用户名: 密码: 验证码:
自噬在氧化低密度脂蛋白诱导内皮细胞损伤中的作用及其机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     观察自噬在氧化低密度脂蛋白(ox-LDL)诱导人脐静脉内皮细胞(HUVECs)损伤中的作用,并初步探讨其机制。
     方法:
     1.运用不同浓度及时间点的ox-LDL处理HUVECs,采用免疫印迹技术检测自噬标记蛋白LC3-II/LC3-I、beclin1及溶酶体相关膜蛋白lamp2a表达,透射电镜观察细胞超微结构,MDC染色自噬囊泡及荧光免疫标记MAP1-LC3,观察ox-LDL对HUVECs自噬水平的影响。通过观察培养上清中T-SOD、MDA含量,并用抗氧化剂维生素C(vitC)、维生素E(vitE)及植物凝集素样氧化型低密度脂蛋白受体-1(LOX-1)mAb干预,探讨氧化应激及LOX-1受体途径在ox-LDL影响HUVECs自噬水平中的作用。2.在自噬诱导剂雷帕霉素和抑制剂3-甲基腺嘌呤(3-MA)干预下,通过MTT检测细胞增殖,流式细胞技术检测细胞凋亡、死亡及酶联免疫技术检测培养上清中ET-1、LDH含量,观察自噬对ox-LDL损伤HUVECs的影响。并通过定量HUVECs中Dil标记ox-LDL(Dil-ox-LDL)含量,观察Dil-ox-LDL与MDC、MAP1-LC3和lamp2a的细胞定位情况,初步探讨自噬对ox-LDL损伤内皮细胞作用的机制。3.采用透射电镜观察细胞超微结构,免疫印迹及Real-time PCR技术检测LC3、beclin1和p53蛋白、基因水平的变化,流式细胞技术检测细胞的凋亡、死亡,MTT检测细胞增殖,观察在ox-LDL损伤HUVECs过程中自噬、凋亡及坏死之间的关系。
     结果:
     1. MDC染色、荧光免疫细胞染色和透射电镜结果均显示ox-LDL给药后可诱导HUVECs发生自噬;免疫印迹技术结果显示,ox-LDL上调HUVECs LC3-II/LC3-I及beclin1蛋白表达的作用在0.5 h和6 h出现两个高峰。ox-LDL作用0.5 h和6 h也能显著上调HUVECs lamp2a蛋白的表达;减少细胞培养上清中T-SOD水平,增加其MDA含量。抗氧化剂vitC和vitE能部分性拮抗ox-LDL诱导的培养上清中T-SOD减少及MDA增加。ox-LDL诱导的LC3-II/LC3-I表达上调能被vitC和vitE抑制,却不能被LOX-1mAb抑制;LOX-1mAb能抑制ox-LDL引起的lamp2a表达上调,而vitC和vitE仅能抑制lamp2a晚期6 h的表达上调。2. ox-LDL作用6 h能被HUVECs大量吞噬,并促进HUVECs增殖,诱导细胞发生自噬、凋亡,增加培养上清中LDH、ET-1含量。3-MA在抑制ox-LDL上调自噬的同时能增加ox-LDL在HUVECs内的蓄积,增加ox-LDL诱导的细胞凋亡,降低细胞的活性。雷帕霉素可逆转其。另外Dil-ox-LDL与MDC、MAP1-LC3和lamp2a发生大量共定位现象,MAP1-LC3与lamp2a的共定位程度在ox-LDL作用组细胞明显高于对照组的。3.暴露于ox-LDL 6 h-24 h的HUVECs在超微结构依次出现以自噬、凋亡、坏死为主要特征的变化。ox-LDL也能上调LC3-II/LC3-I、beclin1、p53蛋白及LC3、beclin1、p53mRNA水平,其中对LC3-II/LC3-I和beclin1的上调高峰(0.5 h和6 h)略早于对p53的上调(1.5 h和12 h)。3-MA在抑制ox-LDL上调HUVECs LC3、beclin1基因、蛋白表达的同时,能增加ox-LDL诱导的细胞凋亡、促进细胞死亡;凋亡抑制剂z-vad-fmk在抑制ox-LDL诱导HUVECs p53基因、蛋白表达上调的同时,也能抑制ox-LDL诱导的LC3、beclin1基因、蛋白表达上调,对ox-LDL诱导的HUVECs增殖产生抑制作用。6 h时间点上调自噬能在不影响HUVECs凋亡、坏死的情况下,抑制ox-LDL诱导的细胞增殖。
     结论:
     ox-LDL能促进HUVECs增殖,并诱导其发生自噬、凋亡和坏死。ox-LDL对HUVECs的损伤与其被细胞吞噬后的降解障碍有关。自噬诱导剂雷帕霉素能通过减少ox-LDL在HUVECs的聚集,抑制ox-LDL诱导的细胞增殖及细胞因子异常分泌,从而对ox-LDL所致的HUVECs损伤起保护作用。抑制自噬则会通过增加ox-LDL在细胞的集聚,增加ox-LDL诱导的凋亡,促进细胞死亡,进一步加重ox-LDL诱导的细胞损伤。
Objective:
     To investigate the role and mechanisms of autophagy in the injury of human umbilical vein endothelial cells ( HUVECs ) induced by oxidative low density lipoprotein ( ox-LDL ).
     Methods:
     1. After ox-LDL exposure, the formation of autophagosomes was observed by transmission electron microscopy, monodansylcadaverine ( MDC ) staining autophagic vacuole ( AV ), immunofluorescence staining microtubule-associated protein light chain 3 ( MAP1-LC3 ) protein, and western-blot examining the ratio of LC3-II/LC3-I, beclin1 and lysosome associated membrane protein 2a ( lamp2a ) protein levels. The content of T-SOD and MDA in their culture medium were also assessed. The roles of oxidative stress and LOX-1 in the activation of autophagy induced by ox-LDL is investigated by using vitC, vitE and LOX-1mAb interference. 2. To investigate the role and mechanisms of autophagy in ox-LDL-induced injury of HUVECs, cultured HUVECs were randomly divided into four groups: the control, ox-LDL, ox-LDL+rapamycin and ox+3-MA. The cells were used to detect the ratio of LC3-II/LC3-I by western blot, while the proliferation and apoptosis of cells were measured by MTT and flow cytometry methods. Lactate dehydrogenase ( LDH ) and endothelin-1 ( ET-1 ) content in the supernatant were detected with enzyme linked immunosorbent assay. In addition, the aggregation of Dil labled ox-LDL in HUVECs and the cellular distribution of Dil-ox-LDL with MDC, MAP1-LC3 and lamp2a were observed. 3. The formation of autophagosomes, apoptotic bodies, and cell necrosis were observed by transmission electron microscopy after ox-LDL exposure. Real-time PCR, western blot, flow cytometry and MTT methods were used to study the apoptotic and autophagic mechanisms. The contribution of autophagic and apoptotic mechanisms to ox-LDL-induced upregulation of MAP1-LC3, beclin1, and P53 mRNA and protein levels were assessed by pretreatment with rapamycin, an autophagy inducer, the autophagic inhibitor, 3-MA, and z-vad-fmk, an apoptosis inhibitor.
