用户名: 密码: 验证码:
干旱区典型绿洲土壤盐渍化及其生态效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤盐渍化是当今世界上土地荒漠化和土地退化的主要类型之一,也是世界性的资源问题和生态问题,对干旱半干旱地区绿洲农业可持续发展具有重要阻碍作用,并对绿洲生态系统的稳定构成极大威胁。因此,正确评价和预防土壤盐渍化对促进干旱区绿洲农业生产和区域可持续发展具有重要的现实意义。
     本研究选择具有长期研究基础的渭干河—库车三角洲绿洲作为典型研究区域,在景观生态学和可持续发展的理论指导下,以研究区多时相遥感影像数据和多年野外观测数据为基本信息源,运用空间信息技术,统计学及景观生态学等分析方法,从不同尺度对渭干河—库车河三角洲绿洲土壤盐渍化的变化及其生态效应进行综合、集成的研究。通过科学把握区域土壤盐渍化动态变化和生态环境演变的过程和规律,为区域生态环境恢复与重建、土地可持续利用的决策提供科学依据。同时,对渭干河—库车河三角洲绿洲土壤盐渍化及其生态效应的研究亦是全球变化的一种区域响应。通过对区域尺度的土壤盐渍化问题进行深入研究,本研究得出以下主要结论:
     1)以1989年、2001年TM/ETM数据以及2007年ALOS数据为主要遥感信息源,采用遥感分析方法和地理信息系统技术相结合,建立渭干河—库车河三角洲绿洲土壤盐渍化时空动态数据库。在此基础上,采用图谱模型、转移矩阵和LUCC分析模型方法,开展了渭干河—库车河三角洲绿洲土壤盐渍化遥感动态变化研究,对渭干河—库车河三角洲绿洲土壤盐渍化数量特征、时空分布、变化趋势进行了探索。研究结果表明,在1989-2007年间,渭干河—库车河三角洲绿洲重度盐渍地面积呈现明显下降趋势。中度盐渍地面积虽然发生上下波动,但整体面积却有所增加。轻度盐渍地面积则呈现较为明显的下降趋势,非盐渍地面积增长显著;同时,结合盐渍土空间插值结果分析,认为该绿洲盐渍地主要分布于渭干河和库车河的下游,塔里木河的北部,绿洲的西南、南部、东部和东南部地区,可溶性盐以氯化物为主,并伴有少量的硫酸盐-氯化物类。盐渍地在绿洲内部呈条形状分布,而在绿洲外缘呈片状分布,主要分布趋势表现为由绿洲内部向外部的转移。
     2)在对三期遥感影像判读分析的基础上,开展渭干河—库车河三角洲绿洲土地利用/土地覆盖动态变化研究,建立研究区土地利用/土地覆盖的时空动态数据库。同时,运用多种模型方法对渭干河—库车河三角洲绿洲土地利用/土地覆盖的动态变化进行定量分析,揭示其空间分布及变化规律。在1989-2007这18年间,渭干河—库车河三角洲绿洲LUCC的总体变化趋势:绿洲面积有一定幅度的扩张;在土地利用/土地覆盖类型上主要表现为耕地和居民区面积的持续增加和天然林地、草地和盐渍地面积的减少。
     3)以野外实测数据为主要数据源,通过各盐分特征量的空间分布的分析,认为在不同采样时间,土壤含盐量、电导率、TDS和八大盐离子在三层均呈T型分布:0-10cm>10-30cm>30-50cm,盐分表聚强烈,各盐分特征量存在一定的空间变异性;通过对电导率、TDS、土壤PH值、含水量以及盐离子与含盐量进行相关分析和回归分析,结果表明:电导率、K+ + Na+与含盐量相关关系极其显著(P<0.01),回归模型拟合效果良好。TDS和Cl-与土壤含盐量之间有显著的相关关系(P<0.05),回归模型拟合效果较好。而土壤PH值、含水量、CO32-、HCO3-、SO42-、Ca2+以及Mg2+与含盐量的回归模型效果并不显著;通过主成分分析认为,在该绿洲土壤系统中,以Cl-和K+ + Na+为主的第一主成分代表了土壤盐化状况,以SO42-、Mg2+和Ca2+为代表的第二主成分和第三主成分反映了土壤的结构状况,而以CO32-和HCO3-为主的第四主成分则代表了土壤的碱化特征。
     4)运用数量生态学的方法对渭干河—库车河三角洲绿洲的盐生植被及其土壤化学因子进行分析,结果表明,土壤盐分和土壤PH值与丰富度指数(R)、多样性指数(H')和均匀度指数(E)负相关关系显著(P<0.05),而与优势度指数(C)具有显著正相关关系(P<0.05);土壤盐分是影响这一地区植被分布的关键因子,同时土壤PH值也对该区盐生植被的分布有着一定的影响;根据研究区盐生植物分布规律显示,柽柳、盐穗木和芦苇这三种盐生植物广泛分布于各种盐渍化生境,具有较宽的生态分布幅度和很高的耐盐能力。
     5)以景观生态学理论为指导,参照Costanza R.的生态系统服务价值的评价方法,对渭干河—库车河三角洲绿洲生态系统服务功能价值进行了评价。认为景观结构的动态变化对生态系统服务功能价值影响显著;同时,各生态系统单位面积的服务价值对生态系统的服务总价值也有一定的影响。通过研究区土壤盐渍化对生态系统服务价值的损失分析,在1989-2007年间,土壤盐渍化对生态系统服务价值的损害作用在不断下降;由林地和草地发生土壤盐渍化造成的生态系统服务价值缺失最为严重,在总缺失价值中占有较大比例;土壤盐渍化对耕地和水域生态系统服务价值损失最小,所占比例较小;土壤盐渍化对气候调节、水源涵养和废物处理功能损失价值较大,而对气体调节、土壤形成与保护以及原材料生态功能损失价值较小。
     由于区域土壤盐渍化形成机理的复杂性决定了土壤盐渍化的研究将从多层次、多角度、多方法等方面进行综合研究。因此,从景观生态学的角度,在大尺度范围内探索土壤盐渍化动态变化规律,土壤盐渍化与相关生态系统的相互关系、作用机理以及盐渍化区域生态恢复的自组织机理等方面的研究将是今后努力探索的主要方向。
Soil salinization is a major type of land desertification and degeneration in the worldwide today. Soil salinization is also a major constraint and obstacle of oasis' agricultural sustainable development in arid and semiarid areas, and poses the enormous threat stably to the oasis ecosystem. Therefore, it has the vital realistic significance to evaluate accurately and prevent scientifically soil salinization in order to promote oasis'agricultural development and regional sustainable development in arid areas.
