用户名: 密码: 验证码:
感染后肠易激综合征小鼠肠道免疫的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分感染后肠易激综合征小鼠模型的建立
     目的观察旋毛虫肠道急性感染后不同造模时间点小鼠内脏敏感性和结肠肌条收缩的变化,以建立模拟人感染后肠易激综合征内脏高敏感的动物模型。方法旋毛虫幼虫囊胞(350~400条)感染成年NIH小鼠,分别于感染后2、4、8、12周后称量小鼠体重的变化,通过腹壁回撤反应(AWR)评分评估感染前后不同造模点小鼠对结直肠扩张(CRD)的内脏敏感性,处死小鼠取空肠、末端回肠、近端结肠和远端结肠行HE染色观察肠道病理并对炎症情况进行评分,观察结肠肌条收缩变化。结果2周、4周组体重增长率低于正常组(P<0.05),8、12周组体重增长率与正常对照组无差异(P>0.05)。2周、4周组肠道各部位炎症评分高于正常组(Bonferroni校正P<0.05/10);8、12周组与正常组相比均无差异(Bonferroni校正P>0.05/10)。在扩张压力为30、45、60 mm Hg时,各模型组AWR评分均高于正常组(P<0.05);所有模型组疼痛阈值、容量阈值均低于同时间点正常对照组(P<0.05),以2周组变化最为明显;感染后小鼠结肠肌条收缩均增高,以2周时增加最为明显(P<0.05)。结论小鼠旋毛虫急性感染后8周肠道炎症消退,但内脏敏感性和结肠肌条高收缩性维持增高,因此适合作为感染后肠易激综合征内脏高敏感动物模型。
     第二部分感染后肠易激综合征小鼠肠道Thl1/Th2的漂移
     目的观察感染后肠易激综合征模型小鼠肠道组织中Th1类细胞因子IL-12和Th2类细胞因子IL-4表达的变化方法旋毛虫幼虫囊胞(350-400条)感染成年NIH小鼠,感染后每周测量小鼠体重,于感染后8周通过腹壁回撤反应(AWR)评分评估造模前后小鼠对结直肠扩张(CRD)的内脏敏感性,处死小鼠取空肠、末端回肠、近端结肠、远端结肠行病理切片HE染色观察肠道炎症情况。应用RT-PCR和Western-blot检测肠道各部位组织中IL-12、IL-4的mRNA和蛋白的表达量结果感染后2周小鼠体重明显下降(P<0.05),感染后8周体重变化与正常对照组无差异(P>0.05)。感染后2周急性感染期肠道炎症明显,感染后8周肠道无明显炎症表现。在结直肠扩张压力为30、45、60 mm Hg时,模型组AWR评分均高于正常组(P<0.05);模型组疼痛阈值、容量阈值均低于正常对照组(P<0.05)。PI-IBS小鼠末端回肠和近端结肠组织中IL-12 mRNA及蛋白表达量均高于正常对照组(P<0.05),IL-4 mRNA及蛋白在各肠段中的表达均低于正常对照组(P<0.05)。结论PI-IBS小鼠肠道组织中Th1类细胞因子表达增高,Th2类细胞因子表达降低,存在Th1/Th2平衡的漂移。
     第三部分感染后肠易激综合征小鼠肠道固有层树突状细胞表型和功能的改变
     目的树突状细胞(Dendritic cell, DC)作为肠道固有层一种重要的抗原提呈细胞,可能与肠道粘膜免疫激活有关从而导致感染后肠易激综合征(Postinfectious irritable bowel syndrome, PI-IBS)的发生。本试验即研究肠道固有层DCs (Lamina propria DCs, LPDCs)在PI-IBS小鼠模型发生发展过程中表型和功能的改变。方法旋毛虫感染NIH小鼠,通过记录结直肠扩张下的腹壁回撤反射(Abdominal withdrawal reflex, AWR)评价其内脏敏感性。酶消化法结合磁珠分选技术分离肠道固有层的DCs。流式细胞术检测LPDCs表面膜分子标志。研究LPDCs的内吞活性、混合淋巴细胞刺激反应(mixed lymphocyte reaction, MLR)以及趋化能力。ELISA检测LPDCs分泌的细胞因子。结果急性感染期肠道炎症明显,感染后8周肠道炎症基本消退而内脏高敏感存留。急性期LPDCs表面膜分子CD86和MHCII低表达,而在慢性期表达增加。在急性感染期LPDCs内吞活性增加,但是刺激和趋化CD4+T淋巴细胞的能力减弱。然而,在慢性感染PI-IBS期,LPDCs内吞活性降低但趋化和刺激CD4+T淋巴细胞增殖的能力增强。LPDCs在急性期分泌细胞因子以IL-4为主,而在PI-IBS期以INF-γ和IL-23为主。结论在PI-IBS的发生发展过程中,肠道固有层树突状细胞表型和功能发生了改变,使肠道粘膜免疫激活长期存在,诱导内脏高敏感,为感染后肠易激综合征的治疗提供新的方向。
PartⅠEstablishment of a mouse model of postinfectious irritable bowel syndrome
     Objective To observe the changes of visceral sensitivity and colonic muscle strip contractions at different time points after acute Trichinella infectious mice, and to establish a visceral hyperalgesia model imitating patients with post-infectious irritable bowel syndrome (PI-IBS). Methods Mice were infected by Trichinella spiralis (350-400 Trichinella). The weight of the mice at 2,4,8 and 12 weeks was measured. Visceral sensitivity of colorectal distention in mice was accessed by abdominal withdrawal reflex (AWR) at different time points before and after infection. Tissues of jejunum, terminal ileum, proximal colon and distal colon were collected after mice were dead. Histological pathology and inflammation were accessed with HE staining. Contractions of the colonic longitudinal muscle strip were recorded. Results The weight growth rates in 2 and 4-week groups were lower than that in the control group (P<0.05). The rates of 8,12-week groups had no statistical differences with the control groups. In all the groups the intestinal pathologic scores of the 2 weeks group was the highest, the 8,12 weeks groups recovered from the intestinal inflammation, and had no statistical differences with the control groups. At 30,45,60 mmHg, the AWR scores of all the infectious groups were higher than that in the control groups, The perceptual thresholds of all the infectious groups were lower than that in the control groups. Colonic muscle hypercontractility emerged after infection, and was distinguished in the acute infection group. Conclusion The intestinal inflammation in mice dissipated 8 weeks after Trichinella spiralis infection. However, visceral hypersensitivity and colonic muscle hypercontractility remained. Therefore, those mice were suitable for models of visceral hypersensitivity imitating patients with post-infectious irritable bowel syndrome.