     Results:
     1. Autophagy was induced in HUVECs as detected by MDC staining, immunofluorescence staining and TEM. The upregulation of the ratio of LC3-II/LC3-I and the beclin1 protein level induced by ox-LDL reached peaks at 0.5 h and 6 h point. ox-LDL also increased the lamp2a protein level at 0.5 h and 6 h point. The downregulation of the T-SOD level and the upregulation of the MDA level in the culture medium is also significant at 0.5 h and 6 h, which was inhibited by pretreatment with vitC and vitE. The increase in the ratio of LC3-II/LC3-I was reversed by vitC and vitE pretreatment, but not LOX-1mAb. LOX-1mAb decreased the increase of lamp2a protein level induced by ox-LDL, while, vitC and vitE only inhibited the increase of lamp2a at 6 h point, but not 0.5 h point. 2. ox-LDL aggregated in HUVECs brought about an increase in the ratio of LC3-II/LC3-I in HUVECs, increased the content of LDH and ET-1 in the supernatant, as well as induced the proliferation and apoptosis of cells. The autophagic inducer rapamycin decreased the aggregation of Dil-labled ox-LDL ( Dil-ox-LDL ), increased the upregulation of autophagic level induced by ox-LDL, decreased the content of LDH and ET-1, and inhibited the ox-LDL-induced proliferation of cells. Conversely, the autophagic inhibitor 3-MA increased the aggregation of Dil-ox-LDL, decreased the increases of LC3-II/LC3-I induced by ox-LDL, increased the cell apoptosis and death. In addition, Dil-ox-LDL colocalized with the autophagy marker MDC, MAP1-LC3, and the lysosomal ( lamp2a ). HUVECs treated with Dil-ox-LDL showed a much greater degree of overlap of MAP1-LC3 and Lamp2a than control. 3. ox-LDL brought about an increase in the formation of autophagosomes, autolysosomes, apoptotic bodies, and cell necrosis in HUVECs. The formation of apoptotic bodies was later than that of autophagosomes, then followed by necrosis. ox-LDL-induced increases of p53 mRNA and protein levels were somewhat later than the increases in MAP1-LC3 and Beclin1. 3-MA pretreatment not only decreased the upregulation of LC3, beclin1 mRNA, the ratio of LC3-II/LC3-1 and beclin1 protein levels induced by ox-LDL, but increased the ox-LDL-induced increase of annexin V-positive staining, prompted the cell death. z-vad-fmk decreased the upregulation of p53, LC3, beclin1 mRNA, the ratio of LC3-II/LC3-I and beclin1 protein levels induced by ox-LDL, inhibited the ox-LDL-induced cell proliferation. The cell proliferation but not apoptosis of HUVECs induced by ox-LDL was inhibited by rapamycin pretreatment.
     Conclusion:
     Ox-LDL treatment can not only induce autophagy, but cell proliferation, apoptosis and necrosis of HUVECs, thus playing a harmful effect on the survival of HUVECs. The aggregation of ox-LDL is involved in the injury of HUVECs induced by ox-LDL. The autophagic inducer rapamycin has a cytoprotective action in against ox-LDL-induced cell proliferation and cytokine secretion by promoting the degradation of ox-LDL, while, 3-MA, the autophagic inhibitor, can increase the ox-LDL-induce cell apoptosis and death by increasing the aggregation of ox-LDL.
引文
1. Steinberg D. Lipoproteins and atherosclerosis: A look back and a look ahead. Arterioscler Thromb Vasc Biol, 1983; 3: 283-301.
    2. Richard G, Taylor MS and Lewis JC. Endothelial cell proliferation and monocyte adhesion to Atherosclerotic Lesions of white carneau pigeons. Am J Pathol, 1986; 125: 152-160.
    3. Caplan BA, Schwartz CJ. Increased endothelial cell turnover in areas of in vivo Evans blue uptake in pig aorta. Arteriosclerosis, 1973; 17: 401-417.
    4. Stary HC. Proliferation of arterial cells in atherosclerosis. Adv Exp Med Biol, 1974; 43: 59-80.
    5. Jerome WG, Lewis JC, Taylor RG, et al. Concurrent endothelial cell turnover and leukocyte margination in early atherosclerosis. Scan Electron Microsc, 1983; 111: 1453-1459.
    6. Caplan BA, Schwartz CJ. Increased endothelial cell turnover in areas of in vivo Evans blue uptake in the pig aorta. Atherosclerosis, 1973; 17: 401-417.
    7. Florentin RA, Nam SC, Lee KT, et al. Increased mitotic activity in aortas of swine: After three days of cholesterol feeding. Arch Pathol, 1969; 88: 463-469.
    8. Vladavsky I, Gospodarowicz D. Structural and functional alterations in the surface of vascular endothelial cells associated with the formation of a confluent cell monolayer and with the withdrawal of fibroblast growth factor. J Supramol Struct, 1979; 12: 73-114.