     This study selected the delta oasis of Weigan and Kuqa River as the typical research area, which has a long-term researched foundation in Xinjiang's arid area. Under the theory of landscape ecology and sustainable development, used different periods'remote sensing satellite data and long-term field measuring data as the basic data sources, used spatial information technology (RS, GIS, GPS), statistics technology and landscape ecology method, to research synthetically the change of soil salinization and ecologic effects in the delta oasis of Weigan and Kuqa River. Grasping scientific the change rule of the soil salinization and eco-environment in different spatial and temporal scale which could provide scientific basis for the regional eco-environment construction and land sustainable development. At the same time, studying on the change of soil salinization and ecologic effects in the delta oasis of Weigan and Kuqa River is a regional respond to the change of global. Through the research of the regional soil salinization, this thesis indicates some major conclusions as the following:
     1) Taking the 1989's,2001's TM/ETM+ and 2007's ALOS satellite data as the basic information sources, launch the research of soil salinization change trends. On the foundation of data basic, using the methods of the geography model, transfer matrix, the LUCC model to analysis the change of soil salinization and explored the quantitatively the distribution and the change trends of soil salinization. The results indicate the areas of severely soil salinization presented the obvious decreased trends in the delta oasis of Weigan and Kuqa River from 1989 to 2007; the areas of moderately soil salinization present the fluctuation up and down, but the whole areas was decreased; the slightly soil salinization presented the obvious decreased trends, while the areas of non-salinization showed the trendy of dramatically raise. At the same time, union salty chronometers space interpolation result analysis, the salinized soil is mainly distributed in the lower reaches of the Weigan and Kuqa River, the northern margin of the Tarim River, the west-southern, the southern, and the eastern, the east-southern of oasis. The soluble salt by the chloride primarily, and is accompanied by the few sulfate-chlorination category of things. The distributions of salinized soils are stripe inside oasis, while are slices in the marginal oasis. The main distribution trendy displays the transfer from inside to outside of oasis.
     2) On the foundation of analysis the satellite data (TM/ETM+ and ALOS), established the spatial and temporal data basic of LUCC in the delta oasis of Weigan and Kuqa River by the combination of RS and GIS. On the foundation of data basic, using the methods of the geography model, transfer matrix, the LUCC model to analysis the change of LUCC, reveal the distribution and change laws of LUCC quantitatively. The results indicate:the whole tendency is the surely increasing of oasis areas in the delta oasis of Weigan and Kuqa River from 1989 to 2007.The type of LUCC showed the continued increasing of the human living region, and the decreased of the natural forest, grass and soil salinization.
     3) Taking the data of field investigations as the brief data sources, analyzed the spatial distributions of the characteristics of soil salinization. The results indicate:the soil salt content, conductivity, TDS and eight ions assume "T" in three distribution, which is 0-10cm>10-30cm>30-50cm. The salty chronometers gather intensely in the different sample time. The characteristics of soil salinization have different changeability in the space. Using the analysis of correlation and regression to study the relations between the soil compositions, the results indicated the relations of correlation between content of salt with conductivity and K++Na+ are very positive significantly(P<0.01), and the fitful of regression models are very well; the relations of correlation between content of salt with TDS and Cl- are positive significant (P<0.05), and the fitful of regression models are well too; while, the models of regression between content of salt with soil PH, content of water, CO32-,HCO3-, SO42-,Ca2+ and Mg2+ are not significant. Through the principal components analysis, think in this oasis soil system, the soil mantle characteristic available four principal constituents manifests:the first principal components have represented the soil salt chemicals condition, the second principal components and the third principal components have reflected the soil structure condition, but the fourth principal components have represented the soil alkalize characteristic.
     4) Using the method of numerical classification, analyze the relationship of halophytes with soil chemical factors in the delta oasis of Weigan and Kuqa River. The results indicated that the characteristics of soil salt and soil pH are negative correlative to richness index, diversity index, and evenness index significantly (P<0.05), while are positive correlative to dominance index significantly (P<0.05). Soil salinity and soil PH turned up to be the main determinants to the distribution patterns of halophytes. The soil salinity affects this local vegetation distributed essential factor, simultaneously the soil PH value also lives the vegetation to this area salt the distribution to have certain influence. According to the distribution of vegetation, show Tamarixram osissina, Halostachys caspica with Phragm ites australis distribute to various living environment of salinized soil. These vegetations have wide ecological distribution scope and high ability fitting to salinized soil.
