.李宗芸,栗茂腾,黄荣桂,伍晓明,宋运淳.基因组原位杂交辨别芸薹属异源四倍体AA、BB、CC基因组研究.中国油料作物学报, 2002, 24 (1) : 10-14.
    2.李宗芸,伍晓明,王秀琴,宋运淳.甘蓝与芸薹属5个近缘物种的基因组原位杂交分析.中国油料作物学报, 2003, 25 (4) : 16-19.
    3.唐祈林,荣廷昭,宋运淳.玉米×四倍体多年生玉米F1减数分裂构型及不同构型的染色体来源研究.中国农业科学, 2004, 37(4): 473?476.
    4. Ali HBM, Lysak MA, Schubert I, Chromosomal localization of rDNA in the Brassicaceae. Genome, 2005, 48: 341-346.
    5. Al-Shehbaz I A, Beilstein M A, Kellogg E A. Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. Pl Syst Evol, 2006, 259: 89–120
    6. Armstrong, S.J., Fransz, P., Marshall D.F., and Jones G.H., Physical mapping of DNA repetitive sequences to mitotic and meiotic chromosomes of Brassica oleracea var. alboglabra by fluorescence in situ hybridization, Heredity, 1998, 81: 666-673.
    7. Chen L L (陈玲玲), Peng G Z (彭贵子), Zhang W L (张伟丽)and Tian D C (田大成). The significance of mutations in genomic evolution (J). Hereditas(Beijing) (遗传), 2006, 28 (5):631-638 (in Chinese with English abstract).
    8. Cheng, B.F., and Heneen W.K., Satellited chromosomes, nucleolus organizer regions and nucleoli of Brassica campestris L., B. nigra (L.) Koch, and Sinapis arvensis L, Hereditas, 1995, 122:113– 118.
    9. de Jong, J.H., Franz, P., and Zabel, P., High resolution FISH in plants-technique and applications, Trends in Plant Science, 1999, 4: 258– 263.
    10. Fukui K, Nakayama S, Ohmido N, Yoshiaki H, Yamabe M. Quantitative karyotyping of three diploid Brassicas pecies by imaging methods and localization of 45SrDNA loci on the identified chromosomes . Theor.Appl.Genet. 1998, 96: 325-330.
    11. Fukui, K., Nakayama, S., Ohmido, N., et al. Quantitative karyotyping of three diploid Brassica species by imaging methods and localization of 45S rDNA loci on the identified chromosomes, Theoretical and Applied Genetics, 1998, 96: 325– 330.
    12. Green E D, Veltzen M S. Reliable detection of hamster DNA containing YACs using radiolabeled hamster Cot-1 DNA [J]. Focus (Gaithersburg. Md.), 1992, 14:123-124.
    13. Gustafson JP, DilléJE. The chromosome location of Oryza sativa recombination linkage group. Proc Natl Acad Sci USA, 1992, 89(18): 8646?8650.
    14. Hasterok, R., Jenkins, G., Langdon, T., et al. Ribosomal DNA is an effective marker of Brassica chromosomes, Theoretical and Applied Genetics, 2001, 103: 486-490.
    15. Hasterok, R., Wolny, E., Hoslawa, M., et al. Comparative analysis of rDNA distribution in chromosomes of various species of Brassicaceae, Annual of Botany, 2006, 97:205-216.
    16. Howell, E.C., Barker, G.C., Jones, G.H., et al. Integration of the cytogenetic and genetic linkage maps ofBrassica oleracea, Genetics, 2002, 161:1225– 1234.
    17. Islam, A. K. M. R.. Chromosoma, 1980,76: 365-373
    18. Koo D-H., Plaha P., Lim Y.P., Hur Y., et al. A high resolution karyotype of Brassica rapa ssp. pekinensis revealed by pachytene analysis and multicolour fluorescence in situ hybridisation, Theoretical and Applied Genetics, 2004, 109:1346-1352.
    19. Kulak S., Hasterok R., Maluszynska J. Karyotyping of Brassica amphidiploids using 5S and 25S rDNA as chromosome markers[J]. Hereditas, 2002, 136:144-150.
    20. Lim, K.B., de Jong, H., Yang, T.J., et al. Characterization of rDNAs and tandem repeats in the heterochromatin of Brassica rapa, Molecular Cells, 2005, 19:436-444.
    21. Liu B, Chen CB, Li XL. Physical mapping of 45S rDNA on metaphase chromosomes in several plant species. Acta Sci Nat Univ Nankaiensis, 2006, 39(4): 96?102.
    22. Long M, Betran E, Thornton K and Wang W. The origin of new genes: glimpses from the young and old (J). Nature Review Genetics, 2003, 4 (11): 865-875.
    23. Maluszynska, J., and Hasterok, R., Identification of individual chromosomes and parental genomes in Brassica juncea using GISH and FISH. Cytogenet, Genome Research, 2005, 109: 310-314.
    24. Maluszynska, J., and Heslop-Harrison, P., Physical mapping of rDNA loci in Brassica species, Genome, 1993,36: 774-781.
    25. Olin-Fatih, M., and Heneen, W.K., C-banded karyotypes of Brassica campestris, B. oleracea and B. napus, Genome, 1992 ,35:583-589.
    26. Parkin, I.A.P., and Lydiate, D.J., Conserved patterns of chromosome pairing and recombination in Brassica napus crosses, Genome, 1997, 40: 496-504.
    27. Pederson C, Laursen L. Chromosomal locations of fourminor rDNA loci and a maker microsatellite sequence in barley. Chromosome Res, 1994, 2(1): 65?71.
    28. Riley&Chapman V,JohnsonR.Introduction of yellow low rust resistance of Aegilops comosa into wheat by genetically induced homoeologous recombination.Nature,1968,217:383-384
    29. Schelfhout, C.J., Snowdon, R., Cowling, W.A., et al. A PCR based B-genome-specific marker in Brassica species, Theoretical and Applied Genetics, 2004, 109: 917-921.
    30. Snowdon, R.J., Friedrich, T., Friedt, W., et al. Identifying the chromosomes of the A- and C-genome diploid Brassica species B. rapa (syn. campestris) and B. oleracea in their amphidiploid B. napus, Theoretical and Applied Genetics, 2002, 104: 533-538.
    31. Snowdon, R.J., Friedt, W., K?hler, A., et al. Molecular cytogenetic localization and characterization of 5S and 25S rDNA loci for chromosome identification in oilseed rape (Brassica napus L.), Annual of Botany, 2000, 86:201-204.
    32. Snowdon, R.J., K?hler, W., and K?hler, A., Chromosomal localization and characterization of rDNA loci in the Brassica A and C genomes, Genome, 1997, 40: 582-587.
