用户名: 密码: 验证码:
甘草酸18位差向异构体及其水解产物对P-糖蛋白影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘草酸(glycyrrhizic acid, GL)是甘草中最主要的活性成分,水解后产生二分子葡萄糖醛酸(glcuronic acid)和一分子甘草次酸(glycyrrhetinic acid, GA)。由于三萜皂苷母核18位手性碳原子(C-18)构型的不同,甘草酸存在一对差向异构体,即18α-甘草酸(α-GL)和18β-甘草酸(β-GL),两者水解后可生成相应的18α-甘草次酸(α-GA)和18β-甘草次酸(β-GA)。早期对甘草酸、甘草次酸的研究大多没有将两个异构体明确区分,但随着具有我国自主知识产权的“手性肝药”异甘草酸镁在2006年上市,甘草酸18位差向异构体的差异日益受到国内外学者的关注。从药物转运的角度,本文研究了甘草酸18位差向异构体及其水解产物对P-糖蛋白的影响。
     目的
     研究甘草酸18位差向异构体及其水解产物对P-gp功能和表达的影响,探讨其对P-gp的作用是否具有立体选择性;通过研究甘草酸18位差向异构体水解产物在Caco-2细胞上对P-gp底物转运的影响,进一步确证功能和表达实验结果;通过研究甘草酸制剂对他林洛尔药动学的影响,初步探讨甘草酸制剂与P-gp底物在临床上可能发生的相互作用。
     方法
     1. RP-HPLC法分离并测定甘草酸制剂中的18α-、18β-甘草酸
     采用Phenyl-Hexyl (4.6 mm×250 mm,5μm)色谱柱,流动相为10mmol·L-1醋酸铵溶液(pH=7.75)-乙腈(83:17),流速1.0 mL/min,柱温38℃,检测波长250 nm。
     2.细胞培养及单层模型的建立
     采用MEM培养基常规培养Caco-2细胞、脐静脉内皮细胞(ECV304),用于研究甘草酸18位差向异构体及其水解产物对P-gp功能和表达的影响。采用苯基溴化四氮唑蓝法(MTT),判断各试验药物的体外最大非细胞毒性剂量,保证试验过程中细胞的活性,并为甘草酸18位差向异构体及其水解产物对P-gp功能和表达以及P-gp底物转运影响的研究提供与细胞作用的最大浓度。
     3.罗丹明123摄取实验研究药物对P-gp功能的影响
     以ECV304细胞作阴性对照细胞,维拉帕米作为抑制P-gp功能的阳性对照,使用流式细胞术测定罗丹明123(Rho-123)荧光值,分析甘草酸18位差向异构体及其水解产物对P-gp底物—Rho-123被Caco-2细胞摄取的影响,以此反映P-gp功能的变化。
     4.实时荧光定量PCR检测MDR1 mRNA表达
     以环孢素A作为上调MDR1 mRNA表达的阳性对照,不加药处理的Caco-2细胞作为阴性对照,Real-time PCR检测MDR1 mRNA,研究甘草酸18位差向异构体及其水解产物对MDR1 mRNA表达的影响。
     5.流式细胞术和Western blot检测P-gp蛋白表达
     以环孢素A作为诱导P-gp蛋白表达的阳性对照,不加药处理的Caco-2细胞作为阴性对照,采用流式细胞术(FCM)和Western blot分别研究α-GL和β-GL、α-GA和β-GA对P-gp蛋白表达的影响。
     6. Caco-2细胞单层模型上P-gp转运实验
     在TranswellTM12孔板上建立Caco-2细胞单层模型,使用酶标仪测定转运液中Rho-123的浓度,分别考察药物瞬时作用下对Rho-123双向转运的影响以及药物干预72h后Rho-123双向转运的变化。HPLC测定转运液中他林洛尔的浓度,进一步在Caco-2细胞单层模型上考察药物干预72h后他林洛尔外向转运的变化。
     7.甘草酸制剂对他林洛尔药动学的影响
     采用2×2双交叉试验设计。14名受试者随机等分为2组,一组先服用复方甘草酸苷片6天,每天三次,每次三片,第7天服用他林洛尔片1片,即试验组;另一组先服用安慰剂6天,每天三次,每次三片,第7天服用他林洛尔片1片,即对照组。受试者服药前及服药后0.25、0.5、0.75、1、1.5、2、2.5、3、4、6、8、12、16和24h取静脉血5mL置肝素化离心管中,分离出血浆,置-70℃冰箱中保存待测。采用HPLC法测定血浆中他林洛尔的浓度。使用DAS2.1.1软件计算药动学参数,SPSS 13.0软件进行统计分析。
     结果与结论
     1.各制剂中α体和β体甘草酸的组成比各不相同,亟待制定甘草酸制剂中异构体含量的相关质量标准。
     2.α-GL、β-GL对P-gp的影响作用方向呈现相反的趋势。中、高浓度(10μmol·L-1、60μmol·L-1)α-GL对P-gp功能表现出抑制作用,但没有呈现出剂量依赖性。β-GL各浓度对P-gp功能表现出诱导作用,也没有表现出剂量依赖性;中、高浓度(10μmol·L-1、60μmol·L-1)α-GL下调MDR1 mRNA表达,β-GL只在高浓度60μmol·L-1上调了MDR1mRNA表达;高浓度(60μmol·L-1)β-GL在蛋白水平对P-gp有诱导作用,α-GL各浓度没有表现出对P-gp表达的影响。转录水平上α-GL、β-GL对P-gp的影响与α-GL、β-GL对CYP3A的影响呈现一定的同向性,甘草酸18位差向异构体对CYP3A与P-gp的影响有相似的立体选择性,其机制是否与孕烷X受体(PXR)有关,有待进一步研究。
     3.α-GA、β-GA对P-gp的作用可能存在程度上的差别,而且18α-、18β-甘草次酸对P-gp的影响与其母体甘草酸的作用趋势并不一致。中、高浓度(1μmol·L-1、10μmol·L-1)α-GA对P-gp功能表现出诱导作用,并呈现出剂量依赖性。高浓度(10μmol·L-1)β-GA对P-gp功能表现出诱导作用;高浓度(10μmol·L-1)α-GA上调MDR1 mRNA表达,实验浓度β-GA未影响MDR1 mRNA的表达;高浓度(10μmol·L-1)α-GA在蛋白水平对P-gp有诱导作用,实验浓度β-GA没有表现出对P-gp表达的改变。甘草酸苷水解后与其苷元甘草次酸对P-gp的影响存在区别,其机制有待进一步研究。
     4.P-gp底物转运试验中,高浓度(10μmol·L-1)α-GA瞬时作用于Caco-2细胞单层模型,或者干预单层模型72h后,均能诱导P-gp底物Rho-123外向转运;高浓度(10μmol·L-1)β-GA瞬时作用于Caco-2细胞单层模型没有表现出诱导作用,但在干预Caco-2单层模型72h后,表现出对Rho-123外排的诱导;他林洛尔的外向转运受α-GA、β-GA干预72h后的影响与Rho-123受α-GA、β-GA干预72h的结果相似。α-GA诱导P-gp底物外排的能力比β-GA强。鉴于α-GA、β-GA对Caco-2细胞干预72h后均能不同程度的促进P-gp底物Rho-123和他林洛尔的外向转运,甘草酸上调MDR1,诱导外源性物质的外排,可能是甘草解毒的机制之一。
     5.他林洛尔药动学试验表明,复方甘草酸苷没有增加他林洛尔的不良反应,总体上也没有对其药动学产生影响。但有可能是因为样本数量不够多、群体的个体差异而使药动学参数改变没有表现出统计学意义。也有可能是试验设计服用复方甘草酸苷的时间不够长,未能产生对肠道P-gp的诱导。虽然国内外多数研究采用了他林洛尔作为P-gp相关人体试验的探针药物,其是否能准确反映P-gp的变化情况,有待进一步确证。鉴于本研究体外实验发现α-GA可能比β-GA有更强的诱导P-gp的能力,α体甘草酸制剂对P-gp底物药动学的影响有待进一步研究,并且由于纯α体甘草酸制剂临床应用时间还不长,临床上与其他药物同时使用时,应注意观察是否有药物相互作用的发生。
     根据本研究的提示和相关文献报道,差向异构体之间虽然只是立体构型的不同,但对药物转运体的影响可能会有不同的表现,在药物研究与开发中应当引起一定的重视。