     5) On the basis of the theory of landscape ecology, referring to methods of landscape pattern ecosystem service values proposed by Costanza R. analyze the ecosystem service value change in the delta oasis of Weigan and Kuqa River. The result manifests that the landscape structural change and the value of annual ecosystem services have significant affections on ecosystem service value. Analysis the losses value of ecosystem service which be caused by soil salinization. The result indicates that the damaged of ecosystem services value by soil salinization is falling from1989 to 2007. The ecosystem service values of forest and grass have much loss, which have large proportions. While, plough and waters which have a little proportions lost little ecosystem service values. Soil salinization causes much ecosystem service values loss to climate control, water source self-control and waste treatment, and little ecosystem service values loss to gas control, soil formed and protected with raw material.
     Because of the complicated characteristics about the formation mechanism of soil salinization, the study on soil salinization will be synthetically from multi-level, aspects and multiple perspectives, multi-methods. Therefore, on the point of landscape ecology, discovering the dynamic change rule in large scale, studying the correlation, the mechanism of interaction, the salinized region ecology self-restore of soil salinization with ecosystem will be the main considered direction in future research.
引文
[1]R.L.Dehaan, G.R.Taylor.Field-derived spectra of salinized soils and vegetation as indicators of irrigation-induced soil-salinization [J].Remote Sensing of Environment,2002,80:406-417.
    [2]J. Farifteh, A. Farshad, R.J. George. Assessing salt-affected soils using remote sensing,solute modelling and geophysics [J]. Geoderma,2006,130(3-4):191-206.
    [3]朱庭芸.灌区土壤盐渍化防治[M].北京:农业出版社,1992:32-38.
    [4]董新光,周金龙,陈跃滨.干旱内陆区水盐监测与模型研究及其应用[M].北京:科学出版社,2007.1-27.
    [5]刘兴土.松嫩平原退化土地整治与农业发展[M].北京:科学出版社,2001.13-15.
    [6]Szabolcs I. Salination of soil and water and its relation to desertification [J]. Desertification Control Bulletin,1992,21:32-37.
    [7]杨劲松.中国盐渍土研究的发展历程与展望[J].土壤学报.2008,45(5):837-845.
    [8]G.I. Metternicht.Categorical fuzziness:a comparison between crisp and fuzzy class boundary modelling for mapping salt-affected soils usingLandsat TM data and a classification based on anion ratios[J].Ecological Modelling,2003,168(3):371-389.
    [9]许志坤.新疆盐渍土的形成、分类、特点和利用改良[M].国际盐渍土改良学术讨论会论文集,1985,5:109-112.
    [10]田长彦,宋郁东.新疆土地退化及其防治对策议[J].干旱区研究,1997,14:63-67.
    [11]王遵亲.中国盐渍土[M].北京:科学出版社.1993:1-126.
    [12]田长彦,周宏飞,刘国庆.21世纪新疆土壤盐渍化调控与农业持续发展研究建议[J].干旱区地理,2000,23:178-181.
    [13]钱云.郝毓灵.新疆绿洲[M].乌鲁木齐:新疆人民出版社,2000,23-26.
    [14]新疆维吾尔自治区农业厅,新疆维吾尔自治区土壤普查办公室.新疆土壤[M].北京:科学出版社,1996:304-332.
    [15]张立新.周和平.朱焕丽.新疆土壤次生盐化主要成因及对策[J].中国土壤与肥料,2007(5):11-14.
    [16]E. Amezketa.An integrated methodology for assessing soil salinization:a pre-condition for land desertification [J]. Journal of Arid Environments,2006,67(4):594-606.
    [17]关元秀,王劲峰,刘高焕.黄河三角洲土地盐碱化遥感监测、预测和治理研究[M].中国科学院地理科学与资源研究所博士学位论文,2001:178-181.
    [18]徐金鸿,徐瑞松,夏斌,等.土壤遥感监测研究进展[J].水土保持研究,2006,13(2):17-20.
    [19]A.A. Masoud, K. Koike. Arid land salinization detected by remotely-sensed land covers changes:A case study in the Siwa region [J]. NW Egypt Journal of Arid Environments,2006,66(1):151-167.
    [20]樊自立,马英杰,马映军.中国西部地区耕地土壤盐渍化评估及发展趋势预测[J].干旱区地理.2002,25(2):97-102.
    [21]J. Farifteh, F. Van der Meer, C. Atzberger, et al.Quantitative analysis of salt-affected soil reflectance spectra:A comparison of two adaptive methods (PLSR and ANN)[J].Remote Sensing of Environment, 2007,110(1):59-78.
    [22]Hongqing Wang, Y. Ping Hsieh, Mark A. Harwell,et al. Modeling soil salinity distribution along topographic gradients in tidal salt marshes in Atlantic and Gulf coastal regions[J]. Ecological Modelling, 2007,201(3-4):429-439.
    [23]史晓霞.基于CA模型的长岭县土壤盐渍化时空演变可视化模拟[D].硕士毕业论文,2005.5.
    [24]史晓霞,李京,陈云浩,等.基于CA模型的土壤盐渍化时空演变模拟与预测[J].农业工程学报.2007,23(1):6-13.
    [25]段汉明,苏敏,周晓辉.银川平原水资源开发与绿洲的稳定性[J].西北大学学报(自然科学版),2006,36(1):141-144.
    [26]王立洪,张斌,万英.新疆南疆农业灌溉对生态与环境影响[J].水土保持研究,2002,9(1):30-34.
    [27]满苏尔·沙比提,海鹰,帕尔哈提·艾孜木.渭干河-库车河三角洲绿洲50a来农业开发及所引发的生态问题探析[J].中国沙漠,2004,24(3):349-354.
    [28]满苏尔·沙比题,陈冬花.渭干河—库车河三角洲绿洲形成演变和可持续发展研究[J].资源科学,2005,27(6):118-124.
    [29]满苏尔·沙比提,阿里木江·卡斯木,帕尔哈提.干河-库车河三角洲绿洲人口动态变化及其带来的问题[J].干旱区资源与环境,2005,19(3):71-76.