    33. Wang Y, minoshima S, Shimizu N. Cot-1 banding of human chromosomes using fluorescence in situ hybridization with Cy3 labeling [J]. Jpn. J. Human Genet, 1995, 40: 243-252.
    34. Warwick S I, Francis A, Al-Shehbaz I A. Brassicaceae: checklist and database on CD-ROM. Plant Syst Evol, 2006, 259: 249-258.
    35. Wei, W.H., Zhao, W.B., Wang, L.J., et al. Karyotyping of Brassica napus L. based on Cot-1 DNA banding by fluorescence in situ hybridization, Journal of Integrative Plant Biology, 2005,47:1479-1484.
    36. Weiss H., Maluszynska J. Chromosomal rearrangement in autotetraploid plants of Arabidopsis thaliana [J]. Hereditas, 2000, 133(3): 255-261.
    37. Xu J, Eerle ED. High resolution physical mapping of 45S (5.8S, 18S and 25S) rDNA gene loci in the tomato genome using a combination of karyotyping and FISH of pachytene chromosome. Chromosome, 1996, 104(8): 545-550.
    38. Ziolkowski, P.A., and Sadowski J., FISH-mapping of rDNAs and Arabidopsis BACs on pachytene complements of selected Brassicas, Genome, 2002, 45:189-197.
    1. Brugmans B, Fernandez CA, Bachem CW, van Os H, van Eck HJ, Visser RG. A novel method for the construction of genome wide transcriptome maps. Plant J, 2002, 31:211-222.
    2. Caranta C, Thabuis A, Palloix A. Development of a CAPS marker for the Pvr4 locus: A tool for pyramiding potyvirus resistance genes in pepper. Genome, 1999, 42:1111-1116.
    3. Das S, Roscoe T J, Delseny M, Srivastava P S, Lakshmikumaran M. Cloning and molecular characterization of the Fatty Acid Elongase 1 (FAE 1) gene from high and low erucic acid lines of Brassica campestris and Brassica oleracea. Plant Sci, 2002, 162: 245-250.
    4. Demeke T, Adams R P, Chibbar R. Potential taxonomic use of random amplied polymorphic DNA (RAPD): a case study in Brassica. Theor Appl Genet, 1992, 84: 990–994.
    5. Doyle J J, Doyle J L. Isolation of plant DNA from fresh tissue. Focus, 1990, 12: 13-15.
    6. Gupta V, Mukhopadhyay A, Arumugam N, Sodhi Y S, Pental D, Pradhan A K. Molecular tagging of erucic acid trait in oilseed mustard (Brassica juncea) by QTL mapping and single nucleotide polymorphisms in FAE1 gene. Theor Appl Genet, 2004, 108: 743-749.
    7. Hasterok R, Jenkins G, Langdon T, Jones R N, Maluszynska J. Ribosomal DNA is an effective marker of Brassica chromosomes. Theor Appl Genet, 2001,103: 486-490.
    8. James D W, Jr Lim E, Keller J, Plooy I, Ralston E, Dooner H K. Directed tagging of the Arabidopsis fatty acid elongation 1(FAE1)gene with the maize transposon activator. Plant Cell, 1995,7: 309-319.
    9. Jander G, Norris S R, Rounsley S D, Bush D F, Levin I M, Last R L. Arabidopsis map-based cloning in the post–genome era. Plant Physiol, 2002, 129: 440-450.
    10. Konieczny A, Ausubel F M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific markers. Plant J, 1993, 4: 403-410.
    11. Lagercrantz U. Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics, 1998, 150: 1217-1228.
    12. Li Z-Y(李宗芸),Wu X-M (伍晓明),Wang X-Q (王秀琴),Song Y-C (宋运淳). Genomic in situ hybridization (GISH) analysis of B. oleracea and 5 related Brassica species. Chi J Oil Crop Sci (油料作物学报) , 2003, 25(4): 16-19 (In Chinese with English abstract)
    13. Lim K B, de Jong J, Yang T-J, Park J-Y, Kwon S-J, Kim J S, Lim M-H, Kim J A K, Jin Y-M, Kim S H, Lim Y P, Bang J-W, Kim H, Park B-S. Characterization of rDNAs and tandem repeats in the heterochromatin of Brassica rapa. Mol Cells, 2005, 19: 436-444.
    14. Lysak M A, Koch M A, Pecinka A, Schubert I. Chromosome triplication found across the tribe Brassiceae. Genome Res, 2005, 15: 516-525.
    15. Mou Z L, Dai Y, Li J Y. Fine-mapping of an Arabidopsis cell death mutation locus. Science in China (Series C), 2000, 43:138-145.
    16. Moury B, Pflieger S, Blattes A, Lefebvre V, Palloix A. CAPS marker to assist selection of Tomato spotted wilt virus(TSWV) resistance in pepper. Genome, 2000, 43: 137-142.
    17. Parkin I A P, Parkin I A P, Sharpe A G, Lydiate D J. Patterns of genome duplication within the Brassica napus genome. Genome, 2003, 46: 291-303.
    18. Parkin I A P, Sharpe A G, Keith D J, Lydiate D J. Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome, 1995, 38: 1122-1131.
    19. Quiros C F, Truco M J, Hu J. Sequence comparison of two codominant RAPD markers in Brassica nigra: deletions, substitutions and microsatellites. Plant Cell Rep, 1995, 15: 268-270.
    20. Schelfhout C. J. . Snowdon R. Cowling W. A. Wroth. J. M. A PCR based B-genome-specific marker in Brassica species. Theor Appl Genet, 2004, 109: 917-921.
    21. Song K M, Osborn T C, Williams P H. Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). Genome evolution of diploid and amphidiploid species. Theor Appl Genet,1988,75: 784-794.
    22. Thormann C E, Ferreira M E, Carmago L E A, Tivang J G, Osborn T C. Comparison of RFLP and RAPD markers to estimate genetic relationships within and among cruciferous species. Theor Appl Genet, 1994, 88: 973-980.
    23. U N. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jap J Bot, 1935, 7: 389-452.
    24. Warwick S I, Sauder C. Phylogeny of tribe Brassiceae (Brassicaceae) based on chloroplast restriction site polymorphisms and nuclear ribosomal internal transcribed spacer and chloroplast trnL intron sequences. Can J Bot, 2005, 83: 467-483.