     PartⅡTh1/Th2 shift in the intestine of postinfectious irritable bowel syndrome mouse
     Objective To observe the expression of Thl type cytokine IL-12 and Th2 type cytokine IL-4 in the intestine of the mouse model of post-infectious irritable bowel syndrome (PI-IBS). Methods Mice were infected by Trichinella spiralis (350-400 Trichinella). The weight of the mice was measured every week after infection. Visceral sensitivity of colorectal distention in mice was accessed by abdominal withdrawal reflex (AWR) at 0 and 8 weeks after infection. Tissues of jejunum, terminal ileum, proximal colon and distal colon were collected after mice were dead. Histological pathology and inflammation were accessed with HE staining. The mRNA and protein expressions of IL-12 and IL-4 were examined by RT-PCR and Western blotting, respectively. Results The weight growth rates decreased in 2 weeks acute infectious period (P<0.05). The rates of 8 weeks PI-IBS group had no statistical differences with the control group (P>0.05). Severe inflammation was observed in the intestine of 2 weeks acute infectious period, but after 8 weeks of infection it recovered from the intestinal inflammation, and had no differences with the control group. At 30,45,60 mmHg, the AWR scores of the infectious group was higher than that in the control group, The perceptual thresholds of the infectious group were lower than that in the control group(P<0.05). Increased expression of IL-12 mRNA and protein was observed in the ileocecum and proximal colon of PI-IBS mouse, and decreased expression of IL-4 mRNA and protein was observed in all the parts of intestine of PI-IBS mouse (P<0.05). Conclusion Th1 type cytokine increased but Th2 type cytokine decreased in PI-IBS mouse implied that Th1/Th2 shift may exist in the intestine of post infectious irritable bowel syndrome.
     PartⅢCharacteristics of intestinal lamina propria dendritic cells in a mouse model of postinfectious irritable bowel syndrome
     Background & Aims Dendritic cell (DC), as an important antigen presenting cell in the intestinal lamina propria, may contribute to intestinal mucosal immune activation in the pathogenesis of postinfectious irritable bowel syndrome (PI-IBS). The aim of this research was to study the phenotypic and functional changes of intestinal lamina propria DCs (LPDCs) in the development of PI-IBS mouse model. Methods Mice infected with T. spiralis underwent abdominal withdrawal reflex (AWR) to evaluate visceral sensitivity. LPDCs were isolated and purified by intestine digestion and magnetic label-based technique. The surface markers of LPDCs were analyzed by flow cytometry. Endocytic activity, mixed lymphocyte reaction (MLR) and chemotaxis were studied. Cytokine production of the LPDCs was determined. Results Intestinal inflammation was serious in acute infection mice, but resolved after 8 weeks infection with sustained visceral hyperalgesia. The surface markers CD86 and MHCII were lower in the acute infection group, but increased in the PI-IBS stage. Enhanced ability of endocytic activity and decreased abilities to attract and stimulate CD4+ T cell proliferation were observed in acute infection group. However, LPDCs in PI-IBS stage showed weakened endocytic ability with enhanced abilities to attract and stimulate CD4+ T cell proliferation. LPDCs secreted more cytokine of IL-4 in acute infection group, while they secreted more cytokines of INF-y and IL-23 in PI-IBS stage. Conclusions The phenotype and function of LPDCs changed in the development of PI-IBS, which induced the maintenance of intestinal mucosal immune activation and might provide a clue for the treatment of the disease.