    [30]艾合买提.那由甫.李卫红.徐海量.塔里木河中游土壤分布规律及其特征研究[J].干旱区资源与环 境,2005,19(1):49-153.
    [31]张飞,丁建丽,塔西甫拉提·特依拜,等.干旱区典型绿洲土壤盐渍化特征分析—以渭干河-库车河三角洲为例[J].草业学报,2007,16(4):34-40.
    [32]何祺胜,塔西甫拉提·特依拜,丁建丽,张飞.塔里木盆地北缘盐渍地遥感调查及成因分析—以渭干河-库车河三角洲绿洲为例[J].自然灾害学报,2007,16(5):24-29.
    [33]丁建丽,张飞,江红南,等.塔里木盆地北缘绿洲土壤含盐量和电导率空间变异性研究—以渭干河-库车河三角洲绿洲为例[J].干旱区地理,2008,31(4):624-632.
    [34]王少丽,杨继富,李杰,等.新疆盐渍土灌区水盐平衡现状及对策[J].中国农村水利水电,2006(4):12-15.
    [35]亢庆,于嵘,张增祥等.土壤盐碱化遥感应用研究进展[J].遥感技术与应用,2005,20(4):447-454.
    [36]霍东民,张景雄,张家柄.利用CBERS-1卫星数据进行盐碱地专题信息提取研究[J].国土资源遥感,2001(2):48-52.
    [37]骆玉霞,陈焕伟.GIS支持下的TM图像土壤盐渍化分级[J].遥感信息理论研究,2001,(4):12-15
    [38]塔西甫拉提·特依拜,张飞,丁建丽,等.干旱区典型绿洲盐渍化土壤空间信息研究[J].干旱区地理.2007,30(4):544-551.
    [39]刘庆生,刘高焕,励惠国.辽河三角洲土壤盐分与上覆植被野外光谱关系初探.农业环境科学,2004,20(4):274-278.
    [40]鲁春霞,于云江,关有志.甘肃省土壤盐渍化及其对生态环境的损害评估[J].自然灾害学报,2001,10(1):99-102.
    [41]KUTZBACH J, BONAN G, FOLEY J, etal.Vegetation and soil feedbacks on the response of the African monsoon to orbital forcing in the early to middle Holocene [J].Nature,1996,384:623-626.
    [42]关志华,齐文虎,张红旗.渭干河灌区水盐平衡及盐分运移[J].资源科学,2004,26(2):74-79.
    [43]姚容江,杨劲松.黄河三角洲地区浅层地下水与耕层土壤积盐空间分异规律定量分析[J].农业工程学报,2007,23(8):45-51.
    [44]苏里坦,宋郁东,张展羽.新疆渭干河流域地下水含盐量的时空变异特征[J].地理学报,2003,58(6):854-860.
    [45]赵丹,邵东国,代涛.干旱灌区水盐动态模拟与实验研究[J].灌溉排水学报,2004,23(2):22-25.
    [46]Sharma R C, Byhargava G P. Landsat Imagery for Mapping Saline Soils and Wetlands in Northwest India [J]. Interna2tional Journal of Remote Sensing,1988,9 (1):39-44.
    [47]Sommerfeldt T G, Thompson M D, Pront N A. Delineation and Mapping of Soil Salinity in Southern Alberta from Landsat Data [J].Canadian Journal of Remote Sensing,1985,10:104-118.
    [48]Singh A N, Dwivedi R S. Delineation of salt affected soils through digital analysis of Landsat MSS data [J]. Interna2tional Journal of Remote Sensing,1989,10 (1):83-92.
    [49]Dwivedi R S, Rao B R M.The selection of the best possible Landsat TM band combination for delineating salt-affected soils [J]. Int. Journal of Remote Sensing,1992,13(11):2051-2058.
    [50]Bao B R C, Sankar T R, Dwivedi R S, et al. Spectral Behavior of salt-affected soils [J].International Journal of Remote Sensing,1995,16(12):2125-2136.
    [51]Taylor G R, Mah A H, et al.Characterization of saline soils using Airborne Radar Imagery [J]. Remote Sensing of Environment,1996,57(3):127-142.
    [52]G.I. Metternicht, J A.Zinck. Evaluating the information content of JERS-1 SAR and Landsat TM data for discrimination of soil erosion features[J]. ISPRS Journal of Photogrammetry and Remote Sensing,1998, 53(3):143-153.
    [53]R.L. Dehaan, G.R. Taylor. Image-derived spectral endmembers as indicators of Salinisation[J]. International Journal of Remote Sensing,2003,24(4):80:775-794.
    [54]D.Wang, C.Wilson, M.C.Shannon. Interpretation of salinity and irrigation effects on soybean canopy reflectance in visible and near infra-red spectrum domain [J].Int.J.remote sensing,2002,23(5):811-824.
    [55]C.G. Ladenburger, A.L. Hil d, D.J. Kazmer, et al. Soil salinity patterns in Tamarix invasions in the Bighorn Basin, Wyoming, USA[J]. Journal of Arid Environments,2006,65(1):111-128.
    [56]R. DEHAAN and G. R. TAYLOR Image-derived spectral endmembers as indicators of salinisation[J], International Journal of Remote Sensing,2003,24(4):755-794.
    [57]J.Farifteh,A.Farshad, R.J.George.Assessing salt-affected soils using remote sensing,solute modelling, and geophysics[J].Geoderma,2006,130:191-198.
    [58]Madhurama Sethi,G. S. Dasog; Arno Van Lieshout,S. B. Salinity appraisal using IRS images in Shorapur Taluka,Upper Krishna Irrigation Project,Phase I,Gulbarga District, Karnataka, India[J]. International Journal of Remote Sensing,2006,27(14):2917-2926.