Glycyrrhizic acid (GL) is the main active component of licorice (Radix Glycyrrhiza), one molecule of GL can be transformed to two molecule of glucuronic acid and one molecule of glycyrrhetinic acid (GA) after hydrolyzation. Base on the defferent configuration of C18g-H bond of triterpene saponin mother nucleus, GL has two different epimers:α-GL andβ-GL and they can be hydrolyzed to correspondingα-GA andβ-GA. They were not distinguished at most previous researches. But the difference of C-18 epimers of glycyrrhizic acid has attracted more and more attention after magnesium isoglycyrrhetate was marketed in 2006. The effects of C-18 epimers of glycyrrhizic acid and their hydrolysis products on P-glycoprotein (P-gp) were introduced in this paper.
     OBJECTIVE
     Study the effects of C-18 epimers of glycyrrhizic acid and their hydrolysis products on the function and expression of P-gp and investigate that whether there are stereoselectivity on them. Confirm the experimental result of function and expression by studing the changes of transmembrane transport of P-gp substrates on Caco-2 cell monolayers. Study the effects of glycyrrhizin preparations on the pharmacokinetics of talinolol, initially investigate possible drug interaction between glycyrrhizin preparations and P-gp substrates.
     METHODS
     1. Separation and determination of 18a-GL and 18β-GL in glycyrrhizin preparations by RP-HPLC
     The chromatographic analysis was carrid out on a Phenyl-Hexyl Column (4.6 mm×250 mm,5μm) with the mobile phase consisting of 10 mmol·L-1 ammonium acetate (pH 7.75)-acetonitrile (83:17 v/v) at a flow-tate of 1.0 mL·min-1. The detection wavelength was 250 nm.
     2. Cell culture and establishment of Caco-2 cell monolayer model
     Caco-2 cell and ECV304 cell were cultured with MEM (Modified Eagle's Medium) and were applied to study the effects of GL and GA epimers on the function and expression of P-gp. MTT (Methyl thiazolyl tetrazolium) assay was applied to determine the maximum non-cytotoxic dose of each test drugs to ensure the activity of cells during the test and to consult the maximum test concentration of each drugs.
     3. Rho-123 uptake experiments assay the the function of P-gp
     ECV304 cell was used as negative cell control. Verapamil was used as positive control of the inhibitory effect on the function of P-glycoprotein. Flowcytometry were used to study the effects of C-18 epimers of GL and GA on the uptake of rhodamine-123 which is a substrate of P-gp in Caco-2 cell.
     4. Real-time PCR assay MDR1 mRNA
     Cyclosporin A was used as positive control of up regulation effect on the expression in mRNA level of MDR1 gene. Caco-2 cell without drug dealing was used as negative control. Real-time PCR was used to measure the expression of MDR1 mRNA in Caco-2 cell and to study the effects of C-18 epimers of GL and GA products on the expression of MDR1 mRNA.
     5. Flow cytometry and Western blot assay P-gp protein
     Cyclosporin A was used as positive control of up regulation effect on the expression of P-gp protein. Caco-2 cell without drug dealing was used as negative control. Flow cytometry (FCM) and Western blot were applied to study the effects of C-18 epimers of GL and GA on the expression of P-gp protein, respectively.
     6. P-gp transport experiments on Caco-2 monolayers
     Appropriate Caco-2 monolayers were established in TranswellTM plates. ELISA Reader was applied to detect the concentration of Rho-123 in transfer fluids. The bi-directional transports of Rho-123 after treated by instantaneous action and incubation for 72 h ofα-GA andβ-GA were studied. HPLC was applied to detect the concentration of talinolol in transfer fluids. The efflux of talinolol in Caco-2 monolayers after treated for 72 h byα-GA andβ-GA was also investigated.