引文
1. Gwee KA, Leong YL, Graham C, et al. The role of psychological and biological factors in post-infective gut dysfunction[J]. Gut,1999,44:400-406.
    2. Mearin F, Perez-Oliveras M, Perello A, et al. Dyspepsia after a Salmonella gastroenteritis outbreak:one-year follow-up cohort study[J]. Gastroenterology,2005, 129(1):98-104.
    3. Bercik P, Wang L, Verdu EF, et al. Visceral hyperalgesia and intestinal dysmotility in a mouse model of postinfective gut dysfunction[J]. Gastroenterology,2004, 127(1):179-87.
    4. Al-Chaer ED, Kawasaki M, Pasricha PJ. A new model of chronic visceral hypersensitivity in adult rats induced by colon irritation during postnatal development [J]. Gastroenterology,2000,119(5):1276-85.
    5. Mertz HR. Irritable bowel syndrome [J]. N Engl J Med,2003,349:2136-46.
    6. Chaudhary N, True love S. The irritable colon syndrome. A study of the clinical features, predisposing causes, and prognosis in 130 cases [J]. Q J Med,1962, 31:307-322.
    7. Sengupta JN, Saha JK, Goyal RK. Stimulus-response function studies of esophageal mechanosensitive nociceptors in sympathetic affterents of possum [J]. J Neurophysiol,1990,64 (3):796-812.
    8. Barbara G, Stanghellini V, Cremon C, et al. Almost all irritable bowel syndromes are post-infectious and respond to probiotics:controversial issues [J]. Dig Dis, 2007,25(3):245-248.
    9. Collins SM. Is the irritable gut an inflamed gut [J]. Scand J Gastroenterol,1992,27 Suppl 192:102-105.
    10. Barbara G, Vallance BA, Collins SM. Persistent intestinal neuromuscular dysfunction after acute nematode infection in mice [J]. Gastroenterology, 1997,113(4):1224-1232.
    1. Spiller R, Garsed K. Postinfectious irritable bowel syndrome. Gastroenterology,2009, 136(6):1979-1988.
    2. Gwee KA, Collins SM, Read NW, et al. Increased rectal mucosal expression of interleukin lbeta in recently acquired post-infectious irritable bowel syndrome. Gut,2003,52(4):523-526.
    3. Bercik P, Wang L, Verdu EF, et al. Visceral hyperalgesia and intestinal dysmotility in a mouse model of postinfective gut dysfunction. Gastroenterology,2004, 127(1):179-187.
    4. Al-Chaer ED, Kawasaki M, Pasricha PJ. A new model of chronic visceral hypersensitivity in adult rats induced by colon irritation during postnatal development. Gastroenterology,2000,119(5):1276-1285.
    5. Spiller RC. Postinfectious irritable bowel syndrome. Gastroenterology,2003,124(6): 1662-1671.
    6. Collins SM. A case for an immunological basis for irritable bowel syndrome. Gastroenterology,2002,122 (7):2078-2080.
    7. Barbara G, Vallance BA, Collins SM. Persistent intestinal neuromuscular dysfunction
    after acute nematode infection in mice. Gastroenterology,1997,113(4):1224-1232.
    8. Mosmann TR, Cherwinski HM, Bond MW et al. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol,1986,136 (7):2348-2357.
    9. Chan J, Gonsalkorale WM, Perrey C, et al. IL-10 and TGF-β genotypes in irritable bowel syndrome:Evidence to support an inflammation component? Gastroenterology,2000,18:A1191.
    10. Gwee KA, Collins SM, NW Read, et al. Increased rectal mucosal expression of interleukin 1 β in recently acquired post-infectious irritable bowel syndrome. Gut,2003,52 (4):523-526.
    11. Khan WI, Blennerhassett PA, Deng Y,etal. IL-12 gene transfer alters gut physiology and host immunity in nematode-infected mice. Am J Physiol Gastrointest Liver Physiol,2001,281(1):G102-110.
    12. 李延青,张海燕,左秀丽,等.肠易激综合征患者肠道粘膜Th1/Th2漂移的研究.中华消化杂志,2004,24(12):728-731.
    13. Collins SM. The immuno-modulation of enteric neuromuscularfunction:implications for motility and inflammatory disorders. Gastroenterology,1996,111 (6):1683-1689.