    [59]Carmen Castaneda, Juan Herrero.Assessing the degradation of saline wetlands in an arid agricultural region in Spain [J].ATENA,2008,72(2):205-213.
    [60]G.I. Metternicht. Remote sensing of soil salinity-potentials and constraints[J]. Remote Sensing of Environment,2003,85:1-20.
    [61]石元春,李保国,等.区域水盐运动监测预报[M].河北:河北科学技术出版社,1991:1-7.
    [62]李凤全,卞建民,张殿发.半干旱地区土壤盐渍化预报研究—以吉林省西部洮儿河流域为例[J]水土保持通报,2000,2:2-4.
    [63]宋长春,邓伟,李取生.松嫩平原土壤次生盐渍化过程模型研究[J].水土保持学报,2002,5(16):23-42.
    [64]刘强,何岩,邓伟,等.变化环境中土壤盐渍化过程研究—以洮儿河中下游地区为例[J].干旱区资源与环境,2005,19(6):113-117.
    [65]关元秀,刘高焕,刘庆生,等.黄河三角洲盐碱地遥感调查研究[J].遥感学报,2001,1(5):46-53.
    [66]李宏,于洪伟.对新疆塔里木河流域土地盐渍化进行专题信息提取的应用研究[J].测绘与空间地理信息,2007,30(4):65-70
    [67]冯君,王宇,赵兰坡,等.应用遥感技术对大安市草原土壤盐渍化现状的调查与对策研究[J].吉林农业大学学报,2007,29(2):181-185
    [68]张恒云,尚淑招.NOAA.AVNRR资料在监测土壤盐渍化程度中的应用[J].遥感信息,1992(1):24-26.
    [69]骆玉霞,陈焕伟.GIS支持下的TM图像土壤盐渍化分级[J].遥感信息,2001,(4):32-35.
    [70]刘庆生,骆剑承,刘高焕.资源一号卫星数据在黄河三角洲地区的应用潜力初探[J].地球信息科学,2000,2(2):56-57.
    [71]关元秀,王劲峰,刘高焕.黄河三角洲土地盐碱化遥感监测、预测和治理研究[M].中国科学院地理科学与资源研究所博士学位论文2001:178-181.
    [72]许迪,王少丽.利用NDVI指数识别作物及土壤盐碱分布的应用研究[J].灌溉排水学报,2003,22(6):5-8.
    [73]李晓燕,张树文.吉林省大庆市近50年土地盐碱化时空动态及成因分析[J].资源科学,2005,27(3):92-97.
    [74]李宏,于洪伟.对新疆塔里木河流域土地盐渍化进行专题信息提取的应用研究[J].测绘与空间地理信息,2007,30(4):65-70.
    [75]何祺胜.星载雷达图像在干旱区盐渍地信息提取中的应用研究[D].新疆大学,2007,7:17-19.
    [76]买买提沙吾提,丁建丽,塔西甫拉提·特依拜,等.多源信息融合技术在干旱区盐渍地信息提取中的应用[J].资源科学,2008,30(5):792-799.
    [77]Yongling Weng, Peng Gong, Zhiliang Zhu. Reflectance spectroscopy for the assessment of soil salt content in soils of the Yellow River Delta of China[J].International Journal of Remote Sensing,2008, 29(19):5511-531.
    [78]李海涛,P.Brunner,李文鹏,等.ASTER遥感影像数据在土壤盐渍化评价中的应用[J].水文地质工程地质,2006(5):75-9.
    [79]牛宝茹.塔里木河上游表土积盐量遥感信息提取研究[J].土壤学报,2005,42(4):674-677.
    [80]汤洁,卞建民,林年丰,等GIS-Pmodflow联合系统在松嫩平原西部潜水环境预警中的应用[J].水科学进展,2006,17(4):483-489.
    [81]I.C.Mullen,K.E.Wilkinson,R.G.Cresswell,Three-dimensional mapping of salt stores in the Murray-Darling Basin, Australia:Calculating landscape salt loads from airborne electromagnetic and laboratory data[J].International Journal of Applied Earth Observation and Geoinformation,2007,9(2): 103-115.
    [82]Dw ivedi R S. Monito ring and the Study of the Effects of Image Scale on Delineation of Salt2affected So ils in the IndoGangetic P lains [J]. International Journal of Remote Senseing,1992,13 (8):1527-1536.
    [83]戴昌达,杨瑜,石晓日,等.黄淮海平原低产土壤的遥感清查[J].环境遥感,1986,1(2):81-91.
    [84]乔玉良.彩红外航片在忻定盆地水浇地清查及盐碱地动态监测中的应用[J].国土资源遥感,1993,(2):17-21.
    [85]Metternicht G, Zinck J A. Spatial discrimination of salt and sodium-affected soil surfaces [J]. International Journal of Remote Sensing,1997,18(12):2571-2586.
    [86]翁永玲,宫鹏.黄河三角洲盐渍上盐分特征研究[J].南京大学学报.2006,42(6):602-610.
    [87]刘庆生,刘高焕,赵军.土壤类型、质地和土地类型对土壤盐渍化水平的指示[J].中国农学通报.2008,24(1):297-300.
    [88]Forman R T T. Land Mosaics:the Ecology of Landscape and Regions [M]. Cambridge:Cambridge University Press.1986.
    [89]Frankin J.F. and Forman R.T.T. Greation Landscape pattern by forest cutting:ecological consequence and principles[J]. Landscape Ecology 1987,1(1):11-18.
    [90]Risser.P.G. Landscape ecology:state of art Landscape Heterogenety and Disturbance [M].Springer-Verlag. Berlin1987.