    1.韩琳娜,郭庆梅,周凤琴.野生大豆与栽培大豆种子贮藏蛋白含量的PAGE分析[J].大豆科学,2009,28(2):321-324
    2.金伟栋,李娜,洪德林,粳稻品种间种子贮藏蛋白多态性分析[J].南京农业大学学报,2007,30(1):7-13
    3.刘敏轩,王赟文,韩建国,等.饲用燕麦品种的种子醇溶蛋白超薄层等电聚焦电泳快速鉴定[J].种子, 2006, 25 (9) :4-8
    4.马国芳,李钧敏,边才苗.白菜种子贮藏蛋白的聚丙烯酰胺凝胶电泳分析[J].中国蔬菜,2004(3):33-34
    5.舒晓霞,李伟,董攀,等.圆锥小麦贮藏蛋白的遗传多样性研究[J].麦类作物学报,2008,28(1):66-73
    6.文建军,何应森,何荻平,等.“西南302”油菜种子贮藏蛋白的分离及部分性质[J].西南农业学报,2000,13:(2)46-50
    7.薛照辉.杂交油菜种真实性鉴定技术的初步[D].乌鲁木齐:新疆农业大学,2001
    8.周太炎,郭荣麟,蓝永珍,等.中国植物志(33卷)[M].北京:科学出版社,1987,1~453
    9. Chen Z J, Pikaard C. Transcriptional analysis of nucleolar dominance in polyploid plants: Biased expression / silencing of progenitor rRNA genes is developmentally regulated in Brassica [J]. Proceedings of the National Academy of Sciences, USA 1997,94: 3442-3447
    10. Demeke T, Adams RP, Chibbar R. Potential taxonomic use of random amplied polymorphic DNA (RAPD): a case study in Brassica . Theo Appl Genet, 1992, 84: 990-994.
    11. Hasterok R, Jenkins G, Langdon T, et al. Ribosomal DNA is an effective marker of Brassica chromosomes [J]. Theoretical and Applid Genetics, 2001,103: 486-490.
    12. Hurkman W J, Tanaka C K. Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis [J]. Plant Physiology ,1986, 81:802-806.
    13. Lagercrantz U. Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements [J]. Genetics, 1998, 150: 1217-1228.
    14. Parkin I A P, Sharpe A G, Keith D J, et al Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape) [J]. Genome, 1995, 38: 1122-1131.
    15. Preuss S, Pikaard CS. rRNA gene silencing and nucleolar dominance: Insights into a chromosome-scale epigenetic on/of off switch [J]. Biochimica et Biophysica Acta,2007,1769: 328-392.
    16. Quiros C F, Truco M J, Hu J. Sequence comparison of two codominant RAPD markers in Brassica nigra: deletions, substitutions and microsatellites [J]. Plant Cell Report, 1995,15: 268-270.
    17. Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Laboratory Manual [M]. New York: Cold Spring Harbor Laboratory Press, 1989.
    18. Song K M, Osborn T C, Williams P H. Brassica taxonomy based on nuclear restriction fragment lengthpolymorphisms (RFLPs). Genome evolution of diploid and amphidiploid species [J]. Theoretical and Applied Genetics,1988, 75: 784-794.
    19. Thormann C E, Ferreira M E, Carmago L E A, et al Comparison of RFLP and RAPD markers to estimate genetic relationships within and among cruciferous species [J]. Theoretical and Applid Genetics,1994, 88: 973-980
    20. Vaughan J G, Hemingway J S, Schofield H J. Contributions to a study of variation in Brussica juncea Coss. et Czern[J]. Journal of the Linnean Society (Botany) ,1963(374): 435-447.
    21. Warwick S I, Sauder C. Phylogeny of tribe Brassiceae (Brassicaceae) based on chloroplast restriction site polymorphisms and nuclear ribosomal internal transcribed spacer and chloroplast trnL intron sequences [J]. Candiana Journal of Botany ,2005, 83: 467-483.
    1. Albertin W, Alix K, Balliau T, Brabant P, Davanture M. Differential regulation of gene products in newly synthesized Brassica napus allotetraploids is not related to protein function norsubcellular localization. BMC Genomics, 2007, 8: 56.
    2. Albertin W, Balliau T, Brabant P, Chevre AM, Eber F, Malosse C, Thiellement H. Numerous and rapid nonstochastic modifications of gene products in newly synthesized Brassica napus allotetraploids. Genetics ,2006,173: 1101-1113.
    3. Albertin W, Langella O, Joets J, Négroni L, Zivy M, Damerva C. Comparative proteomics of leaf, stem, and root tissues of synthetic Brassica napus. Proteomics, 2009, 9:793-799.
    4. Alix K, Joets J, Ryder CD, Moore J, Barker GC, Bailey JP, King GJ, Heslop-Harrison JS . The CACTA transposon Bot1 played a major role in Brassica genome divergence and gene proliferation. Plant J,2008, 56: 1030-1044.
    5. Ayele M, Haas BJ, Kumar N, Wu H, XiaoY, van Aken S, Utterback TR, Wortman JR, White OR, Town CD. Whole genome shotgun sequencing of Brassica oleracea and its application to gene discovery and annotation in Arabidopsis. Genome Res, 2005,15: 487-495.
    6. Bradford M M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding[J]. Analytical Biochemistry, 1976, 72, 248-254.
    7. Chichester C ,Nikitin F ,Ravarini JC,et al. Consistency checks for characterizing protein forms. Comput Biol Chem ,2003,27 (1) :29235.
    8. Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC. Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell ,2007,19: 3404-3417.
    9. Howell EC, Kearsey MJ, Jones GH, King GJ, Armstrong SJ .A and C genome distinction and chromosome identification in Brassica napus sequential fluorescence in situ hybridization and genomic in situ hybridization. Genetics,2008, 180:1849-1857.
    10. Johnston JS, Pepper AE, Hall AE, Chen ZJ, Hodnett G, Drabek J, Lopez R, Price HJ .Evolution of genome size in Brassicaceae. Ann Bot,2005, 95: 229–235.
    11. Lenoir A, Cournoyer B, Warwick S, Picard G, Deragon JM . Evolution of SINE S1 retroposons in Cruciferae plant species. Mol Biol Evol,1997, 14: 934-941.
    12. Leprince, A. S.,Grandbastien,M .A.Mever C..Retrotransposons of the Tnt1B family are mobile in Nicotiana plumbaginifolia and can induce alternative splicing of the host gene upon insertion[J].Plant Mol. Biol.,2001,17: 533-511.
    13. LI Zong-Yun, LI Mao-Teng, HUANG Rong-Gui, WU Xiao-Ming, SONG Yun-Chun . Genomic in situ hybridization (GISH) discriminates the A, B and C genomes in Brassica allotetraploid species .Chin J Oil Crop Sci , 2002, 24 (1) : 10-14.
    14. Lysak MA, Koch MA, Pecinka A, Schubert I. Chromosome triplication found across the tribe Brassiceae. Genome Res,2005, 15:516-525.
    15. Marillonnet, S.,Wessler, S. R.. Retrotransposon insertion into the maize waxy gene results intissue-specific RNA processing[J].Plant Cell, 1997, 9:967-978.