    1. Drossman D, Camilleri M, Mayer E, et al. AGA technical review on irritable bowel syndrome. Gastroenterology 2002; 123:2108-2131.
    2. Gershon M. Nerves, reflexes, and the enteric nervous system:pathogenesis of the irritable bowel syndrome. Journal of Clinical Gastroenterology 2005; 39:S184-193.
    3. Talley N, Zinsmeister A, Melton L. Irritable bowel syndrome in a community: symptom subgroups, risk factors, and health care utilization. American journal of epidemiology 1995; 142:76-83.
    4. Longstreth G, Yao J. Irritable bowel syndrome and surgery:a multivariable analysis. Gastroenterology 2004; 126:1665-1673.
    5. Wang L, Fang X, Pan G. Bacillary dysentery as a causative factor of irritable bowel syndrome and its pathogenesis. Gut 2004; 53:1096-1101.
    6. Tornblom H, Lindberg G, Nyberg B, et al. Full-thickness biopsy of the jejunum reveals inflammation and enteric neuropathy in irritable bowel syndrome. Gastroenterology 2002; 123:1972-1979.
    7. Chaudhary N, Truelove S. The irritable colon syndrome a study of the clinical features, predisposing causes, and prognosis in 130 cases. Q J Med 1962; 31:307-322.
    8. Collins S, Piche T, Rampal P. The putative role of inflammation in the irritable bowel syndrome. British Society of Gastroenterology 2001; 49:743-745.
    9. Ji S, Park H, Lee D, et al. Post-infectious irritable bowel syndrome in patients with Shigella infection. Journal of Gastroenterology & Hepatology 2005; 20:381-386.
    10. Neal K, Barker L, Spiller R. Prognosis in post-infective irritable bowel syndrome:a six year follow up study. Gut 2002; 51:410-413.
    11. Spiller R. Role of infection in irritable bowel syndrome. Journal of Gastroenterology 2007; 42:41-47.
    12. Chadwick V, Chen W, Shu D, et al. Activation of the mucosal immune system in irritable bowel syndrome. Gastroenterology 2002; 122:1778-1783.
    13. O'Sullivan C, Breslin H, Bountra M. Increased mast cells in the irritable bowel syndrome. Neurogastroenterology and Motility 2000; 12:449-457.
    14. Spiller R, Jenkins D, Thornley J, et al. Increased rectal mucosal enteroendocrine cells, T lymphocytes, and increased gut permeability following acute Campylobacter enteritis and in post-dysenteric irritable bowel syndrome. British Medical Journal 2000; 47:804-811.
    15. Gwee K, Collins S, Read N, et al. Increased rectal mucosal expression of interleukin 1β in recently acquired post-infectious irritable bowel syndrome. Gut 2003; 52:523-526.
    16. Bueno L, Fioramonti J. Effects of inflammatory mediators on gut sensitivity. Canadian journal of gastroenterology 1999; 13:42A-46A.
    17. Steinman R, Banchereau J. Taking dendritic cells into medicine. Nature 2007; 449:419-426.
    18. Coombes J, Powrie F. Dendritic cells in intestinal immune regulation. Nature Reviews Immunology 2008; 8:435-446.
    19. Takenaka S, Safroneeva E, Xing Z, et al. Dendritic cells derived from murine colonic mucosa have unique functional and phenotypic characteristics. The Journal of Immunology 2007; 178:7984-7993.
    20. Johansson C, Kelsall B. Phenotype and function of intestinal dendritic cells, Semin Immunol,2005,17:284-294.
    21. Hart A, Al-Hassi H, Rigby R, et al. Characteristics of intestinal dendritic cells in inflammatory bowel diseases. Gastroenterology 2005; 129:50-65.
    22. Silva M, Lopez C, Riverin F, et al. Characterization and distribution of colonic dendritic cells in Crohn's disease. Inflammatory Bowel Diseases 2004,10:504-512.
    23. Barbara G, Vallance B, Collins S. Persistent intestinal neuromuscular dysfunction after acute nematode infection in mice. Gastroenterology 1997; 113:1224-1232.
    24. Berck P, Wang L, Verdu E, et al. Visceral hyperalgesia and intestinal dysmotility in a mouse model of postinfective gut dysfunction. Gastroenterology 2004; 127:179-187.
    25. Johansson-Lindbom B, Svensson M, Pabst O, et al. Functional specialization of gut CD103+dendritic cells in the regulation of tissue-selective T cell homing.. Journal of Experimental Medicine 2005; 202:1063-1073.
    26. Krajina T, Leithauser F, Moller P, et al. Colonic lamina propria dendritic cells in mice with CD4+ T cell-induced colitis. European journal of immunology 2003; 33:1073-1083.
    27. Adema G, Hartgers F, Verstraten R, et al. A dendritic-cell-derived CC chemokine that preferentially attracts naive T cells. Nature 1997; 383:713-717.