     7. Effects of glycyrrhizin preparation on the pharmacokinetics of talinolol
     A two-cycle double crossover design was used.14 subjects were randomized into 2 groups. One group administrated the glycyrrhizin preparation for 6 day (3 times one day,3 tablets once) and then administrated talinolol one tablet on the 7th day (Test Grop). Another group administrated the placebo for 6 day (3 times one day,3 tablets once) and then administrated talinolol one tablet on the 7th day (Control Grop). Before the administration of the preparation and at 0.25,0.5,0.75,1,1.5, 2,2.5,3,4,6,8,12,16 and 24 h after the administration of the preparation,5 mL of the venous blood was taken respectively. The blood samples were centrifuged in a centrifugal tube with heparin to separate the plasma, which was stored at-70℃until testing. HPLC was used to measure the concentration of talinolol in human plasma. DAS (Drug and Statistics 2.1.1) and SPSS 13.0 were used in the statistical analysis.
     RESULTS AND CONCLUSION
     1. The composition ratios ofα-GL andβ-GL in different glycyrrhizin preparations were different. Quality specifications about the composition ratios of epimers of GL should be established.
     2. The effects ofα-GL andβ-GL on P-gp show an opposite trend. At middle and high concentrations (10μmol·L-1、60μmol·L-1), a-GL inhibited the function of P-gp and with on dose dependent while P-GL induced the function of P-gp at three test concentrations with no dose dependent too; At middle and high concentrations (10μmol·L-1、60μmol·L-1),α-GL down-regulated the expression of MDR1 mRNA. At high concentrations (60μmol·L-1),β-GL up-regulated the expression of MDR1 mRNA; At high concentrations (60μmol·L-1),β-GL induced the expression of P-gp protein whileα-GL has no effect on the expression of P-gp protein at three test concentrations. The effects ofα-GL andβ-GL on the expression of MDR1 mRNA and CYP3A mRNA showed the same trend. The character that epimers of GL act on CYP3A and P-gp show similar stereoselectivity whether relate to PXR need further study.
     3. The actions on P-gp betweenα-GA andβ-GA may with different degree. The effects ofα-GA andβ-GA on P-gp were different from their corresponding parent bodies (GL). At middle and high concentrations (1μmol·L-1、10μmol·L-1),α-GA induced the function of P-gp and with dose dependent whileβ-GA also induced the function of P-gp at high concentration (10μmol·L-1); At high concentrations (10μmol·L-1), a-GA up-regulated the expression of MDR1 mRNA while P-GA has no effect on the expression of MDR1 mRNA at three test concentrations;α-GA up-regulated the expression of P-gp protein at high concentrations (10μmol·L-1) whileβ-GA has no effect on the expression of P-gp protein at three test concentrations. The difference between the effects of glycyrrhizin and glycyrrhetinic acid need further study.
     4. In the transport experiments of P-gp substrates on Caco-2 monolayers, high concentration (10μmol·L-1)α-GA induced the efflux of Rho-123 both in the instantaneous action test and the incubation for 72 h test. High concentration (10μmol·L-1)β-GA induced the efflux of Rho-123 only in the incubation for 72 h test. The transports from AP to BL were not affected by any test drugs. The efflux test of talinolol from BL to AP got the similar results with those of Rho-123. The inducibility ofα-GA was stronger than that ofβ-GA. Glycyrrhizin can up-regulate MDR1 mRNA, induce the excretion of xenobiotics, it may be one of the detoxification mechanism of licorice.
     5. The pharmacokinetics experiments of talinolol suggested that no adverse reaction was observed and glycyrrhizin did not affect the pharmacokinetics of talinolol on the whole. But maybe the small number of samples or individual difference leaded to the results with no significance. The administration time of glycyrrhizin maybe too short or the dose of glycyrrhizin maybe too small, then P-gp in intestinal tract was not induced. Although talinolol was used as a probe drugs in many researches, the accuracy of the assay need further confirmation. In the light of result of this research,α-GA may be stronger thanβ-GA to induce P-gp. Effects of α-GL preparations on pharmacokinetics of P-gp substrates need further study. Because the clinical application of a-GL preparations are not long enough, when a-GL preparations used in conjunction with other durgs, drug interaction should be observed.
     According to the results of our research and other references, effects of epimers on P-gp may be different even though only configurations are different between the two compounds. This information deserves attention in drug research and development.
引文
[1]国家药典委员会.中华人民共和国药典,化学工业出版社,2005.
    [2]李立威,代旭勇,程志刚.18α-H-甘草酸二铵的制备[J].中国现代应用药学杂志,2008,25(4):309-312.
    [3]Ignatov DV, Prokofev Iu I, Ipatova OM, et al. [A simple method for preparation of 18alpha-glycyrretinic acid ant its derivatives] [J]. Bioorg Khim, 2003,29(4):429-433.
    [4]Zou Q, Wei P, Li J, et al. Simultaneous determination of 18alpha-and 18beta-glycyrrhetic acid in human plasma by LC-ESI-MS and its application to pharmacokinetics[J]. Biomed Chromatogr,2009,23(1):54-62.
    [5]Abe M, Akbar F, Hasebe A, et al. Glycyrrhizin enhances interleukin-10 production by liver dendritic cells in mice with hepatitis[J]. J Gastroenterol, 2003,38(10):962-967.
    [6]Cinatl J, Morgenstern B, Bauer G, et al. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus[J]. Lancet, 2003,361(9374):2045-2046.
    [7]Pliasunova OA, Il'ina TV, Kiseleva I, et al. The anti-HIV activity of glycyrrhizic acid penta-O-nicotinate[J]. Vestn Ross Akad Med Nauk,2004, (11):42-46.
    [8]汪俊韬,于少军,肖炜.复方甘草甜素(美能)在肝病领域的临床应用[J].中国药房,2002,13(8):500-502.
    [9]Yi H, Nakashima I, Isobe K. Enhancement of nitric oxide production from activated macrophages by glycyrrhizin[J]. Am J Chin Med,1996, 24(3-4):271-278.
    [10]茅益民,曾民德,陈勇,等.异甘草酸镁治疗ALT升高的慢性肝病的多中心、随机、双盲、多剂量、阳性药物平行对照临床研究[J].中华肝脏病杂志,2009,17(11).
    [11]张群,刘加群,孙华丽,等.复方甘草酸单铵和异甘草酸镁对化学损伤人肝细胞的保护作用[J].世界华人消化杂志,2009,17(29).