    16. Panjabi P, Jaqanath A, Bisht NC, Padmaja KL, Sharma S, Gupta V, Pradhan AK, Pental D.Comparative mapping of Brassica juncea and Arabidopsis thaliana using intron polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genomics,2008, 3: 113-132.
    17. Park JY, Koo DH, Hong CP, Lee SJ, Jeon JW, Lee SH, Yun PY, Park BS, Kim HR, Bang JW, Plaha P, Bancroft I, LimYP .Physical mapping and microsynteny of Brassica rapa ssp. pekinensis genome corresponding to a 222 kb gene-rich region of Arabidopsis chromosome 4 and partially duplicated on chromosome 5. Mol Genet Genomics,2005, 274:579-558.
    18. Parkin IAP, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ. Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics,2005, 171:765-781.
    19. Parkin IAP, Sharpe AG, Keith DJ, Lydiate DJ. Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome ,1995,38:1122–1131.
    20. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis,1999, 20: 3551-3567.
    21. Pradhan AK, Prakash S, Mukhopadhyay A, Pental D. Phylogeny of Brassica and allied genera based on variation in chloroplast and mitochondrial DNA patterns: molecular and taxonomic classifications are incongruous. Theor Appl Genet,1992, 85:331-340
    22. Qiu D, Gao M, Li G, Quiros C. Comparatvie sequence analysis for Brassica oleracea with similiar sequence in B. rapa and Arabidopsis thaliana. Plant Cell Rep, 2009, 28: 649-661.
    23. Rabilloud T. Two-dimensional gel electrophoresis in proteomics: old fashioned, but it still climbs up the mountains. Proteomics, 2002, 2 (1): 3-10.
    24. Rana D, van den Boogaart T, O’Neill CM, Hynes L, Bent E. Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J,2004, 40:725-733.
    25. SanMiguel P, Bennetzen JL. Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons[J].Ann Bot, 1998, 82:37-44.
    26. SanMiguel P, Gaut B S, Tikhonov A, Nakajima Y, et al. The paleontology of intergene retrotransposons of maize[J].Nature Genet, 1998, 20:43-45.
    27. SanMiguel P, Tikhonov A, Jin YK,et al. Nested retrotransposons in the intergenic regions of the maize genome[J].Science, 1996, 272:765-768.
    28. Snowdon R J, Friedrich T, FriedtW, KêhlerW. Identifying the chromosomes of A- and C- genome diploid Brassica species B. rapa ( syn . campestris) and B.oleracea in their amphidiploid B. napus. Theor Appl Genet , 2002, 104: 533-538.
    29. Snowdon R J, Koehler W, Friedt W, Koehler A .Genomic in situ hybridization in Brassica amphidiploids and interspecific hybrids. Theor Appl Genet,1997, 95: 1320-1324.
    30. Thiellement H, Zivy M, Plomion C. Combining proteomic and genetic studies in plants. J Chromatogr B Analyt Technol Biomed Life Sci,2002, 782: 137-149.
    31. Truco M J, Hu J, Sadowski J, Quiros C F . I nter- and intra-genomic homology of Brassica genomes :implications for their origin and evolution . Theor Appl Genet, 1996, 93: 1225-1233.
    32. Ulrike B, Heiko C B. Evaluation B-genome intergration in Brassica napus with GISH. Proceeding of the 10th international Rape-seed Congress, Canberra, Australia . 1999.
    33. Warwick SI, Black LD . Molecular systematics of Brassica and allied genera (subtribe Brassicinae, Brassiceae)– chloroplast genome and cytodeme congruence. Theor Appl Genet,1991, 82:81-92.
    34. Wroblewski T, Coulibaly S, Sadowski J, Quiros CF.Variation and phylogenetic utility of the Arabidopsis thaliana Rps2 homolog in various species of the tribe Brassiceae. Mol Phylogenet Evol, 2000, 16:440- 448.
    35. Yang TJ, Kim JS, Kwon SJ, Lim KB, Choi BS, Kim JA, Jin M, Park JY, Lim MH, Kim H, Lim YP, Kang JJ, Hong JH, Kim CB, Bhak J, Bancroft I, Park BS. Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUSC regions of Brassica rapa genome. Plant Cell,2006, 18:1339-1347.
    36. Yang TJ, Kim JS, Lim KB, Kwon SJ, Kim JA, Jin M, Park JY, Lim MH, Kim H, Kim SH, Lim YP, Park BS. The Korea Brassica genome project: a glimpse of the Brassica genome based on comparative genome analysis with Arabidopsis. Comp Funct Genomics ,2005,6: 138-146.
    37. Zhang X, Wessler S .Genome-wide comparative analysis of the transposable elements in the related species Arabidopsis thaliana and Brassica oleracea. PNAS, 2004, 101:5585-5594.
    1.陈培,张磊,邱丽娟,等.大豆质核互作雄性不育系W931A及其保持系的差异蛋白质组学比较分析.中国种业,2009,10.
    2.陈贤丰,梁承邺. HPGMR不育花药能量代谢H2O2的积累与雄性不育的关系.植物生理学通讯, 1991,27(1):21-24.
    3.成善汉,柳俊,谢从华.马铃薯腺苷二磷酸葡萄糖焦磷酸化酶研究进展.中国马铃薯, 2001,第15卷,第6期,
    4.关和新,陆普媛.植物人工异源多倍体的遗传及后遗传变化[J].中国生物工程杂志,2003, (9):34-39.
    5.郭启芳,邹琦,王玮.植物泛素/26S蛋白酶体通路的生理功能和分子生物学.植物生理学通讯,2004,40(5):533-539.
    6.李霁,张洪渊. PFP的研究进展.生物化学与生物物理进展. 1995, 22 (4): 307-312.
    7.李俊,方小平,王转等.外源基因定向插入甘蓝型油菜C基因组.科学通报,2006,51vol,12: 1406-1412.
    8.刘继梅,程在全,杨明挚等.云南3种野生稻中抗病基因同源序列的克隆及序列分析.中国农业科学, 2003,36(3):273-280.
    9.马为民,施定基,王全喜.用基因工程提高光合同化CO2效率的一个关键酶—果糖-1,6-二磷酸酶.生物化学与生物物理进展,2003,30(3):446.
    10.钱伟.甘蓝型油菜与白菜型油菜亚基因组间杂种优势的研究[博士学位论文].武汉,华中农业大学,2003.
    11.石峰.植物小G蛋白功能的最新研究进展.热带农业科学.2009,29:69-74.
    12.宋敏,李援亚,张云.导入AGPase基因的转基因可育水稻及其经济性状的研究.华北农学报,2001, 16 (4):11-14.
    13.王秀珍,腾晓月,阎龙飞,等.玉米及高粱花药中三磷酸腺苷(ATP)含量与细胞质雄性不育.作物学报, 1986, 12(3):177-182.