    28. Tang H, Cyster J. Chemokine up-regulation and activated T cell attraction by maturing dendritic cells. Science 1999; 284:819-822.
    29. Karlis J, Penttila I, Tran T, et al. Characterization of colonic and mesenteric lymph node dendritic cell subpopulations in a murine adoptive transfer model of inflammatory bowel disease. Inflammatory Bowel Diseases 2004; 10:834-847.
    30. Drakes M, Blanc hard T, Czinn S. Colon lamina propria dendritic cells induce a pro inflammatory cytokine response in lamina propria T cells in the SCID mouse model of colitis. Soc Leukocyte Biology,2005; 78:1291-1300.
    31. Talley N, Spiller R. Irritable bowel syndrome:a little understood organic bowel disease? The Lancet 2002;360:555-564.
    32. Sukhdeo M, Croll N. Gut propulsion in mice infected with Trichinella spiralis. J Parasitol 1981; 67:906-910.
    33. Akiho H, Deng Y, Blennerhassett P, et al. Mechanisms underlying the maintenance of muscle hypercontractility in a model of postinfective gut dysfunction. Gastroenterology 2005; 129:131-141.
    34. Wheatcroft J, Wakelin D, Smith A, et al. Enterochromaffin cell hyperplasia and decreased serotonin transporter in a mouse model of postinfectious bowel dysfunction. Neurogastroenterology & Motility 2005; 17:863-870.
    35. Uematsu S, Fujimoto K, Jang M, et al. Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nat Immunol 2008; 9:769-776.
    36. English N, Sirisoma N, Drewe J, et al. Rapid dendritic cell mobilization to the large intestinal epithelium is associated with resistance to Trichuris muris infection. J Immunol 2009; 182:3055-3062.
    37. Ikeda Y, Akbar F, Matsui H, et al. Characterization of antigen-presenting dendritic cells in the peripheral blood and colonic mucosa of patients with ulcerative colitis. European journal of gastroenterology & hepatology 2001; 13:841-850.
    38. Kelleher P, Maroof A, Knight S. Retrovirally induced switch from production of IL-12 to IL-4 in dendritic cells. European journal of immunology 1999; 29:2309-2318.
    39. Woo A, Gildea L, Tack L, et al. In vivo evidence for IFN-y mediated homeostatic mechanisms in small intestine of the NHE3 Na/H exchanger knockout model of congenital diarrhea. J. Biol. Chem 2002,277:49036-49046.
    40. Harrington L, Hatton R, Mangan P, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nature Immunology 2005; 6:1123-1132.
    41. Veldhoen M, Hocking R, Atkins C, et al. TGF-β in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006; 24:179-189.
    42. Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006; 441:235-238.
    43. Kobayashi T, Okamoto S, Hisamatsu T, et al. IL-23 differentially regulates the Th1/Th17 balance in ulcerative colitis and Crohn's disease. British Medical Journal 2008; 57:1682-1689.
    44. Baumgart D, Carding S. Inflammatory bowel disease:cause and immunobiology. The Lancet 2007; 369:1627-1640.
    1. Dunlop SP, Jenkins D, Spiller RC. Distinctive clinical, psychological, and histological features of postinfective irritable bowel syndrome. Am J Gastroenterol 2003;98:1578-1583.
    2. Neal KR, Hebden J, Spiller R. Prevalence of gastrointestinal symptoms six months after bacterial gastroenteritis and risk factors for development of the irritable bowel syndrome:postal survey of patients. Br Med J 1997; 314:779-82.
    3. Hurme M, Helminen M. Resistance to human cytomegalovirus infection may be influenced by genetic polymorphisms of the tumour necrosis factor-alpha and interleukin-1 receptor antagonist genes. Scand J Infect Dis 1998;30:447-449.
    4. McGuire W, Hill AV, Allsopp CE, et al. Variation in the TNF-alpha promoter region
    associated with susceptibility to cerebral malaria. Nature 1994;371:508-510.
    5. van der Veek PP, van den BM, de Kroon YE, et al. Role of tumor necrosis factor-alpha and interleukin-10 gene polymorphisms in irritable bowel syndrome. Am J Gastroenterol 2005; 100:2510-2516.
    6. Gonsalkorale WM, Perrey C, Pravica V, et al. Interleukin 10 genotypes in irritable bowel syndrome:evidence for an inflammatory component? Gut 2003;52:91-93.
    7. Gwee KA, Leong YL, Graham C, McKendrick MW, Collins SM, Walters SJ, et al. The role of psychological and biological factors in postinfective gut dysfunction. Gut 1999;44:400-6.
    8. Dunlop SP, Jenkins D, Spiller RC. Age-related decline in rectal mucosal lymphocytes and mast cells. Eur J Gastroenterol Hepatol 2004;16:1011-5.