    [12]Efferth T, Davey M, Olbrich A, et al. Activity of drugs from traditional Chinese medicine toward sensitive and MDR1-or MRP1-overexpressing multidrug-resistant human CCRF-CEM leukemia cells[J]. Blood Cells Mol Dis,2002,28(2):160-168.
    [13]Yoshida N, Koizumi M, Adachi I, et al. Inhibition of P-glycoprotein-mediated transport by terpenoids contained in herbal medicines and natural products [J]. Food Chem Toxicol,2006,44(12):2033-2039.
    [14]Nishimura N. [Effects of Chinese herbal medicines on intestinal drug absorption] [J]. Yakugaku Zasshi,2005,125(4):363-369.
    [15]Takara K, Horibe S, Obata Y, et al. Effects of 19 herbal extracts on the sensitivity to paclitaxel or 5-fluorouracil in HeLa cells[J]. Biol Pharm Bull, 2005,28(1):138-142.
    [16]Ebinger M, Uhr M. ABC drug transporter at the blood-brain barrier:effects on drug metabolism and drug response[J]. Eur Arch Psychiatry Clin Neurosci, 2006,256(5):294-298.
    [17]Fromm MF. Importance of P-glycoprotein at blood-tissue barriers[J]. Trends Pharmacol Sci,2004,25(8):423-429.
    [18]Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants[J]. Biochim Biophys Acta,1976, 455(1):152-162.
    [19]Demeule M, Regina A, Jodoin J, et al. Drug transport to the brain:key roles for the efflux pump P-glycoprotein in the blood-brain barrier[J]. Vascul Pharmacol,2002,38(6):339-348.
    [20]Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family:an overview[J]. Adv Drug Deliv Rev,2003, 55(1):3-29.
    [21]Pal D, Mitra AK. MDR-and CYP3A4-mediated drug-herbal interactions [J]. Life Sci,2006,78(18):2131-2145.
    [22]Hennessy M, Spiers JP. A primer on the mechanics of P-glycoprotein the multidrug transporter [J]. Pharmacol Res,2007,55(1):1-15.
    [23]Schinkel AH. P-Glycoprotein, a gatekeeper in the blood-brain barrier[J]. Adv Drug Deliv Rev,1999,36(2-3):179-194.
    [24]Chan LM, Lowes S, Hirst BH. The ABCs of drug transport in intestine and liver:efflux proteins limiting drug absorption and bioavailability[J]. Eur J Pharm Sci,2004,21(1):25-51.
    [25]Stouch TR, Gudmundsson O. Progress in understanding the structure-activity relationships of P-glycoprotein[J]. Adv Drug Deliv Rev,2002,54(3):315-328.
    [26]van Tellingen O. The importance of drug-transporting P-glycoproteins in toxicology[J]. Toxicol Lett,2001,120(1-3):31-41.
    [27]Dietrich CG, Geier A, Oude Elferink RP. ABC of oral bioavailability: transporters as gatekeepers in the gut[J]. Gut,2003,52(12):1788-1795.
    [28]Graff CL, Pollack GM. Drug transport at the blood-brain barrier and the choroid plexus[J]. Curr Drug Metab,2004,5(1):95-108.
    [29]Leslie EM, Deeley RG, Cole SP. Multidrug resistance proteins:role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense[J]. Toxicol Appl Pharmacol,2005,204(3):216-237.
    [30]Scheffer GL, Pijnenborg AC, Smit EF, et al. Multidrug resistance related molecules in human and murine lung[J]. J Clin Pathol,2002,55(5):332-339.
    [31]Zhang YC, Benet LZ. The gut as a barrier to drug absorption-Combined role of cytochrome P450 3A and P-glycoprotein[J]. Clinical Pharmacokinetics, 2001,40(3):159-168.
    [32]Takeda S, Ishthara K, Wakui Y, et al. Bioavailability study of glycyrrhetic acid after oral administration of glycyrrhizin in rats; relevance to the intestinal bacterial hydrolysis[J]. J Pharm Pharmacol,1996,48(9):902-905.
    [33]Suzuki H, Sugiyama Y. Role of metabolic enzymes and efflux transporters in the absorption of drugs from the small intestine [J]. Eur J Pharm Sci,2000, 12(1):3-12.
    [34]Paolini M, Pozzetti L, Sapone A, et al. Effect of licorice and glycyrrhizin on murine liver CYP-dependent monooxygenases[J]. Life Sci,1998, 62(6):571-582.
    [35]Tateishi T, Nakura H, Asoh M, et al. Multiple cytochrome P-450 subfamilies are co-induced with P-glycoprotein by both phenothiazine and 2-acetylaminofluorene in rats[J]. Cancer Lett,1999,138(1-2):73-79.
    [36]何丹,颜苗,李焕德,等.甘草提取物及其主要成分对Caco-2细胞膜上P-gp功能和表达的影响[J].中国药学杂志,2010,45(10):38-42.
    [37]Ao Y, Chen J, Yue J, et al. Effects of 18alpha-glycyrrhizin on the pharmacodynamics and pharmacokinetics of glibenclamide in alloxan-induced diabetic rats[J]. Eur J Pharmacol,2008,587(1-3):330-335.
    [38]Leon-Reyes MR, Castaneda-Hernandez G, Ortiz MI. Pharmacokinetics and pharmacodynamics of diclofenac in the presence and absence of glibenclamide in the rat[J]. J Pharm Pharm Sci,2008, 11(3):68-76.
    [39]Sabbioni C, Mandrioli R, Ferranti A, et al. Separation and analysis of glycyrrhizin,18beta-glycyrrhetic acid and 18alpha-glycyrrhetic acid in liquorice roots by means of capillary zone electrophoresis[J]. J Chromatogr A, 2005,1081(1):65-71.
    [40]陈威.气相色谱法测定甘草酸α体、β体及其苷元的人血浆蛋白结合率[J].海峡药学,2005,17(4).
    [41]范益,丁建花,刘苏怡,等.α-与β-甘草酸在小鼠体内分布的研究[J].中国临床药理学与治疗学,2004,9(6):619-620.
    [42]严俊,茹仁萍,尤琳雅.18α、18β-甘草酸不同配比物对大鼠CCl4急性肝损伤保护作用的研究[J].中国中医药科技,2009,16(3).
    [43]曾春香,杨晴,胡琴.异甘草酸镁与复方甘草酸苷在大鼠体内分布和代谢的比较研究[J].中国药房,2006,17(20):1543-1545.