    9. Henriksen T, Mahoney EM, Steinberg D. Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: Recognition by receptors for acetylated low density lipoproteins. Proc Natl Acad Sci USA, 1981; 78: 6499-6503.
    10. Ross R, Glomset J, Karlya B, et al. A platelet-dependent serum factor that stimulates the proliferation of arterial smooth muscle cells in vitro. Proc Natl Acad Sci USA, 1974; 71: 1207-1210.
    11. Gajdusek C, DICorleto P, Ross R, et al. An endothelial cell-derived growth factor. JCell Biol, 1980; 85: 467-472.
    12. Goldstein JL, Brown MS. The low-density lipoprotein pathway and its relation to atherosclerosis. Ann Rev Biochem, 1977; 46: 897-930.
    13. Watanabe Y. Serial inbreeding of rabbits with hereditary hyperlipemia (WHHL-rabbit). Incidence and development of atherosclerosis. Atherosclerosis, 1980; 36: 261-268.
    14. Tanzawa K, Shlmada Y, Kuroda M, et al. WHHL-rabbit: a low density lipoprotein receptor deficient animal model for familial hypercholesterolemia. FEBS Lett, 1980; 118: 81-84.
    15. Attie AD, Prttman RC, Watanabe Y, et al. Low density lipoproteln metabolism in cultured hepatocytes of the WHHL rabbit, a model for familial hypercholesterolemia: Further evidence of two pathways for catabolism of exogenous pathways. J Biol Chem, 1981; 256: 9789-9792.
    16. Ktta T, Brown MS, Watanabe Y, et al. Deficiency of low density lipoprotein receptors in liver and adrenal gland of the WHHL rabbit, an animal model of familial hypercholesterolemia. Proc Natl Acad Sci USA, 1981; 78: 2268-2272.
    17. Tabas I, Williams KJ and Borén J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: Update and therapeutic implications. Circulation, 2007; 116: 1832-1844.
    18.朱冰坡,范利.动脉粥样硬化的抗氧化治疗研究进展.中国老年学杂志,2005;25:478-480.
    19. Jia G, Cheng G, Gangahar DM, et al. Insulin-like growth factor-1 and TNF-a regulate autophagy through c-jun N-terminal kinase and Akt pathways in human atherosclerotic vascular smooth cells. Immunol Cell Biol, 2006; 84: 448-454.
    20. Nowickia M, Zabirnyka O, Duerrschmidta N, et al. No upregulation of lectin-like oxidized low-density lipoprotein receptor-1 in serum-deprived EA.hy926 endothelial cells under oxLDL exposure, but increase in autophagy. Eur J Cell Biol, 2007; 86: 605-616.
    21. Verheye S, Martinet W, Kockx MM, et al. Selective clearance of macrophages in atherosclerotic plaques by autophagy. J. Am. Coll. Cardiol, 2007; 49: 706-717.
    22. Martinet W, De Meyer GRY. Autophagy in atherosclerosis. Curr Atheroscler Rep, 2008; 10: 216-223.
    23. Martinet W, Knaapen MW, Kockx MM, et al. Autophagy in cardiovascular disease. Trends Mol Med, 2007; 13: 482-491.
    24. Chau YP, Lin SY, Chen JH, et al. Endostatin induces autophagic cell death in EAhy926 human endothelial cells. Histol Histopathol, 2003; 18: 715-726.
    25. Schrijvers D, Fret H, Martinet W, et al. Statins and oxysterol-induced vascular smooth muscle cell death. Fundam Clin Pharmacol, 2006; 20: 331.
    26. Vieira O, Blanc IE, Jürgens G, et al. Oxidized LDLs alter the activity of the ubiquitin proteasome pathway: Potential role in oxidized LDL induced apoptosis. FASEB J, 2000; 14: 532-542.
    27. Grune T, Reinheckel T, Davies KJA. Degradation of oxidized proteins in mammalian cells. FASEB J, 1997; 11: 526-534.
    28. Hoff HF, Zyromski N, Armstrong D, et al. Aggregation as well as chemical modification of LDL during oxidation is responsible for poor processing in macrophages. J Lipid Res, 1993; 34: 1919-1929.