    14.夏凯,肖诩华,刘文芳.湖北光敏感核不育水稻光敏感期叶片中ATP含量与RuBPcase活力的分析[J].杂交水稻,1989,(4):41-42,30.
    15.邢俊杰,成志伟,杨剑,等.利用基因芯片技术分析水稻杂种优势的分子机理[J].杂交水稻,2005, 20(4):59-61.
    16.杨娜,侯巧明,南洁等.泛素连接酶的结构及其功能研究进展[J].生物化学与生物物理进展, 2008, 35(1): 14-20.
    17.姚庆荣.木薯遗传转化体系的建立与优化及转AGPase基因的研究.博士学位论文,2007.
    18.曾维英,杨守萍,盖钧锰,等.大豆质核互作雄性不育系NJCMS1A及其保持系的花药差异蛋白质组学研究[J].中国农业科学, 2007, 40(12):2679-2687.
    19. Adams K L, Cronn R, Percifield R, Wendel J F. Genes duplicated by polyploidy show unequalcontributions to the transcriptomeand organ-specific reciprocal silencing[J]. Proc Natl Acad Sci USA , 2003, 100:4649-4654.
    20. Adams K L, Percifield R, Wendel J F. Organ-specific silencing of duplicated genes in a newly synthesized cotton allotetraploid[J]. Genetics, 2004, 168:2217-2226.
    21. Adams K L, Wendel J F. Polyploidy and genome evolution in plants[J]. CurrOpin Plant Biol, 2005, 8: 135-141.
    22. Adams K L. Evolution of duplicate gene expression in polyploid and hybrid plants[J].Journal of Heredity, 2007, 98:136-141.
    23. Adams K, Wendel J F. Allele-specific, bidirectional silencing of an alcohol dehydrogenase gene in different organs of interspecific diploid cotton hybrids[J]. Genetics, 2005, 171: 2139-2142.
    24. Albertin W, Brabant P, Catrice O, Eber F, Jenczewski E, Chevre A M, Thiellement H. Autopolyploidy in cabbage (Brassica oleracea L.) does not alter significantly the proteomes of green tissues[J]. Proteomics, 2005,5:2131-2139.
    25. Anderson J M, Larson R, Laudencia D, Kim W T, Morrow D. Okita T, Preiss J. Molecular characterisation of the gene encoding a rice endosperm-specific ADP-glucose pyrophosphorylase subunit and its developmental patter of transcripdon. Gene, 1991,97:199-205.
    26. Andrade M A,Gonzalez-Guzman M,Serrano R,Rodriguez P L. A combination of the F-box motif and kelch repeats defines a large Arabidopsis family of F-box proteins.Plant Mol Biol,2001,46(5):603-614.
    27. Anja S, Marco B , Rüdiger H. Overexpression of the potential herbicide target sedoheptulose-1, 7-bisphosphatase from Spinacia oleracea in transgenic tobacco. Molecular Breeding , 2002, 9: 53-61.
    28. Anne Marmagne, Philippe Brabant, Herve′Thiellement, et al.. Analysis of gene expression in resynthesized Brassica napus allotetraploids: transcriptional changes do not explain differential protein regulation. New Phytologist, 2010,186: 216-227.
    29. Audrey H Metz,Thomas Hollis,,Brandt F Eichman. DNA damage recognition and repair by 3- methyladenine DNA glycosylase I (TAG). The EMBO Journal, 2007, 26, 2411-2420.
    30. Axesson T, Bowman C M, Sharpe A G, et al.. Amphidiploid Brassica juncea contains conserved progenitor genomes[J].Genome, 2000, 43: 679-688.
    31. Bao J Y, Lee S, Chen C, et al.. Serial Analysis of Gene Expression Study of a Hybrid Rice Strain (LYP9) and Its Parental Cultivars [J]. Plant Physiology, 2005, 138:1216-1231.
    32. Baumel A, Ainouche M, Kalendar R, et al.. Retrotransposons and genomic stability in populations of the young allopolyploid species Spartina anglica C. E. Hubbard (Poaceae) [J]. Mol Biol Evol, 2002,19: 1218-1227.
    33. Bjelland S, Bjoras M, Seeberg E . Excision of 3-methylguanine from alkylated DNA by 3- methyladenine DNA glycosylase I of Escherichia coli. Nucleic Acids Res,1993,21: 2045-2049.
    34. Black C C, Smyth D A, Wu M X. Pyrophosphate dependent glycolysis and regulation by fructose-2, 6-bisphosphate in plants. In: Ludden P W, Burris J E. Nitrogen fixation and CO2metabolism. Elsevier Science Publishing Co. 1985, 361-370.
    35. Blilou I,Frugier F,Folmer S, et a1.The Arabidopsis HOBBIT gene encodes a CDC27 homolog that links the plant cell cycle to progression of cell differentiation[J].Genes Dev,2002,16(19):2566 -2575.
    36. Callis J,Vierstra R D. Protein degradation in signaling. Curr Opin Plant Biol,2000,3(5):381-386.
    37. Carnal N M, Black C C. Pyrophosphate-dependent 6-phosphofructokinase: a new glycolytic enzyme in pineapple. Biochem Biophys Res Commun, 1979, 8:20-26.
    38. Casado-Vela J,Selles S,Bru Martinez R.Proteomic approach to blossom-end rot in tomato fruits (Lycopersicon esculentum M.):antioxidant enzymes and the pentose phosphate pathway. Proteomics, 2005, 5(10):2488-2496.
    39. Chenk P W, Snaar-Jagalska B E. Signal Perception and Transduction: the Role of Protein Kinases. Biochim Biophys Acta. 1999, 1449(1):1-24.
    40. Comai L, Madlung A, Josefsson C, Tyagi A: Do the different parental 'heteromes' cause genomic shock in newly formed allopolyploids? Philos Trans R Soc Lond B Biol Sci, 2003,358 (1434):1149-1155.
    41. Comai L, Tyagi A P, Winter K, Holmes2Davis R, Reynolds S H, Stevens Y, Byers B. Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids [J]. Plant Cell, 2000,12: 1551-1567.
    42. Comai L. Genetic and epigenetic interactions in allopolyploid plants. Plant Molecular Biology, 2000, 43:387-399.
    43. Comai L. The advantages and disadvantages of being polyploidy [ J ]. Nat Rev Genet, 2005, 6: 836-846.
    44. Craig K L,Tyers M.The F-box:a new motif for ubiquitin dependent proteolysis in cell cycle regulation and signal transduction.Prog Biophys Mol Biol,1999,72(3):29-328.