    [44]王宇光,杨明会,马增春,等.18β-甘草酸和18α-甘草酸对大鼠原代肝细胞CYP3A酶表达的影响[J].中国中药杂志,2009,34(3):307-311.
    [45]He Y, Zeng S. Determination of the stereoselectivity of chiral drug transport across Caco-2 cell monolayers[J]. Chirality,2006,18(1):64-69.
    [46]Wang Y, Cao J, Wang X, et al. Stereoselective transport and uptake of propranolol across human intestinal Caco-2 cell monolayers[J]. Chirality, 22(3):361-368.
    [47]Zschiesche M, Lemma GL, Klebingat KJ, et al. Stereoselective disposition of talinolol in man[J]. J Pharm Sci,2002,91(2):303-311.
    [48]Shen S, He Y, Zeng S. Stereoselective regulation of MDR1 expression in Caco-2 cells by cetirizine enantiomers[J]. Chirality,2007,19(6):485-490.
    [49]吴锡铭,吕坚,茹仁萍.甘草酸18H差向异构体的比较研究[J].中国药学杂志,1993,28(4):215-218.
    [50]吴锡铭,吕坚,李冰如,等.甘草酸差向异构体对大鼠肝损害的治疗作用[J].中国药理学报,1992,13(4):370-374.
    [51]Rossi T, Fano RA, Castelli M, et al. Correlation between high intake of glycyrrhizin and myolysis of the papillary muscles:an experimental in vivo study[J]. Pharmacol Toxicol,1999,85(5):221-229.
    [52]徐会选.甘草酸类药物的不良反应[J].药物不良反应杂志,2003,5(3).
    [53]李开龙,何娅妮,王惠明,等.甘草酸18α体对缺血再灌注损伤后肾小管上皮细胞p21蛋白表达的影响[J].重庆医学,2008,37(22).
    [54]孙屹峰,孙立华,高海丽.甘草酸两种异构体治疗肾综合征出血热的疗效观察[J].中国药房,2003,14(11).
    [55]Vampa G, Benvenuti S, Rossi T. Determination of glycyrrhizin and 18 alpha-, 18 beta-glycyrrhetinic acid in rat plasma by high-performance thin-layer chromatography[J]. Farmaco,1992,47(5 Suppl):825-832.
    [56]Guillaume CP, van der Molen JC, Kerstens MN, et al. Determination of urinary 18 beta-glycyrrhetinic acid by gas chromatography and its clinical application in man[J]. J Chromatogr B Biomed Sci Appl,1999, 731(2):323-334.
    [57]吕坚,吴锡铭.气相色谱法测定大鼠血浆中18-H甘草酸差向异构体含量[J].中国药学杂志,1993,28(9):552-553.
    [58]Koga K, Ohmachi K, Kawashima S, et al. Determination of 18alpha-glycyrrhizin and 18beta-glycyrrhizin in dog plasma by high-performance liquid chromatography [J]. J Chromatogr B Biomed Sci Appl,2000,738(1):165-168.
    [59]郭薇,陈晓辉,景春杰.RP-HPLC法测定甘草中甘草酸差向异构体的含量[J].沈阳药科大学学报,2008,25(11):892.
    [60]李晖,卢定强,戴燕,等.反相高效液相色谱法手性拆分甘草酸异构体的研究.第十五次全国色谱学术报告会.郑州,2005:583-584.
    [61]王佩,刘晓昱,吴锡铭.反相高效液相色谱法测定甘草酸18H-差向异构体含量[J].中国药业,2008,17(19):17-18.
    [62]刘金城,杭清,张定善.高效液相色谱法对甘利欣注射液中18α-甘草酸和18β-甘草酸的含量测定[J].中华中医药学刊,2008,26(11):2512-2514.
    [63]Hattori M, Sakamoto T, Kobashi K, et al. Metabolism of glycyrrhizin by human intestinal flora[J]. Planta Med,1983,48(5):38-42.
    [64]Hattori M, Sakamoto T, Yamagishi T, et al. Metabolism of glycyrrhizin by human intestinal flora. Ⅱ. Isolation and characterization of human intestinal bacteria capable of metabolizing glycyrrhizin and related compounds [J]. Chem Pharm Bull (Tokyo),1985,33(1):210-217.
    [65]Tsai TH, Liao JF, Shum AY, et al. Pharmacokinetics of glycyrrhizin after intravenous administration to rats[J]. J Pharm Sci,1992,81(9):961-963.
    [66]曾春香.甘草酸的两种差向异构体在大鼠体内的分布比较研究.南京医科大学硕士学位论文.2007.
    [67]茹仁萍,赵灏,陈晓瑾.18α-甘草酸、18β-甘草酸及其不同配比物的抗炎作用研究.第十二届全国感染药学学术会议暨第二届肝病治疗进展与临床药学学术研讨会论文集.2008.
    [68]田静,吕坚.18α-甘草酸和18β-甘草酸抗大鼠肝纤维化作用比较研究[J].中国现代应用药学杂志,2006,23(2):102-104.
    [69]Han Y, Tan TM, Lim LY. Effects of capsaicin on P-gp function and expression in Caco-2 cells[J]. Biochem Pharmacol,2006,71 (12):1727-1734.
    [70]Shirasaka Y, Kawasaki M, Sakane T, et al. Induction of human P-glycoprotein in Caco-2 cells:development of a highly sensitive assay system for P-glycoprotein-mediated drug transport[J]. Drug Metab Pharmacokinet,2006, 21(5):414-423.
    [71]Fekete MR, McBride WH, Pajonk F. Anthracyclines, proteasome activity and multi-drug-resistance[J]. BMC Cancer,2005,5:114.
    [72]Youdim KA, Qaiser MZ, Begley DJ, et al. Flavonoid permeability across an in situ model of the blood-brain barrier[J]. Free Radic Biol Med,2004, 36(5):592-604.
    [73]Crivori P, Reinach B, Pezzetta D, et al. Computational models for identifying potential P-glycoprotein substrates and inhibitors[J]. Mol Pharm,2006, 3(1):33-44.
    [74]He Y, Zeng S. Transport characteristics of rutin deca (H-) sulfonate sodium across Caco-2 cell monolayers[J]. J Pharm Pharmacol,2005, 57(10):1297-1303.