    9. Dunlop SP, Jenkins D, Neal KR, Spiller RC. Relative importance of enterochromaffin cell hyperplasia, anxiety, and depression in postinfectious IBS. Gastroenterology 2003;125:1651-9.
    10. Wang LH, Fang XC, Pan GZ. Bacillary dysentery as a causative factor of irritable bowel syndrome and its pathogenesis. Gut 2004;53:1096-1101.
    11. Levy RL, Jones KR, Whitehead WE, et al. Irritable bowel syndrome in twins:heredity and social learning both contribute to etiology. Gastroenterology 2001;121:799-804.
    12. Spence MJ, Moss-Morris R. The cognitive behavioural model of irritable bowel
    syndrome:a prospective investigation of patients with gastroenteritis. Gut 2007:56:1066-1071.
    13. Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand 1983;67:361-70.
    14. Gwee KA, Graham JC, McKendrick MW, Collins SM, Marshall JS, Walters SJ, et al. Psychometric scores and persistence of irritable bowel after infectious diarrhoea. Lancet 1996;347:150-3.
    15. Nicholl BI, Halder SL, Macfarlane GJ, et al. Psychosocial risk markers for new onset irritable bowel syndrome—results of a large prospective population-based study. Pain 2008;137:147-155.
    16. Moss-Morris R, Spence M. To "lump" or to "split" the functional somatic syndromes: can infectious and emotional risk factors differentiate between the onset of chronic fatigue syndrome and irritable bowel syndrome? Psychosom Med 2006;68:463-469.
    17. Parry SD, Barton JR, Welfare MR. Factors associated with the development of post-infectious functional gastrointestinal diseases:does smoking play a role? Eur J Gastroenterol Hepatol 2005; 17:1071-1075.
    18. Gallowitsch-Puerta M, Tracey KJ. Immunologic role of the cholinergic anti-inflammatory pathway and the nicotinic acetylcholine alpha 7 receptor. Ann N Y Acad Sci 2005; 1062:209-219.
    19. Munafo MR, Zetteler JI, Clark TG. Personality and smoking status:a meta-analysis. Nicotine Tob Res 2007;9:405-413.
    20. Spiller RC, Jenkins D, Thornley JP, Hebden JM, Wright T, Skinner M, et al. Increased rectal mucosal enteroendocrine cells, T lymphocytes, and increased gut permeability following acute Campylobacter enteritis and in post-dysenteric irritable bowel syndrome. Gut 2000;47:804-11.
    21. Kidd M, Modlin IM, Eick GN, Champaneria MC. Isolation, functional characterization and transcriptome of mastomys ileal enterochromaffin cells. Am J Physiol Gastrointest Liver Physiol 2006;291:G778-91.
    22. Bercik P, Wang L, Verdu EF, et al. Visceral hyperalgesia and intestinal dysmotility in a mouse model of postinfective gut dysfunction. Gastroenterology 2004;127:179-187.
    23. Wheatcroft J, Wakelin D, Smith A, et al. Enterochromaffin cell hyperplasia and decreased serotonin transporter in a mouse model of postinfectious bowel dysfunction. Neurogastroenterol Motil 2005;17:863-870.
    24. Motomura Y, Ghia JE, Wang H, et al. Enterochromaffin cell and 5-hydroxytryptamine responses to the same infectious agent differ in Thl and Th2 dominant environments. Gut 2008;57:475-481.
    25. Keating C, Beyak M, Foley S, et al. Afferent hypersensitivity in a mouse model of post-inflammatory gut dysfunction:role of altered serotonin metabolism. J Physiol
    2008;586:4517-4530.
    26. Dunlop SP, Coleman NS, Blackshaw E, et al. Abnormalities of 5-hydroxytryptamine metabolism in irritable bowel syndrome. Clin Gastroenterol Hepatol 2005;3:349-357.
    27. O'Hara JR, Skinn AC, MacNaughton WK, et al. Consequences of Citrobacter rodentium infection on enteroendocrine cells and the enteric nervous system in the mouse colon. Cell Microbiol 2006;8:646-660.
    28. Barbara G, Stanghellini V, De Giorgio R, et al. Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology 2004;126:693-702.
    29. Bouin M, Plourde V, Boivin M, et al. Rectal distention testing in patients with irritable bowel syndrome:sensitivity, specificity, and predictive values of pain sensory thresholds. Gastroenterology 2002;122:1771-1777.
    30. Bergin AJ, Donnelly TC, McKendrick MW, et al. Changes in anorectal function in persistent bowel disturbance following salmonella gastroenteritis. Eur J Gastroenterol Hepatol 1993; 5:617-620
    31. Zar S, Benson MJ, Kumar D. Rectal afferent hypersensitivity and compliance in irritable bowel syndrome:differences between diarrhoea-predominant and constipation-predominant subgroups. Eur J Gastroenterol Hepatol 2006;18:151-158.