    45. Donnelly BE, Madden RD, Ayoubi P, Porter DR, Dillwith JW. The wheat (Triticum aestivum L.) leaf proteome. Proteomics,2005,5(6):1624-1633.
    46. Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS, Wendel JF. Evolutionary genetics of genome merger and doubling in plants. Annual Review of Genetics ,2008,42: 443-461.
    47. E.Szadkowski, F. Eber, V. Huteau, M. Lode′, C. Huneau, H. Belcram, O. Coriton, M. J. Manzanares–Dauleux, R. Delourme, G. J. King, B. Chalhoub, E. Jenczewski and A-M. Che`vre.The first meiosis of resynthesized Brassica napus, a genome blender. New Phytologist , 2010, 186: 102–112.
    48. EckardtFeng Q L,Davery K G,Pang A S D,Primavera M,et al.. Glutathione S-transferase from the spruce budworm choristoneura fumiferana:identification, characterization, localization, cDNA cloning, and expression. Insect Biochem.Mol.Biol,1999,29:779-793.
    49. Feuillet C, SCHACHERMARY G, KELLER B. Molecular cloning of a new receptor-like kinase gene encoded at theLr10 disease resistance locus of wheat[J].The Plant Journal, 1997, 11 (1):45-52.
    50. Feuillet C,Keller B.Comparative genomics in the grass family,Molecular characterization of grass genome structure and evolution[J].Annals of Botany,2002,89(1),3-10.
    51. Flagel L, Udall J, Nettleton D, Wendel J. Duplicate gene expression in allopolyploid Gossypium reveals two temporally distinct phases of expression evolution. BMC Biology, 2008,6: 16.
    52. Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T. DNA Repair and Mutagenesis. Washington, DC: ASM Press,2006.
    53. Gagne J M,Downes B P,Shiu S H,Durski A M,Vierstra R D. The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc Natl Acad Sci USA,2002,99 (17): 11519-11524.
    54. Gion JM, Lalanne C, Le Provost G, et al..The proteome of maritime pine wood forming tissue. Proteomics, 2005, 5:3731-3751.
    55. Guo M, Rupe M A, Yang X, et al.. Genome-wide transcript analysis of maize hybrids: allelic additive gene expression and yield heterosis [J]. Theor. Appl Genet, 2006. 113:831-845.
    56. Han FP,Fedak G,Ouellet T,et al. Rapid genomic changes in interspecific and intergeneric hybrids and allopolyploids of Triticeae[J].Genome,2003,46:716-723.
    57. Hayes J D,Flanagan J U,Jowsey I R.Glutathione transferases.Annu. Rev.Pharmacol. Toxicol, 2005, 45:51-88.
    58. He P, Friebe BR, Gill BS, Zhou JM: Allopolyploidy alters gene expression in the highly stable hexaploid wheat. Plant Mol Biol, 2003, 52:401-414.
    59. Ingram G C,Doyle S,Carpenter R,Schultz E A,Simon R,Coen E S.Dual role for fimbriata in regulating floral homeotic genes and cell division in Antirrhinum. EMBO J,1997,16(21): 6521- 6534 .
    60. Jackson P K,Eldridge A G,Freed E,Furstenthal L,Hsu J Y, Kaiser B K,Reimann J D.The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol, 2000, 10 (10): 429-439.
    61. KANG J G,YUN J,KIM D H,et al. Light and brassinosteroid signals are integrated via a dark- induced small G protein in etiolated seedling growth [J].Cell,2001,105:625-636.
    62. Kashkush K, Feldman M, Levy A A. Gene loss, silencing and activation in a newly synthesized wheat allotetraploid[J]. Genetics, 2002, 160: 1651-1659.
    63. Kashkush K,Feldman M,Levy A A.Transcriptional activation of retrotransposons alters the express- ion of adjacent genes in wheat[J].Nature Genetics,2003,33(1),102-106.
    64. KNIGHT A E & KENDRICK_JONES J.A myosin_like protein from a higher plant[J]. J. Mol. Biol,1993,231:148-154.
    65. KURODA K. Cytoplasmic streaming in plant cells[J]. Int.Rev.Cytol,1990,121:267-307.
    66. Lee H S,Chen Z J. Protein-coding genes are epigenetically regulated in Arabidopsis polyploids[J]. Proc Natl Acad Sci USA, 2001, 98: 6753-6758.
    67. Lee I,Wolfe D S,Nilsson O,Weigel D.A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS.Curr Biol,1997,7(2):95-104.
    68. Lee,S.S.,Cho,H.S.,Yoon,G.M.,Ahn,J.W.,Kim, H.H.,and Pai,H.S. Interaction of NtCDPK1 calcium- dependent protein kinase with NtRpn3 regulatory subunit of the 26S proteasome in Nicotiana tabacum. Plant J, 2003,33: 825-840.
    69. Lemos B, Meiklejohn CD, Hartl DL: Regulatory evolution across the protein interaction network. Nat Genet, 2004, 36(10):1059-1060.
    70. Leprince A S,Grandbastien M A,Meyer C.Retrotransposons of the Tnt1B family are mobile in Nicotiana plumbaginifolia and can induce alternative splicing of the host gene upon insertion[J]. Plant Mol Boil,2001,47:533-541.
    71. Levin J Z,Meyerowitz E M.UFO:An Arabidopsis gene involved in both floral meristem and floral organ development. Plant Cell,1995,7(5):529-548.
    72. Levy A A, FeldmanM. Genetic and ep igenetic rep rogramming of the wheat genome upon allopolyp loidization[J]. Biol J Linn Soc, 2004, 82: 607-613.
    73. Li L and Preiss J. Characterization of ADP-glucose pyrophosphorylase from a starch-deficient mutant of Arabidopsis thaliane(L.). Carbohyd. Res, 1992, 227: 227-239.
    74. Linebarger CRL, Boehlein SK, Sewell AK, Shaw J, Hannah C. Heat stability of maize endosperm ADP-glucose pyrophosphorylase is enhanced by integration of a cysteine in the N terminus of the small subunit. Plant Physiol,2005, 139:1625-1634.
    75. Liu B, Wendel J F. Epigenetic phenomena and the evolution of plant allopolyploids[J]. Mol Phylogenet Evol, 2003, 29: 365-379.
    76. Liu B, Wendel J F. Non-Mendelian phenomena in allopolyploid genome evolution. Current Genomics , 2002, 3(6):1-17.
    77. Liu HT, Guan PC. Studies on the taxonomy of Chinese kale (B. alboglabra). J South China Agric Univ ,1998, 19:82-86.
    78. Lukens LN, Pires JC, Leon E, Vogelzang R, Oslach L, Osborn T .Patterns of sequence loss and cytosine methylation within a population of newly resynthesized Brassica napus allopolyploids. Plant Physiol ,2006,140:336-348.