    29. Herrmann J, Soares SM, Lerman LO, et al. Potential role of the ubiquitin-proteasome system in atherosclerosis: Aspects of a protein quality disease. J. Am. Coll. Cardiol, 2008; 51: 2003-2010.
    30. Martinet W, Knaapen MW, Kockx MM, et al. Autophagy in cardiovascular disease. Trends Mol Med, 2007; 13: 482-491.
    31. Ohsaki Y, Cheng J, A. Fujita A, et al. Cytoplasmic lipid droplets are sites of convergence of proteasomal and autophagic degradation of apolipoprotein B. Mol Biol Cell, 2006; 17: 2674-2683.
    32. Singh R, Kaushik S, Wang YJ, et al. Autophagy regulates lipid metabolism. Nature, 2009; 458: 1131-1137.
    33. Xiong Y, Contento AL, Nguyen PQ, et al. Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. Plant Physiol, 2007; 143: 291-299.
    34. Steiger-Barraissoul S, Rami A. Serum deprivation induced autophagy and predominantly an AIF-dependent apoptosis in hippocampal HT22 neurons. Apoptosis, 2009; 14: 1274-1288.
    35. Hatch FT. Practical methods for plasma lipoprotein analysis. Adv Lipid Res, 1968; 6: 1-68.
    36. Lambert JC, Wang GW, Kang YJ. Zinc inhibition of caspase-3 activation does not protect HeLa cells from apoptotic cell death. Toxicol Appl Pharmacol, 2001; 175: 89-93.
    37. Frederick MA, Roger B, Robert EK, et al. Short protocols in molecular biology, 3rd ed. Bei jing: Science Press, 1998; 17-24.
    38. Monica F, Norbert R, Trond B, et al. Ultrstructural and immunocytochemical characterization of autophagic vacuoles in isolated hepatocytes: effects of vinblastine and asparagines on vacuole distributions. Exp Cell Res, 1995; 221: 504-519.
    39. Biederbick A, Kern HF, Elsasser HP. Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur J Cell Biol, 1995; 66: 3-14.
    40. Sawamura T, Kume N, Aoyama T, et al. An endothelial receptor for oxidized low-density lipoprotein. Nature, 1997; 386: 73-77.
    41.朱惠莲,夏敏,侯孟君,等.氧化低密度脂蛋白通过血凝素样氧化低密度脂蛋白受体1诱导血管内皮细胞粘附分子的表达.中华心血管病杂志, 2005; 33: 743-747.
    42.王虹艳,曲鹏,吕申,等. Toll样受体4 /核因子κB和氧化低密度脂蛋白受体LOX-1对单核内皮细胞黏附的影响.中华心血管病杂志, 2006; 33: 827-831.
    43. Duerrschmidt N, Zabirnyk O, Nowicki M, et al. Lectin-like oxidized low-density lipoprotein receptor-1-mediated autophagy in human granulosa cells as an alternative of programmed cell death. Endocrinology, 2006; 147: 3851-3860.
    44. Nakatogawa H, Ichimura Y and Ohsumi Y. Atg8, a Ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell, 2007; 130: 165-178.
    45. Tanida I, Ueno T, Kominami E. LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol, 2004; 36: 2503-2518.
    46. Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J, 2000; 19: 5720-5728.
    47. Zhang XD, Wang Y, Wang Y, et al. p53 mediates mitochondria dysfunction- triggered autophagy activation and cell death in rat striatum. Autophagy, 2009; 5: 000-000.
    48. Vázquez CL, Colombo MI. Assays to assess autophagy induction and fusion of autophagic vacuoles with a degradative compartment, using monodansylcadaverine(MDC) and DQ-BSA. Methods Enzymol, 2009; 452: 85-95.
    49. Contento AL, Xiong Y, Bassham DC. Visualization of autophagy in Arabidopsis using the fluorescent dye monodansylcadaverine and a GFP-AtATG8e fusion protein. Plant J, 2005; 42: 598-608.