    [91]贾宝全,慈龙骏,任一萍.绿洲景观动态变化分析[J].生态学报,2001,21(11):1947-1951.
    [92]罗格平,周成虎,陈曦.干旱区绿洲景观尺度稳定性初步分析[J].干旱区地理,2004,27(4):471-476.
    [93]Ruzicka M., Maklos L.Methodology of ecological landscape evaluation for optimaldevelopment of territory [M]. In sym of 1st International congress of Landscape Ecology,Wagnignen, Netherland,1981.
    [94]Zanneveld IS., Forman R T T. Changing Landscape [M].An Ecological Perspective.New York: Springer-Verleg.1990.
    [95]肖笃宁,李秀珍.当代景观生态学的进展和展望[J],地理科学,1997,17(4):356-364.
    [96]肖笃宁,李秀珍.景观生态学的学科前沿与发展战略[J].生态学报,2003.23(8):1615-1621.
    [97]傅伯杰.黄土区农业景观空间格局分析[J].生态学报,1995,15(2):113-120.
    [98]曾辉,邵楠,郭庆华.珠江三角洲东部常平地区景观异质性研究[J].地理学报,1999,54(3):255-262.
    [99]吴波,慈龙骏.毛鸟素沙地景观格局变化研究[J].生态学报,2001,21(2):191-196.
    [100]贾宝全,慈龙骏,杨晓晖,等.石河子莫索湾垦区绿洲景观格局变化分析[J].生态学报,2001,21(1):34-40.
    [101]王根绪,程国栋.干早荒漠绿洲景观空间格局及其受水资源条件的影响分析[J].生态学报,2000,20(3):363-368.
    [102]邬建国.景观生态学—概念与理论[J].生态学杂志,2000.19(1)42-52.
    [103]傅伯杰,陈利顶,马克明,等.景观生态学原理及应用[M].北京:科学出版社,2001.
    [104]邵国凡.遥感主体图的准确度对景观生态学研究的影响[J].生态学报:2004,24(9):1858-1862.
    [105]黎晓亚.傅伯杰.马克明等.区域生态安全格局:设计原则与方法[J].生态学报.2004,24(5):1055-1062.
    [106]左伟.王桥.王文杰等.区域生态安全评价指标与标准研究[J].地理学与国土研究.2002,18(1):67-71.
    [107]郭明,肖笃宁,李新.黑河流域酒泉绿洲景观生态安全格局分析[J].生态学报,2006,26(2):457-466.
    [108]王根绪,程国栋,沈永平.干旱区受水资源胁迫的下游绿洲动态变化趋势分析—以黑河流域额济纳绿洲为例[J].应用生态学报,2002,13(5):564-568.
    [109]Daily G C. eds. Natures Services:Societal dependence on natural ecosystems Island press [M].Washington D. c,1997.
    [110]Costanza R., Arge R., Groot, R. etc. The value of the world's ecosystem services and natural capital [J].Nature,1997, Vol.386:253-260.
    [111]欧阳志云,王如松,赵景柱.生态系统服务功能及其生态经济价值评价[J].应用生态学报,1999,10(5):635-640.
    [112]欧阳志云,王效科,苗鸿.中国陆地生态系统服务功能及其生态经济价值的初步研究[J].生态学报,1999,19(5):48-53.
    [113]谢高地,鲁春霞,成升魁.全球生态系统服务价值评估研究进展[J].资源科学.2001,23(6):5-9.
    [114]李文华,欧阳志云,赵景柱.生态系统服务功能研究[M].北京:气象出版社,2002:26-37.
    [115]赵士洞,张永民.生态系统评估的概念、内涵及挑战—介绍《生态系统与人类损利:评估框架》[J].地球科学进展,2004,19(4).76-81.
    [116]Forman R T T. Land Mosaics:the Ecology of Landscape and Regions [M].Cambridge:Cambridge University Pres.1986.
    [117]Frankin J.F., Forman R.T.T. Greation Landscape pattern by forest cutting:ecological consequence and principles[J]. Landscape Ecology 1987,1(1):11-18.
    [118]Risser.P.G. Landscape ecology:state of art Landscape Heterogenety and Disturbance [M].Springer-Verlag. Berlin.1987.
    [119]Zanneveld IS., Forman R T T. Changing Landscape, an Ecological Perspective [M]. New York: Springer-Verleg.1990.
    [120]WGMEA (Working Group of the Millennium Ecosystem Assessment..Ecosystems and Human well_Being:A Framework for Assessment. Island Press [M]. Washington, Covelo, London.2003.
    [121]Turner K.Economics and wet-land management [J].Ambio,1991,20:59-61.
    [122]Naeeru S.How Changes in biodiversity may affect the provision of ecosystem services. In: Hollowell VC ed. Managging Human Dominated Ecosystems.Missouri Botanical Garden Press [M]. St. Louis.2001,3-33.
    [123]陈仲新,张新时.中国生态系统效益的价值[J].科学通报,2000,45(1):17-23.
    [124]谢高地,鲁春霞,冷允法,等.青藏高原生态资产的价值评估[J],自然资源学报,2003,18(2):189-196.
    [125]谢高地,鲁春霞,肖玉,等.青藏高原高寒草地生态系统服务价值评估[J].山地学报,2003,21(1):50-55.
    [126]刘玉龙,马俊杰,金学林等.生态系统服务功能价值评估方法综述[J].中国人口·资源与环境,2005,15(1):88-92.
    [127]谢高地,肖玉,鲁春霞.生态系统服务研究:进展局限和基本范式[J].植物生态学报,2006.30(2):191-199.
    [128]库车县水利志编纂委员会编.库车县水利志[M].乌鲁木齐:新疆科技卫生出版社,1993.22-23.