    79. Madlung A, Masuelli R W, Watson B, Reynolds S H, DavisonJ, Comai L. Remodeling of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids [J]. Plant Physiol, 2002, 129: 733-746.
    80. Madlung A, Tyagi A P, Watson B, J iang H, Kagochi T, Doerge R W, Martienssen R, Comai L. Genomic changes in synthetic Arabidopsis polyploids[J]. Plant J , 2005, 41: 221-230.
    81. Marri L, Sparla F, Pupillo P, Trost P: Co-ordinated gene expression of photosynthetic glyceraldehydes–3-phosphate dehydrogenase, phosphoribulokinase, and CP12 in Arabidopsis thaliana . J Exp Bot, 2005, 56 (409):73-80.
    82. McClintock B.The significance of responses of the genome to challenge[J].Science, 1984, 226: 792-801.
    83. Meyer S, Pospisil H, Scholten S. Heterosis associated gene expression in maize embryos 6 days after fertilization exhibits additive, dominant and overdominant pattern [J]. Plant Mol. Biol.2007, 63,381-391.
    84. Miyagawa Y, Tamoi M, Shigeoka S. Overexpression of a cyanobacterial fructose-1,6- sedoheptulose-1,7-bisphosphatase in tobacco enhances photosynthesis and growth. Nature Biotech , 2001,19:965-969.
    85. Moon,J.,Parry,G.,and Estelle,M. The ubiquitin-proteasome pathway and plant development. Plant Cell1, 2004, 6: 3181-3195.
    86. MOOSEKER M S & CHENEY R E. Unconventional myosins[J].Ann.Rev.Cell Dev. 1995,11: 633 -675.
    87. Muller-Rober B T, Kossmann J, Hannah L C .One of two different ADP-glucose pyrophosphor- ylase genes responds strongly to elevated levels of sucrose. Mol Gen Genet, 1990, 224:136-146.
    88. Muller-Roeber B, Sonnewald U, Willmizer L. Inhibition of AGPase in transgenic potatoes leads to sugar-storing tubers and influences tuber formation and expression of tuber-storage protein genes. EMBO J, 1992, 11:1229-1238.
    89. Ni W,Xie D,Hobbie L,Feng B,Zhao D,Akkara J,Ma H. Regulation of flower development in Arabidopsis by SCF complexes.Plant Physiol,2004,134(4):1574-1585.
    90. Ni Z, Kim E-D, Ha M, Lackey E, Liu J, Zhang Y, Sun Q, Chen ZJ. Altered circadian rhythms regulategrowth vigour in hybrids and allopolyploids. Nature, 2009,457:327-333.
    91. O’Rourke EJ, Chevalier C, Boiteux S, Labigne A, Ielpi L, Radicella JP. A novel 3-methyladenine DNA glycosylase from Helicobacter pylori defines a new class within the endonuclease III family of base excision repair glycosylases. J Biol Chem,2000, 275:20077-20083.
    92. Osborn, T. C., J. Chris Pires, J. A. Birchler, D. L. Auger, Z. Jeffery Chen et al.. Understanding mechanisms of novel gene expression in polyploids. Trends Genet. 2003, 19: 141-147.
    93. Osborn, T.C., Butrulle, D.V., Sharpe, A.G., Pickering, K.J., Parkin, I.A.P., Parker, J.S., and Lydiate, D.J. Detection and effects of a homoeologous reciprocal transposition in Brassica napus. Genetics, 2003a, 165: 1569-1577.
    94. Ozkan,H.,Levy,A.A.and Feldman,M.Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum)group[J].Plant Cell,2001,13,1735-1747.
    95. Papp B, Pal C, Hurst LD: Dosage sensitivity and the evolution of gene families in yeast. Nature, 2003, 424(6945):194-197.
    96. Paul D. Boyer. The ATP Synthase-A Splendid Molecular Machine .Annual Review of Biochemistry.2003, 66:717-749.
    97. Pickart,C.M. Ubiquitin in chains.Trends Biochem.Sci.,2000,25:544-548.
    98. Pikaard C S. Genomic change and gene silencing in polyploids [ J ]. Trends Genet, 2002, 17: 657-677.
    99. Pires J C, Zhao JW, SchranzM E, Quijada P A, Lukens L N,Osborn T C. Flowering time divergence and genomic rearrangements in resynthesized polyploids (Brassica) [J]. Biol J Linn Soc, 2004,82: 675-688.
    100. Pontes O, NevesN, SilvaM, LewisM S, MadlungA, ComaiL, ViegasW, Pikaard C S. Chromosomal locus rearrangements are a rapid response to formation of the allotetraploid Arabidopsis suecica genome[J]. Proc Natl Acad Sci USA, 2004,101:18240 -18245.
    101. Qiao H,Wang H,Zhao L,Zhou J,Huang J,Zhang Y,Xue Y. The F-box protein AhSLF-S2 physically interacts with S-RNases that may be inhibited by the ubiquitin/26S proteasome pathway of protein degradation during compatible pollination in Antirrhinum. Plant Cell, 2004, 16 (3):582-595.
    102. Reeves C D,Krishan H B, Okita T W. Gene expression in development wheat endosperm. Plant Phsiol, 1986, 82:34-40.
    103. Rieseberg, L.H., and Willis, J.H. Plant speciation. Science, 2007, 317:911-914.
    104. Risseeuw E P,Daskalchuk T E,Banks T W,Liu E,Cotelesage J, Hellmann H,Estelle M,Somers D E,Crosby W L.Protein interaction analysis of SCF ubiquitin E3 ligase subunits from Arabidopsis.Plant J,2003,34(6):753-767.
    105. Robert T. Gaeta,a J. Chris Pires,a,b,1 Federico Iniguez-Luy,et al..Genomic Changes in Resynthesized Brassica napus and Their Effect on Gene Expression and Phenotype. The Plant Cell, 2007, Vol. 19: 3403–3417.
    106. Roxas VP. Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nature Biotechnology, 1997,15:988-991.
    107. Salmon A, Ainouche ML, Wendel JF .Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Mol Ecol ,2005,14:1163–1175.
    108. Samach A,Klenz J E,Kohalmi S E,et al. The unusual floral organs gene of Arabidopsis thaliana is an Fbox protein required for normal patterning and growth in the floral meristem [J]. The Plant Journal, 1999,20(4),433-445.
    109. Sappl PG, Heazlewood JL, Millar AH. Untangling multi-gene families in plants by integrating proteomics into functional genomics. Phytochemistry ,2004,65(11):1517-1530.
    110. Schranz, M.E., and Osborn, T.C. De novo variation in life history traits and responses to growth conditions of resynthesized polyploid Brassica napus (Brassicaceae). Am. J. Bot. 2004,91:174- 183.