    [75]Hong SS, Moon SC, Shim CK. Mechanism of intestinal transport of an organic cation, tributylmethylammonium in Caco-2 cell monolayers[J]. Arch Pharm Res,2006,29(4):318-322.
    [76]Schrickx J, Fink-Gremmels J. P-glycoprotein-mediated transport of oxytetracycline in the Caco-2 cell model[J]. J Vet Pharmacol Ther,2007, 30(1):25-31.
    [77]Sugihara N, Toyama K, Michihara A, et al. Effect of benzo[a]pyrene on P-glycoprotein-mediated transport in Caco-2 cell monolayer[J]. Toxicology, 2006,223(1-2):156-165.
    [78]王以.药物转运细胞模型的建立、应用和相关机制的初步研究.浙江大学博士学位论文.2005.
    [79]孙敏捷,盛星,胡一桥.Caco-2细胞单层模型的建立与验证[J].中国药学杂志,2006,41(18).
    [80]王立岩,佟晓红,宫桂兰,等.人脐静脉内皮细胞的体外培养、鉴定及形态观察[J].白求恩医科大学学报,2000,26(1).
    [81]Yee S. In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man-fact or myth[J]. Pharm Res,1997, 14(6):763-766.
    [82]Huang R, Murry DJ, Kolwankar D, et al. Vincristine transcriptional regulation of efflux drug transporters in carcinoma cell lines[J]. Biochem Pharmacol, 2006,71(12):1695-1704.
    [83]Hosoya KI, Kim KJ, Lee VH. Age-dependent expression of P-glycoprotein gp170 in Caco-2 cell monolayers[J]. Pharm Res,1996,13(6):885-890.
    [84]司徒镇强,吴军正.细胞培养,世界图书出版社,1996.
    [85]张海霞,方芸,葛卫红,等.四氮唑盐法肿瘤药敏试验及应用[J].中国医院药学杂志,2005,25(7).
    [86]Sun L, Shen J, Pang X, et al. Phase I safety and pharmacokinetic study of magnesium isoglycyrrhizinate after single and multiple intravenous doses in chinese healthy volunteers [J]. J Clin Pharmacol,2007,47(6):767-773.
    [87]张喜全,夏春光,万顺之.天晴甘美[J].中国新药杂志,2006,15(16).
    [88]Zhou YG, Li KY, Li HD. Effect of the novel antipsychotic drug perospirone on P-glycoprotein function and expression in Caco-2 cells[J]. Eur J Clin Pharmacol,2008,64(7):697-703.
    [89]钱江潮,魏东芝,陈笑岚,等.MTT法测定人表皮癌细胞的抗药性[J].华东理工大学学报(自然科学版),2000,26(1).
    [90]Sugihara N, Toyama K, Okamoto T, et al. Effects of benzo(e)pyrene and benzo(a)pyrene on P-glycoprotein-mediated transport in Caco-2 cell monolayer:a comparative approach[J]. Toxicol In Vitro,2007,21(5):827-834.
    [91]Breier A, Barancik M, Sulova Z, et al. P-glycoprotein--implications of metabolism of neoplastic cells and cancer therapy[J]. Curr Cancer Drug Targets,2005,5(6):457-468.
    [92]Couture L, Nash JA, Turgeon J. The ATP-binding cassette transporters and their implication in drug disposition:a special look at the heart[J]. Pharmacol Rev,2006,58(2):244-258.
    [93]DuBuske LM. The role of P-glycoprotein and organic anion-transporting polypeptides in drug interactions [J]. Drug Saf,2005,28(9):789-801.
    [94]Fardel O, Payen L, Courtois A, et al. Regulation of biliary drug efflux pump expression by hormones and xenobiotics[J]. Toxicology,2001,167(1):37-46.
    [95]Regina A, Romero IA, Greenwood J, et al. Dexamethasone regulation of P-glycoprotein activity in an immortalized rat brain endothelial cell line, GPNT[J]. J Neurochem,1999,73(5):1954-1963.
    [96]Taub ME, Podila L, Ely D, et al. Functional assessment of multiple P-glycoprotein (P-gp) probe substrates:influence of cell line and modulator concentration on P-gp activity[J]. Drug Metab Dispos,2005, 33(11):1679-1687.
    [97]Zong J, Pollack GM. Modulation of P-glycoprotein transport activity in the mouse blood-brain barrier by rifampin[J]. J Pharmacol Exp Ther,2003, 306(2):556-562.
    [98]Ikoma Y, Takano A, Ito H, et al. Quantitative analysis of 11C-verapamil transfer at the human blood-brain barrier for evaluation of P-glycoprotein function[J]. J Nucl Med,2006,47(9):1531-1537.
    [99]Larsen UL, Hyldahl Olesen L, Guldborg Nyvold C, et al. Human intestinal P-glycoprotein activity estimated by the model substrate digoxin[J]. Scand J Clin Lab Invest,2007,67(2):123-134.
    [100]Liow JS, Lu S, McCarron JA, et al. Effect of a P-glycoprotein inhibitor, Cyclosporin A, on the disposition in rodent brain and blood of the 5-HT1A receptor radioligand, [11C](R)-(-)-RWAY[J]. Synapse,2007,61(2):96-105.
    [101]Marzolini C, Paus E, Buclin T, et al. Polymorphisms in human MDR1 (P-glycoprotein):recent advances and clinical relevance[J]. Clin Pharmacol Ther,2004,75(1):13-33.
    [102]Walker J, Martin C, Callaghan R. Inhibition of P-glycoprotein function by XR9576 in a solid tumour model can restore anticancer drug efficacy [J]. Eur J Cancer,2004,40(4):594-605.
    [103]Loscher W, Potschka H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family[J]. NeuroRx,2005,2(1):86-98.
    [104]He L, Liu GQ. Effects of various principles from Chinese herbal medicine on rhodamine123 accumulation in brain capillary endothelial cells [J]. Acta Pharmacol Sin,2002,23(7):591-596.
    [105]Pavek P, Staud F, Fendrich Z, et al. Examination of the functional activity of P-glycoprotein in the rat placental barrier using rhodamine 123 [J]. J Pharmacol Exp Ther,2003,305(3):1239-1250.