    50. Kiffin R, Bandyopadhyay U and Cuervo AM. Oxidative stress and autophagy. Antioxid. Redox Signal, 2006; 8: 152-162.
    51. Scherz-Shouval R, Shvets E, Fass E, et al. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J, 2007; 26: 1749-1760.
    52. Martinet W, De Meyer GRY. Autophagy in atherosclerosis: a cell survival and death phenomenon with therapeutic potential. Circ Res, 2009; 104: 304-317.
    53. Yorimitsu T, Klionsky DJ. Endoplasmic reticulum stress: A new pathway to induce autophagy. Autophagy, 2007; 3: 160-162.
    54. Yorimitsu T, Nair U, Yang Z, et al. Endoplasmic reticulum stress triggers autophagy. J Biol Chem, 2006; 281: 30299-30304.
    55. Myeku N, Figueiredo-Pereira ME. Ubiquitin/proteasome and autophagy/lysosome pathways: comparison and role in neurodegeneration. Handbook of neurochemistry and molecular neurobiology. Brain and Spinal Cord Trauma, 2008; 514-524.
    56. Fortunato F, Bürgers H, Bergmann F, et al. Impaired autolysosome formation correlates with lamp-2 depletion: role of apoptosis, autophagy, and necrosis in pancreatitis. Gastroenterology, 2009; 137: 350-360.
    57. Kiffin R, Christian C, Knecht E, et al. Activation of chaperone-mediated autophagy during oxidative stress. Mol Biol Cell, 2004; 4829-4840.
    58. Morawietz H, Duerrschmidt N, Niemann B, et al. Induction of the ox-LDL receptor LOX-1 by endothelin-1 in human endothelial cells. Biochem Biophys Res Commun, 2001; 284: 961-965
    59. Stephan ZF, Yirachek EC. Rapid fluorometric assay of LDL receptor activity by Dil-labeled LDL. J Lipid Res, 1993; 34: 325-330
    60. Boland B, Kumar A, Lee S, et al. Autophagy induction and autophagosome clearance in neurons: Relationship to autophagic pathology in Alzheimer’s disease. J Neurosci, 2008; 28: 6926-6937.
    61.张艳林,王彩英,杨芹,等.大鼠血管平滑肌增殖器官模型的建立及其机制探讨.生物医学工程学杂志,2008;25:1405-1410.
    62. Scott BT, Resink TJ, Hahn AW, et al. Induction of endothelin secret by AT-II effects ongrowth and synthetic activity of VSMCs. Cardiovasc Pharmacol, 1991; 17: S96-S103.
    63.洪庆涛,宋岳涛,唐一鹏,等.细胞培养液乳酸脱氢酶漏出率的比色测定及其应用.细胞生物学杂志,2004;26:89-92.
    64. Vejux A, Lizard G, Tourneur Y, et al. Effects of caspase inhibitors ( z-VAD-fmk, z-VDVAD-fmk ) on Nile Red fluorescence pattern in 7-ketocholesterol-treated cells: investigation by flow cytometry and spectral imaging microscopy. Cytometry A, 2007; 71: 550-562.
    65. Maycotte P, Guemez-Gamboa A, Moran J. Apoptosis and autophagy in rat cerebellar granule neuron death: role of reactive oxygen species. J Neurosci Res, 2010; 88: 73-85.
    66. Eisenberg-Lerner A, Bialik S, Simon HU, et al. Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ, 2009; 16: 966-975.
    67. Han CY and Pak YK. Oxidation-dependent effects of oxidized LDL: proliferation or cell death. Exp Mol Med, 1999; 31: 165-173.
    68. Colles SM, Maxson JM, Carlson SG, et al. Oxidized LDL-induced injury and apoptosis in atherosclerosis potential roles for oxysterols. Trends Cardiovasc Med, 2001; 11: 131-138.
    69. Chen XP, Xun KL, Wu Q, et al. Oxidized low density lipoprotein receptor-1 mediates oxidized low density lipoprotein-induced apoptosis in human umbilical vein endothelial cells: role of reactive oxygen species. Vasc Pharmacol, 2007; 47: 1-9.