    111. Schwender J,Goffman F,Ohlrogge JB,Shachar-Hill Y. Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds.Nature,2004,432:779-782.
    112. Shaked H,Kashkush K, Ozkan H, et al.. Sequence elimination end cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell, 2001,13: 1749-1759.
    113. Sinnott,M.L. Catalytic mechanisms of enzymatic glycosyl transfer. Chem.Res,1990,90:1171-1202.
    114. Smalle J,Vierstra RD.The ubiquitin 26S Proteasome Proteolytic Pathway. Annu Rev Plant Biol,2004,55:55-90.
    115. Soltis D E, Soltis P S, Pires J C, Kovarik A, Tate J A, Mavrodiev E. Recent and recurrent polyploidy in Tragopogon (Asteraceae) : cytogenetic, genomic and genetic comparisons [J]. Biol J Linn Soc, 2004, 82: 485-501.
    116. Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, Pamphilis CWD, Wall PK, Soltis PS. Polyploidy and angiosperm diversification. American Journal of Botany,2009, 96: 336-348.
    117. Song R, Messing J. Gene expression of a gene family in maize based on nonlinear haplotypes [J]. Proc. Natl. Acad. Sci. U.S. A.. 2003, 100:9055-9060.
    118. Stebbins G L. Chromosome evolution in higher plants [M]. Addisorr Wesley, 1971
    119. Stirnberg P,Sande KVD,leyser HM. MAX1 and MAX2 control shoot lateral branching in Arabidopsis [J]. Development, 2002,129(50):1134-1141.
    120. Stone J M, Walker J C. Plant Protein Kinase Families and Signal Transduction. Plant Physiol. 1995, 108(2): 451-457.
    121. Stupar, R M, Springer N M. Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression patterns in the F1 hybrid [J]. Genetics, 2006, 173: 2199-2210.
    122. Swanson-Wagner, R.A. Jia丫,DeCook R, et al.. All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbred parents [J]. Proc. Natl. Acad. Sci. U.S. A., 2006,103, 6805-6810.
    123. Sweetlove L J, Muller-Roeber B, Willmizer L.The contribution of adenosine 5'-diphosphoglucose pyrophosphorylase to the control of starch synthesis in potato tubers. Planta, 1999, 209:330-337.
    124. Tamoi M,Nagaoka M,Miyagawa Y, et al.Contribution of fructose-1,6-bisphosphatase and sedoheptulose -1,7-bisphosphatase to the photosynthetic rate and carbon flow in the Calvin cycle in transgenic plants. Plant Cell Physiol ,2006,47:380-390.
    125. Udall JA, Swanson JM, Nettleton D, Percifield RJ, Wendel JF: A novel approach for characterizing expression levels of genes duplicated by polyploidy. Genetics, 2006, in press.
    126. Ushijima K,Sassa H,Dandekar A M,Gradziel T M,Tao R,Hirano H.Structural and transcriptional analysis of the self incompatibility locus of almond:Identification of a pollen- expressed F-box gene with haplotype-specific polymorphism.Plant Cell, 2003, 15 (3): 771- 781.
    127. Uzarowska A, Keller B, Piepho H-P, et al.. Comparative expression profiling in meristems of inbred-hybrid triplets of maize based on morphological investigations of heterosis for plant height (J]. Plant Mol Biol, 2007, 63: 21-34
    128. Van de Peer Y, Maere S, Meyer A. OPINION The evolutionary significance of ancient genome duplications. Nature Reviews Genetics ,2009,10: 725-732.
    129. Veitia RA: Gene dosage balance: deletions, duplications and dominance. Trends Genet, 2005, 21 (1): 33-35.
    130. Vernoud V,Horton AC,Yang ZB,and Nielsen E. Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol,2003,131:1191-1208.
    131. Wang J, Tian L, Lee HS, Wei NE, Jiang H, Watson B, Madlung A, Osborn TC, Doerge RW, Comai L, Chen ZJ: Genomewide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics,2006, 172(1):507-517.
    132. Wang J, Tian L,MadlungA,Lee H S, ChenM, Lee J J, Watson B, Kagochi T, Comai L, Chen Z J. Stochastic and epigenetic changes of gene exp ression in Arabidopsis polyploids[J]. Genetics, 2004, 167: 1961-1973.
    133. WangX-D(王学德), Li Y-Y(李悦有).Development of transgenic restorer of cytoplasmic male sterility in upland cotton. Scientia Agricultura Sinica(中国农业科学), 2002,35(2):137-141.
    134. Warren Albertin, Karine Alix1, Thierry Balliau, et al.. Differential regulation of gene products in newly synthesized Brassica napus allotetraploids is not related to protein function nor subcellular localization. Genomics, 2007,8:56.
    135. Warren Albertin, Thierry Balliau, Philippe Brabant,et al..Numerous and Rapid Nonstochastic Modifications of Gene Products in Newly Synthesized Brassica napus Allotetraploids. Genetics, 2006, 173:1101-1113.
    136. Watson BS, Asirvatham VS, Wang L, Sumner LW. Mapping the proteome of barrel medic (Medicago truncatula) .Plant Physiol, 2003, 131 (3):1104-1123.
    137. Wendel G F. Genome evolution in polyploids. Plant Molecular Biology,2000,42:225-249.
    138. Wolffe AP&Matzke MA.Epigenetics,regulation through repression[J].Science,1999,286,481.
    139. Woo H R,Chung K M,Park J H et al. ORE9,an F-box protein that regulates leaf senescence in Arabidopsis. Plant cell, 2001,13(8):1229-1790.
    140. YONGYG, BUSS G R, MAROOF M A, et al.. Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotidec-binding site[J]. Proc Natl Acad Sci USA,1996,93: 11751-11756.
    141. Zhang Hongyuan, Li Ji,Liu Kewu, et al.. Kinetics of Pyrophosphate:Fructose-6-phosphate Phosphotransferase from Brassica napus. Guagxi Sciences, 2000, 7(1):59-63.
    142. Zhao, J.W., Udall, J.A., Quijada, P.A., Grau, C.R., Meng, J.L., and Osborn, T.C. Quantitative trait loci for resistance to Sclerotinia sclerotiorum and its association with a homoeologous non-reciprocaltransposition in Brassica napus L. Theor. Appl. Genet. 2006,112: 509-516.
    143. Zhu DM, Saijo Y, Hoeck er U, Deng XW. Biochemical characterization of Arabidopsis complexes containing constitutively photomorphogenic1 and suppressor of PHYA proteins in light control of plant development. Plant cell , 2008a, 20, 2307-2323.
    144. Zohary D, Feldman M. Hybridization between amphidiploids and the evolution of polyploids in the wheat (Aegilops-Trilicum) group [J].Evolution, 1965, 16: 44-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700