    [106]Petriz J, O'Connor JE, Carmona M, et al. Is rhodamine 123 an appropriate fluorescent probe to assess P-glycoprotein mediated multidrug resistance in vinblastine-resistant CHO cells?[J]. Anal Cell Pathol,1997,14(3):129-140.
    [107]Yumoto R, Murakami T, Nakamoto Y, et al. Transport of rhodamine 123, a P-glycoprotein substrate, across rat intestine and Caco-2 cell monolayers in the presence of cytochrome P-450 3A-related compounds[J]. J Pharmacol Exp Ther,1999,289(1):149-155.
    [108]Barta CA, Sachs-Barrable K, Feng F, et al. Effects of monoglycerides on P-glycoprotein:modulation of the activity and expression in Caco-2 cell monolayers[J]. Mol Pharm,2008,5(5):863-875.
    [109]Kageyama M, Fukushima K, Togawa T, et al. Relationship between excretion clearance of rhodamine 123 and P-glycoprotein (Pgp) expression induced by representative Pgp inducers[J]. Biol Pharm Bull,2006,29(4):779-784.
    [110]Marques-Santos LF, Harab RC, de Paula EF, et al. The in vivo effect of the administration of resistance-modulating agents on rhodamine 123 distribution in mice thymus and lymph nodes[J]. Cancer Lett,1999,137(1):99-106.
    [111]Jette L, Beaulieu E, Leclerc JM, et al. Cyclosporin A treatment induces overexpression of P-glycoprotein in the kidney and other tissues[J]. Am J Physiol,1996,270(5 Pt 2):F756-765.
    [112]del Moral RG, Andujar M, Ramirez C, et al. Chronic cyclosporin A nephrotoxicity, P-glycoprotein overexpression, and relationships with intrarenal angiotensin II deposits[J]. Am J Pathol,1997,151(6):1705-1714.
    [113]Egashira M, Kawamata N, Sugimoto K, et al. P-glycoprotein expression on normal and abnormally expanded natural killer cells and inhibition of P-glycoprotein function by cyclosporin A and its analogue, PSC833[J]. Blood, 1999,93(2):599-606.
    [114]李坤艳.阿立哌唑、喹硫平与P-糖蛋白相互作用机理研究.中南大学博士学位论文.2007.
    [115]周艳钢.新型抗精神病药哌罗匹隆与P-糖蛋白相互作用研究.中南大学硕士学位论文.2008.
    [116]Nooter K, Sonneveld P. Clinical relevance of P-glycoprotein expression in haematological malignancies[J].Leuk Res,1994,18(4):233-243.
    [117]Norgaard JM, Hokland P. Biology of multiple drug resistance in acute leukemia[J]. Int J Hematol,2000,72(3):290-297.
    [118]Kim SW, Kwon HY, Chi DW, et al. Reversal of P-glycoprotein-mediated multidrug resistance by ginsenoside Rg(3)[J]. Biochem Pharmacol,2003,
    65(1):75-82.
    [119]Jodoin J, Demeule M, Beliveau R. Inhibition of the multidrug resistance P-glycoprotein activity by green tea polyphenols[J]. Biochim Biophys Acta, 2002,1542(1-3):149-159.
    [120]Limtrakul P, Anuchapreeda S, Buddhasukh D. Modulation of human multidrug-resistance MDR-1 gene by natural curcuminoids[J]. BMC Cancer, 2004,4:13.
    [121]Anuchapreeda S, Leechanachai P, Smith MM, et al. Modulation of P-glycoprotein expression and function by curcumin in multidrug-resistant human KB cells[J]. Biochem Pharmacol,2002,64(4):573-582.
    [122]Garcia del Moral R, O'Valle F, Andujar M, et al. Relationship between P-glycoprotein expression and cyclosporin A in kidney. An immunohisto logical and cell culture study [J]. Am J Pathol,1995, 146(2):398-408.
    [123]Singh D, Alexander J, Owen A, et al. Whole-blood cultures from renal-transplant patients stimulated ex vivo show that the effects of cyclosporine on lymphocyte proliferation are related to P-glycoprotein expression[J]. Transplantation,2004,77(4):557-561.
    [124]Chieli E, Santoni-Rugiu E, Cervelli F, et al. Differential modulation of P-glycoprotein expression by dexamethasone and 3-methylcholanthrene in rat hepatocyte primary cultures [J]. Carcinogenesis,1994,15(2):335-341.
    [125]张明发,张军.甘草酸药动学研究进展[J].临床药物治疗杂志,2009,7(2).
    [126]Kemper EM, Verheij M, Boogerd W, et al. Improved penetration of docetaxel into the brain by co-administration of inhibitors of P-glycoprotein[J]. Eur J Cancer,2004,40(8):1269-1274.
    [127]Volk HA, Burkhardt K, Potschka H, et al. Neuronal expression of the drug efflux transporter P-glycoprotein in the rat hippocampus after limbic seizures[J]. Neuroscience,2004,123(3):751-759.
    [128]Artursson P. Cell cultures as models for drug absorption across the intestinal mucosa[J]. Crit Rev Ther Drug Carrier Syst,1991,8(4):305-330.
    [129]Hilgers AR, Conradi RA, Burton PS. Caco-2 cell monolayers as a model for drug transport across the intestinal mucosa[J]. Pharm Res,1990,7(9):902-910.
    [130]Tavelin S, Grasjo J, Taipalensuu J, et al. Applications of epithelial cell culture in studies of drug transport[J]. Methods Mol Biol,2002,188:233-272.
    [131]Lee K, Ng C, Brouwer KL, et al. Secretory transport of ranitidine and famotidine across Caco-2 cell monolayers[J]. J Pharmacol Exp Ther,2002, 303(2):574-580.
    [132]de Castro WV, Mertens-Talcott S, Derendorf H, et al. Effect of grapefruit juice, naringin, naringenin, and bergamottin on the intestinal carrier-mediated transport of talinolol in rats[J]. J Agric Food Chem,2008,56(12):4840-4845.
    [133]de Castro WV, Mertens-Talcott S, Derendorf H, et al. Grapefruit juice-drug interactions:Grapefruit juice and its components inhibit P-glycoprotein (ABCB1) mediated transport of talinolol in Caco-2 cells[J]. J Pharm Sci,2007, 96(10):2808-2817.