    70. Nowicki M, Zabirnyk O, Duerrschmidt N, et al. No upregulation of lectin-like oxidized low-density lipoprotein receptor-1 in serum-deprived EA.hy926 endothelial cells under ox-LDL exposure, but increase in autophagy. Eur J Cell Biol, 2007; 86: 605-616.
    71. Harada-Shiba M, Kinoshita M, Kamido H, et al. Oxidized low density lipoprotein induces apoptosis in cultured human umbilical vein endothelial cells by common and unique mechanisms. J Biol Chem, 1998; 273: 9681-9687.
    72. Zhang YL, Cao YJ, Zhang X, et al. The autophagy lysosome pathway: a novelmechanism involved in the processing of oxidized LDL in human vascular endothelial cells. Biochem Biophys Res Commun, 2010; 394: 377-382.
    73. Liu K, Tang Q, Fu C, et al. Influence of glucose starvation on the pathway of death in insect cell line Sl: apoptosis follows autophagy. Cytotechnology, 2007; 54: 97-105.
    74. Cui Q, Tashiro S, Onodera S, et al. Autophagy preceded apoptosis in oridonin-treated human breast cancer MCF-7 cells. Biol Pharm Bull, 2007; 30: 859-864.
    75. Mizushima N, Yamamoto A, Hatano M, et al. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol, 2001; 152: 657-668.
    76. Liang XH, Jackson S, Seaman M, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 1999; 402: 672-676.
    77. Gajewska M, Gajkowska B, Motyl T. Apoptosis and autophagy induced by TGF-B1 in bovine mammary epithelial BME-UV1 cells. J Physiol Pharmacol, 2005; 56: 143-157.
    78. Wang J. Beclin1 bridges autophagy, apoptosis and differentiation. Autophagy, 2008; 4: 947-948.
    79. Pan T, Rawal P, Wu Y, et al. Rapamycin protects against rotenone-induced apoptosis through autophagy induction. Neuroscience, 2009; 164: 541-551.
    80. Pan T, Kondo S, Zhu W, et al. Neuroprotection of rapamycin in lactacystin-induced neurodegeneration via autophagy enhancement. Neurobiol Dis, 2008; 32: 16-25.
    81. Du Y, Yang D, Li L, et al. An insight into the mechanistic role of p53-mediated autophagy induction in response to proteasomal inhibition-induced neurotoxicity. Autophagy, 2009; 5: 663-675.
    82. Carew JS, Medina EC, Esquivel JA, et al. Autophagy inhibition enhances vorinostat-induced apoptosis via ubiquitinated protein accumulation. J Cell Mol Med, 2009; Jul 6: 000-000.
    83. Luo S, Rubinsztein DC. Apoptosis blocks beclin1-dependent autophagosome synthesis: an effect rescued by Bcl-xL. Cell Death Differ, 2010; 17: 268-277.
    84. Di X, Shiu RP, Newsham IF, et al. Apoptosis, autophagy, accelerated senescence and reactive oxygen in the response of human breast tumor cells to adriamycin. Biochem Pharmacol, 2009; 77: 1139-1150.
    85. Cheng Y, Qiu F, Tashiro S, et al. ERK and JNK mediate TNFalpha-induced p53activation in apoptotic and autophagic L929 cell death. Biochem Biophys Res Commun, 2008; 376: 483-488.
    
    1. Heeschen C, Jang JJ, Weis M, et al. Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis. Nat Med, 2001; 7: 833-839.
    2. Shaw SK, Bamba PS, Perkins BN, et al. Real-time imaging of vascular endothelial-cadherin during leukocyte transmigration across endothelium. J Immunol, 2001; 167: 2323-2330.
    3. Telo' P, Breviario F, Huber P, et al. Identification of a novel cadherin (vascular endothelial cadherin-2) located at intercellular junctions in endothelial cells. J Biol Chem, 1998; 273: 17565-17572.
    4. Dejana E, Orsenigo F, Lampugnani MG. The role of adherens junctions and VE-cadherin in the control of vascular permeability. J Cell Sci, 2008; 121: 2115-2122.