    [129]库车县志编纂委员会编.库车县志[M].乌鲁木齐:新疆大学出版社,2005.13-25.
    [130]梅安心,彭望琭,秦其明,刘慧平.遥感导论[M].高等教育出版社,2001:46-47.
    [131]王文生,肖冬,王智.内蒙河套灌区土地盐碱动态遥感监测[J].遥感信息,1994,(1):42-46.
    [132]骆玉霞,陈焕伟.角度分类器与距离分类器比较研究—以盐渍土分类为例[J].国土资源遥感,2002,(2):23-26.
    [133]骆玉霞,陈焕伟.GIS支持下的TM图像土壤盐渍化分级[J].遥感信息,2001,(4):32-35.
    [134]关元秀,王劲峰,刘高焕.黄河三角洲土地盐碱化遥感监测、预测和治理研究[D].中国科学院地理科学与资源研究所博士学位论文,2001:178-181.
    [135]关元秀,刘高焕.区域土壤盐渍化遥感监测研究综述[J].遥感技术与应用,2001,1(16):40-44.
    [136]汤国安,谢元礼,张友顺等.遥感数字图像处理[M].北京:科学出版社,2004,60-77.
    [137]塔西甫拉提·特依拜,张飞,丁建丽,等.干旱区典型绿洲盐渍化土壤空间信息研究[J].干旱区地理.2007,30(4):544-551.
    [138]江红南,塔西甫拉提·特依拜,等.干旱区土壤盐渍化遥感监测研究[J].干旱区研究,2007,2(3):168-173.
    [139]何祺胜,塔西甫拉提·特依拜,丁建丽.基于决策树方法的干旱区盐渍地信息提取研究—以渭干河-库车河三角洲绿洲为例[J].资源科学,2006,28(6):134-140.
    [140]马蔼乃,等.遥感信息模型[M].北京:北京大学出版社,1997.13-21.
    [141]陈述彭,岳天祥,励惠国.地学信息图谱研究及其应用[J].地理研究,2000,12(4):337-343.
    [142]周成虎.李宝林.地球空间信息图谱初步探讨[J].地理研究,1998,17(增刊).256-263.
    [143]叶庆华,刘高焕,陆洲等.基于GIS的时空复合体-土地利用变化图谱模型研究方法[J].地理科学进展,2002,7(4):349-357.
    [144]叶庆华,刘高焕,田国良等.黄河三角洲土地利用时空复合变化图谱分析[J].中国科学D辑2004,34(5):461-474.
    [145]史培军,宫鹏等.土地利用/覆盖变化研究的方法与实践[M].北京:科学出版社,2000.19-30.
    [146]王秀兰,包玉海.土地利用动态变化研究方法探讨[J].地理科学进展,1999,18(1):81-87.
    [147]罗格平,周成虎,陈曦.干旱区绿洲土地利用与覆被变化过程[J].地理学报,2003,58(1):63-72.
    [148]满苏尔·沙比提,楚新正.新疆渭干河—库车河三角洲绿洲土地利用时空变化特征分析[J].干旱地区农业研究,2007,25(4):12-18.
    [149]满苏尔·沙比提,海鹰,阿布拉江·苏来曼.近50年来渭干河.库车河三角洲绿洲耕地变化及其成因[J].地理研究,2004,23(4):487-494.
    [150]中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科技出版社,1978.93-129.
    [151]霍东民,孙家炳,刘高焕,等.3S技术在黄河三角洲土壤盐分分析样点采集中的应用[J].遥感信息,2001,(2):35-37.
    [152]张超,杨秉赓.计量地理学基础[M].北京:高等教育出版社,1991:13-18.
    [153]徐建华.现代地理学中的数学方法[M].北京:高等教育出版社,2002:37-121.
    [154]新疆维吾尔自治区农业厅,新疆维吾尔自治区土壤普查办公室.新疆土壤[M].北京:科学出版社,1996:304-332
    [155]Julie A., Cattle, et al.Kriging method evaluation for assessing the spatial distribution of urban soil lead contamination [J].Journal of Environmental Quality,2002,31(5):1576-1589.
    [156]汤国安,杨西.ArcGIS地理信息系统空间分析实验教程[M].北京:科学出版社,2006,363-422.
    [157]Chien YJ, Lee D Guo HY, et al.Geostatistics analysis of soil properties of mid-west Taiwan soils [J].Soil Sci.,1997,162:291-298.
    [158]胡克林,张凤荣,吕贻忠,等.北京市大兴区土壤重金属含量的空间分布特征[J].环境科学学报,2004,24(3):463-468.
    [159]Cambardella C A,Moorman T B,Novak J M,et al. Field-scale variability of soil properties in central low a soils[J].Soil Sci Soc Am.J.,1994,58:1501-1511.
    [160]Zhang S R,Sun B,Zhao Q G,et al. Temporal-spatial variability of soil organic carbon stocks in rehabilitating ecosystem [J], Pedosphere,2004,14(4):501-508.
    [161]Gaston, E.G., et al.Carbon distribution and losses:Erosion and deposition effects [J].Soil Tillage Res.1998,47:291-302.
    [162]郭旭东,傅伯杰等.河北省遵化平原土壤养分的时空变异特征-变异函数与Kriging插值分析[J].地理学报,2000,55(5):555-564.
    [163]杨柳青.新疆古老含盐地层与现代上壤盐分累积[J].土壤通报,1998,29(3):99-115.
    [164]季方.塔里木盆地绿洲土壤水盐动态变化与调控[M].北京:海洋出版社,2001,79-118.