    32. Chang L, Mayer EA, Labus JS, et al. Effect of sex on perception of rectosigmoid stimuli in irritable bowel syndrome. Am J Physiol Regul Integr Comp Physiol 2006;291:R277-R284.
    33. Guilarte M, Santos J, de Torres I, et al. Diarrhoea-predominant IBS patients show mast cell activation and hyperplasia in the jejunum. Gut 2007;56:203-209.
    34. Piche T, Saint-Paul MC, Dainese R, et al. Mast cells and cellularity of the colonic mucosa correlated with fatigue and depression in irritable bowel syndrome. Gut 2008;57:468-473.
    35. Swain MG, Agro A, Blennerhassett P, et al. Increased levels of substance P in the myenteric plexus of Trichinella-infected rats. Gastroenterology 1992;102:1913-1919.
    36. Simpson J, Sundler F, Humes DJ, et al. Prolonged elevation of galanin and tachykinin expression in mucosal and myenteric enteric nerves in trinitrobenzene sulphonic acid colitis. Neurogastroenterol Motil 2008;20:392-406.
    37. Akbar A, Yiangou Y, Facer P, et al. Increased capsaicin receptor TRPV1 expressing sensory fibres in irritable bowel syndrome and their correlation with abdominal pain. Gut 2008;57:923-929.
    38. Yiangou Y, Facer P, Dyer NH, et al. Vanilloid receptor 1 immunoreactivity in inflamed human bowel. Lancet 2001;357:1338-1339.
    39. Chadwick VS, Chen W, Shu D, Paulus B, Bethwaite P, Tie A, et al. Activation of the mucosal immune system in irritable bowel syndrome. Gastroenterology 2002;122:1778-83.
    40. Gwee KA, Collins SM, Read NW, Rajnakova A, Deng Y, Graham JC, et al. Increased rectal mucosal expression of interleukin 1beta in recently acquired post-infectious irritable bowel syndrome. Gut 2003;52:523-6.
    41. Galeazzi F, Haapala EM, van Rooijen N, Vallance BA, Collins SM. Inflammation-induced impairment of enteric nerve function in nematode-infected mice is macrophage dependent. Am J Physiol Gastrointest Liver Physiol 2000;278:G259-65.
    42. Xia Y, Hu HZ, Liu S, Ren J, Zafirov DH, Wood JD. IL-lbeta and IL-6 excite neurons and suppress nicotinic and noradrenergic neurotransmission in guinea pig enteric nervous system. J Clin Invest 1999;103:1309-16.
    43. Dunlop SP, Hebden JM, Naesdal J, Olbe L, Perkins AC, Spiller RC. Abnormal intestinal permeability in subgroups of diarrhea predominant irritable bowel syndromes. Am J Gastroenterol 2006; 101:1288-94.
    44. Marshall JK, Thabane M, Garg AX, Clark W, Meddings J, Collins SM. Intestinal permeability in patients with irritable bowel syndrome after a waterborne outbreak of acute gastroenteritis in Walkerton, Ontario. Aliment Pharmacol Ther 2004;20:1317-22.
    45. Liebregts T, Adam B, Bredack C, et al. Immune activation in patients with irritable
    bowel syndrome. Gastroenterology 2007; 132:913-920.
    46. Dinan TG, Quigley EM, Ahmed SM, et al. Hypothalamic-pituitarygut axis dysregulation in irritable bowel syndrome:plasma cytokines as a potential biomarker? Gastroenterology 2006;130:304-311.
    47. Campbell E, Richards M, Foley S, et al. Markers of inflammation in IBS:Increased permeability and cytokine production in diarrhea predominant subgroups. Gastroenterology 2006;130:A51.
    48. Maes M, Song C, Lin A, De Jongh R, Van Gastel A, Kenis G, etal. The effects of psychological stress on humans:increased production of pro-inflammatory cytokines and a Th1-like response in stress-induced anxiety. Cytokine 1998;10:313-8.
    49. O'Mahony L, McCarthy J, Kelly P, Hurley G, Luo F, Chen K, et al. Lactobacillus and Bifidobacterium in irritable bowel syndrome:symptom responses and relationship to cytokine profiles. Gastroenterology 2005;128:541-51.
    50. Chang L. Review article:epidemiology and quality of life in functional gastrointestinal disorders. Aliment Pharmacol Ther 2004;20 Suppl 7:31-9.
    51. Balamurugan R, Janardhan HP, George S, et al. Bacterial succession in the colon during childhood and adolescence:molecular studies in a southern Indian village. Am J Clin Nutr 2008; 88:1643-1647.
    52. Fujita K, Kaku M, Yanagase Y, et al. Physicochemical characteristics and flora of diarrhoeal and recovery faeces in children with acute gastro-enteritis in Kenya. Ann Trop Paediatr 1990; 10:339-345.