    5. Spagnuolo R, Corada M, Orsenigo F, et al. Gas1 is induced by VE-cadherin and vascular endothelial growth factor and inhibits endothelial cell apoptosis. Blood, 2004; 103: 3005-3012.
    6.程王生,张钲,白锋,等.冠心病患者中血管内皮细胞钙黏蛋白的检测及临床意义.中国现代医学杂志, 2006; 16: 851-853, 857.
    7. Vestweber D. VE-cadherin: the major endothelial adhesion molecule controlling cellular junctions and blood vessel formation. Arterioscler Thromb Vasc Biol, 2008; 28: 223-232.
    8. Iurlaro M, Demontis F, Corada M, et al. VE-cadherin expression and clustering maintain low levels of survivin in endothelial cells. Am J Pathol, 2004; 165: 181-189.
    9. Nelson CM, Chen CS. VE-cadherin simultaneously stimulates and inhibits cell proliferation by altering cytoskeletal structure and tension. J Cell Sci, 2003; 116: 3571-3581.
    10. Tzima E, Irani-Tehrani M, Kiosses WB, et al. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature, 2005; 437: 426-431.
    11.潘珏.血管内皮钙黏蛋白在内皮细胞中的作用.中国临床医学, 2001; 8: 696-698.
    12. Bach TL, Barsigian C, Yaen CH, et al. Endothelial cell VE-cadherin functions as a receptor for theβ15-42 sequence of fibrin. J Biol Chem, 1998; 273: 30719-30728.
    13. Bootle-Wilbraham CA, Tazzyman S, Thompson WD, et al. Fibrin fragment E stimulates the proliferation, migration and differentiation of human microvascular endothelial cells in vitro. Angiogenesis, 2001; 4: 269-275.
    14. Bootle-Wilbraham CA, Tazzyman S, Marshall JM, et al. Fibrinogen E-fragment inhibits the migration and tubule formation of human dermal microvascular endothelial cells in vitro. Cancer Res, 2000; 60: 4719-4724.
    15. Navaratna D, McGuire PG, Menicucci G, et al. Proteolytic degradation of VE-cadherin alters the blood-retinal barrier in diabetes. Diabetes, 2007; 56: 2380-2387.
    16. Vincent PA, Xiao K, Buckley KM, et al. VE-cadherin: adhesion at arm's length. Am J Physiol Cell Physiol, 2004; 286: C987-C997.
    17. Nelson CM, Pirone DM, Tan JL, et al. Vascular endothelial-cadherin regulates cytoskeletal tension, cell spreading, and focal adhesions by stimulating RhoA. Mol Biol Cell, 2004; 15: 2943-2953.
    18. Pellegrino M, Furmaniak-Kazmierczak E, LeBlanc JC, et al. The apolipoprotein(a) component of lipoprotein(a) stimulates actin stress fiber formation and loss of cell-cell contact in cultured endothelial cells. J Biol Chem, 2004; 279: 6526-6533.
    19. George SJ, Beeching CA. Cadherin: catenin complex: a novel regulator of vascular smooth muscle cell behaviour. Atherosclerosis, 2006; 188: 1-11.
    20. Koga H, Sugiyama S, Kugiyama K, et al. Elevated levels of VE-cadherin-positive endothelial microparticles in patients with type 2 diabetes mellitus and coronary artery disease. J Am Coll Cardiol, 2005; 45: 1622-1630.
    21. Soeki T, Tamura Y, Shinohara H, et al. Elevated concentration of soluble vascular endothelial cadherin is associated with coronary atherosclerosis. Circ J, 2004; 68: 1-5.
    22. Sigala F, Vourliotakis G, Georgopoulos S, et al. Vascular endothelial cadherin expression in human carotid atherosclerotic plaque and its relationship with plaque morphology and clinical data. Eur J Vasc Endovasc Surg, 2003; 26: 523-528.
    23. Kogata N, Arai Y, Pearson JT, et al. Cardiac ischemia activates vascular endothelial cadherin promoter in both preexisting vascular cells and bone marrow cells involved in neovascularization. Circ Res, 2006; 98: 897-904.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700