    [165]关志华,齐文虎,张红旗.渭干河灌区水盐平衡及盐分运移[J].资源科学,2004,26(2):74-79
    [166]付秋萍,张江辉,王全九等.塔里木盆地土壤盐分变化特征分析[J].自然科学进展,2007,17(8):1091-1097.
    [167]Critchley C N R,Chanbers B J, Fowbert J A, et al. Plant species richness,functional type and soil properties of grasslands and allied vegetation in English environmentally sensitive areas[J]. Grass and Forage Science,2002,57:82-92.
    [168]Abd EI-GhaniM M, AmerW M. Soil vegetation relationships in a coastal desert plain of southern Sinai Egypt [J]. Journal of Arid Environments,2003,55:607-628.
    [169]Silvestri S, Defina A, Marani M. Tidal regine, salinity and salt marsh plant zonation Estuarine [J]. Coastal and Shelf Science,2005,62:119-130.
    [170]马明东,罗承德,张键,等.云杉天然林分生境条件数量分类与环境解释[J].中国生态农业学报,2006(4):159-163.
    [171]刘秋锋,康慕谊,刘全儒.中条山混沟地区森林乔木种的数量分类与环境解释[J].植物生态学报,2006,30(3):383-391.
    [172]刘秋锋,康慕谊,刘全儒.混沟森林植被物种多样性梯度分析与环境解释[J].西北植物学报.2006,26(8):1686-1692.
    [173]刘庆.青海湖北岸环境梯度上植物群落的生物量与物种多样性及其相互关系[J].西北植物学报,2000,20(2):259-267.
    [174]王顺忠.陈桂琛.柏玉平.等.青海湖鸟岛地区植物群落物种多样性与土壤环境因子的关系[J].应用生态学报,2005,16(1):186-188.
    [175]贺强,崔保山,赵欣胜,等.黄河河口盐沼植被分布、多样性与土壤化学因子的相关关系[J].生态学报,2009,29(2):676-687.
    [176]郗金标,田长彦,阎平,等.新疆盐生植物区系初探[J].中国生态农业学报,2006,14(1):7-10.
    [177]郗金标,张福锁,田长彦,等.新疆盐生植物[M].北京:科学出版社,2006,12.
    [178]张远东.荒漠绿洲过渡带植被与绿洲稳定性研究[D].东北林业大学博士学位论文,4-8.
    [179]Funk D W, Noel L E, Freedman A H. Environmental gradients plant distribution and species richness in arctic saltmarsh near Prudhoe bay [J]. Alaska Wetlands Ecology and Management,2004,12:215-233.
    [180]邱扬,张金屯.基于DCCA的排序轴分类及其在植被群落生态梯度分析中的应用[J].生态学报,2000,20(5):199-200.
    [181]张金屯.庞泉沟自然保护区植物群落的模糊数学分类与排序[J].北京师范大学学报(自然科学版),2004,40(2):249-254.
    [182]周晓红,李宪伟,白限丽.我国植被数量分析方法的研究概况和发展趋势[J].生态学杂志,2005,25(4):448-451.
    [183]张先平,王孟本,余波,等.庞泉沟国家自然保护区森林群落的数量分类与排序[J].生态学报,2006(3):755-761.
    [184]贺强,崔保山,赵欣胜,付华龄.水盐梯度下黄河三角洲湿地植被空间分异规律的定量分析[J].湿地 科学,2007,5(3):208-214.
    [185]中国国植被编辑委员会.中国植被[M].北京:科学出版社,1980.
    [186]Gauch H G.杨持译.群落生态学中的多元分析[M].北京:科学出版社,1989.
    [187]张金屯.数量生态学[M].北京:科学出版社2005:178-239.
    [188]罗格平,周成虎,陈曦.从景观格局分析人为驱动的绿洲时空变化—以天山北坡三工河流域绿洲为例[J].生态学报,2005,25(9):2197-2205.
    [189]王宗明,张柏,张树清.吉林省生态系统服务价值变化研究[J].自然资源学报,2004,19(1):55-61.
    [190]吴后建,王学雷,宁龙梅,等.土地利用变化对生态系统服务价值的影响—以武汉市为例[J].长江流域资源与环境,2006,15(2):185-190.
    [191]陈克龙,李双成,周巧富,等.近25年来青海湖流域景观结构动态变化及其对生态系统服务功能的影响[J].资源科学,2008,30(2):275-280.
    [192]谢高地,张钇锂,鲁春霞,等.中国自然草地生态系统服务价值[J].自然资源学报,2001,16(1):47-53.
    [193]卢远.吉林西部土地利用/土地覆盖变化及其生态效应[D].吉林大学博士学位论文,2005:142-158.
    [194]孙新章,周海林,谢高地.中国农田生态系统的服务功能及其经济价值[J].中国人口·资源与环境,2007,17(4):55-60.
    [195]潘耀忠,史培军,朱文泉.中国陆地生态系统生态资产遥感定量测量[J].中国科学,D辑,地球科学.2004,34(4):375-384.
    [196]郭然,王效科,欧阳志云,等.中国土地沙漠化、水土流失和盐渍化的原因和驱动力:总体分析[J].自然资源学报,2004,19(1):120-127.
    [197]满苏尔·沙比提,帕尔哈提·艾孜木,玉素浦江·如.渭干河—库车河三角洲绿洲近50a来生态环境变化特征及防治对策[J].干旱区资源与环境,2004,18(4):13-19.
    [198]中科院新疆生物土壤沙漠研究所主编.新疆土壤与改良利用[M]。乌鲁木齐:新疆人民出版社.1981:19-56.
    [199]蒲红艳,陈亚宁,李卫红.干旱荒漠区新垦绿洲土壤改良措施对盐分变化的影响研究—以克拉玛依农业开发区为例[J].干旱区资源与环境,2007,21(7):160-164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700