    53. Lupp C, Robertson ML, Wickham ME, et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2007; 2:204.
    54. Conte MP, Schippa S, Zamboni I, et al. Gut-associated bacterial microbiota in paediatric patients with inflammatory bowel disease. Gut 2006;55:1760-1767.
    55. Pimentel M, Chatterjee S, Chang C, et al. A new rat model links two contemporary theories in irritable bowel syndrome. Dig Dis Sci 2007;53:982-989.
    56. Pimentel M, Chow EJ, Lin HC. Normalization of lactulose breath testing correlates with symptom improvement in irritable bowel syndrome. a double-blind, randomized, placebo-controlled study. Am J Gastroenterol 2003;98:412-9.
    57. Anand AC, Reddy PS, Saiprasad GS, Kher SK. Does nondysenteric intestinal amoebiasis exist? Lancet 1997;349:89-92.
    58. Maxwell PR, Rink E, Kumar D, Mendall MA. Antibiotics increase functional abdominal symptoms. Am J Gastroenterol 2002;97:104-8.
    59. Williams AJK, Merrick MV, Eastwood MA. Idiopathic bile acid malabsorption—a review of clinical presentation, diagnosis, and response to treatment. Gut 1991;32:1004-1006.
    60. Sinha L, Liston R, Testa HJ, et al. Idiopathic bile acid malabsorption:qualitative and
    quantitative clinical features and response to cholestyramine. Aliment Pharmacol Ther 1998; 12:839-844.
    61. Misra S, Sabui TK, Basu S, et al. A prospective study of rotavirus diarrhea in children under 1 year of age. Clin Pediatr (Phila) 2007;46:683-688.
    62. Parry SD, Barton JR, Welfare MR. Is lactose intolerance implicated in the development of post-infectious irritable bowel syndrome or functional diarrhoea in previously asymptomatic people? Eur J Gastroenterol Hepatol 2002;14:1225-1230.
    63. Mylonaki M, Langmead L, Pantes A, et al. Enteric infection in relapse of inflammatory bowel disease:importance of microbiological examination of stool. Eur J Gastroenterol Hepatol 2004;16:775-778.
    64. Garcia Rodriguez LA, Ruigomez A, Panes J. Acute gastroenteritis is followed by an increased risk of inflammatory bowel disease. Gastroenterology 2006;130:1588-1594.
    65. Perk G, Ackerman Z, Cohen P, et al. Lymphocytic colitis:a clue to an infectious trigger. Scand J Gastroenterol 1999;34:110-112.
    66. Sanders DS, Carter MJ, Hurlstone DP, et al. Association of adult coeliac disease with irritable bowel syndrome:a case-control study in patients fulfilling ROME Ⅱ criteria referred to secondary care. Lancet 2001;358:1504-1508.
    67. Simpson J, Neal KR, Scholefield JH, et al. Patterns of pain in diverticular disease and the influence of acute diverticulitis. Eur J Gastroenterol Hepatol 2003;15:1005-1010.
    68. Cook GC. "Tropical sprue":some early investigators favoured an infective cause, but was a coccidian protozoan involved? Gut 1997;40:428-429.
    69. Spiller R, Aziz Q, Creed F, et al. Guidelines on the irritable bowel syndrome: mechanisms and practical management. Gut 2007;56:1770-1798.
    70. Dunlop SP, Jenkins D, Neal KR, et al. Randomized, double-blind, placebo-controlled trial of prednisolone in post-infectious irritable bowel syndrome. Aliment Pharmacol Ther 2003;18:77-84.
    71. Bafutto M, Almeida JR, Almeida RC, et al. Treatment of post infectious irritable bowel syndrome and non infective irritable owel syndrome with mesalazine (abstr). Gastroenterology 008;134:A672.
    72. Cremonini F, Delgado-Aros S, Camilleri M. Efficacy of alosetron n irritable bowel syndrome:a meta-analysis of randomized ontrolled trials. Neurogastroenterol Motil 2003;15:79-86.
    73. Longstreth GF, Hawkey CJ, Mayer EA, et al. Characteristics of atients with irritable bowel syndrome recruited from three ources:implications for clinical trials. Aliment Pharmacol Ther 001;15:959-964.
    74. Chaudhary NA, Truelove SC. The irritable colon syndrome. Q Med 1962; 123:307-322.
    75. Neal KR, Barker L, Spiller RC. Prognosis in post-infective irritable owel syndrome:a six year follow up study. Gut 2002;51:10-413.
    76. Simpson J, Sundler F, Humes DJ, et al. Post inflammatory damage to the enteric nervous system in diverticular disease and its relationship to symptoms. Neurogastroenterol Motil 2009; 21(8):847-858.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700