    [134]USFDA. Guidance for Industry:Drug Interaction Studies -Study Design, Data Analysis, and Implications for Dosing and Labeling.2006 http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInform ation/Guidances/ucm072101.pdf
    [135]Tu JH, Hu DL, Dai LL, et al. Effect of glycyrrhizin on CYP2C19 and CYP3A4 activity in healthy volunteers with different CYP2C19 genotypes[J]. Xenobiotica.
    [136]Fan L, Mao XQ, Tao GY, et al. Effect of Schisandra chinensis extract and Ginkgo biloba extract on the pharmacokinetics of talinolol in healthy volunteers[J]. Xenobiotica,2009,39(3):249-254.
    [137]Fan L, Tao GY, Wang G, et al. Effects of Ginkgo biloba extract ingestion on the pharmacokinetics of talinolol in healthy Chinese volunteers [J]. Ann Pharmacother,2009,43(5):944-949.
    [138]Juan H, Terhaag B, Cong Z, et al. Unexpected effect of concomitantly administered curcumin on the pharmacokinetics of talinolol in healthy Chinese volunteers[J]. Eur J Clin Pharmacol,2007,63(7):663-668.
    [139]Schwarz UI, Gramatte T, Krappweis J, et al. Unexpected effect of verapamil on oral bioavailability of the beta-blocker talinolol in humans[J]. Clin Pharmacol Ther,1999,65(3):283-290.
    [140]Maurer HH, Tenberken O, Kratzsch C, et al. Screening for library-assisted identification and fully validated quantification of 22 beta-blockers in blood plasma by liquid chromatography-mass spectrometry with atmospheric pressure chemical ionization[J]. J Chromatogr A,2004,1058(1-2):169-181.
    [141]Campeanu A. The cardiac insufficiency talinolol study (CITAS) study design[J]. Eur J Heart Fail,2001,3(3):377-380.
    [142]Weitschies W, Bernsdorf A, Giessmann T, et al. The talinolol double-peak phenomenon is likely caused by presystemic processing after uptake from gut lumen[J]. Pharm Res,2005,22(5):728-735.
    [143]Han Y, Guo D, Chen Y, et al. Effect of continuous silymarin administration on oral talinolol pharmacokinetics in healthy volunteers [J]. Xenobiotica,2009, 39(9):694-699.
    [144]Oertel R, Richter K, Trausch B, et al. Elucidation of the structure of talinolol metabolites in man. Determination of talinolol and hydroxylated talinolol metabolites in urine and analysis of talinolol in serum[J]. J Chromatogr B Biomed Appl,1994,660(2):353-363.
    [145]Oertel R, Richter K, Trausch B, et al. [A quick, simple HPLC method for determination of talinolol in serum][J]. Pharmazie,1994,49(4):291-292.
    [146]Trausch B, Oertel R, Richter K, et al. Disposition and bioavailability of the beta 1-adrenoceptor antagonist talinolol in man[J]. Biopharm Drug Dispos, 1995,16(5):403-414.
    [147]Schwarz UI, Gramatte T, Krappweis J, et al. P-glycoprotein inhibitor erythromycin increases oral bioavailability of talinolol in humans[J]. Int J Clin Pharmacol Ther,2000,38(4):161-167.
    [148]Schwarz UI, Seemann D, Oertel R, et al. Grapefruit juice ingestion significantly reduces talinolol bioavailability [J]. Clin Pharmacol Ther,2005, 77(4):291-301.
    [149]何鑫,阳国平,谭志荣,等.高效液相色谱法测定人血浆中他林洛尔浓度[J].药物分析杂志,2008,28(6):857-860.
    [150]Westphal K, Weinbrenner A, Zschiesche M, et al. Induction of P-glycoprotein by rifampin increases intestinal secretion of talinolol in human beings:a new type of drug/drug interaction[J]. Clin Pharmacol Ther,2000,68(4):345-355.
    [151]Chiou WL, Ma C, Wu TC, et al. Unexpected lack of effect of the rifampin-induced P-glycoprotein on the oral bioavailability of its substrate, talinolol, in humans:implication in phenotyping[J]. J Pharm Sci,2003, 92(1):4-7; discussion 8-9.
    [1]国家药典委员会.中华人民共和国药典,化学工业出版社,2005.
    [2]Abe M, Akbar F, Hasebe A, et al. Glycyrrhizin enhances interleukin-10 production by liver dendritic cells in mice with hepatitis[J]. J Gastroenterol, 2003,38(10):962-967.
    [3]汪俊韬,于少军,肖炜.复方甘草甜素(美能)在肝病领域的临床应用[J].中国药房,2002,13(8):500-502.
    [4]Yi H, Nakashima I, Isobe K. Enhancement of nitric oxide production from activated macrophages by glycyrrhizin[J]. Am J Chin Med,1996, 24(3-4):271-278.
    [5]Pliasunova OA, Il'ina TV, Kiseleva I, et al. The anti-HIV activity of glycyrrhizic acid penta-O-nicotinate[J]. Vestn Ross Akad Med Nauk,2004, (11):42-46.
    [6]Cinatl J, Morgenstern B, Bauer G, et al. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus[J]. Lancet, 2003,361(9374):2045-2046.
    [7]Michaelis M, Geiler J, Naczk P, et al. Glycyrrhizin inhibits highly pathogenic H5N1 influenza A virus-induced pro-inflammatory cytokine and chemokine expression in human macrophages [J]. Med Microbiol Immunol,2010.
    [8]吴锡铭,吕坚,茹仁萍.甘草酸18H差向异构体的比较研究[J].中国药学杂志,1993,28(4):215-218.
    [9]吴锡铭,吕坚,李冰如,等.甘草酸差向异构体对大鼠肝损害的治疗作用[J].中国药理学报,1992,13(4):370-374.
    [10]王佩,刘晓昱,吴锡铭.反相高效液相色谱法测定甘草酸18H-差向异构体含量[J].中国药业,2008,17(19):17-18.
    [11]李立威,代旭勇,程志刚.18α-H-甘草酸二铵的制备[J].中国现代应用药学杂志,2008,25(4):309-312.
    [12]田静,吕坚.18α-甘草酸和18β-甘草酸抗大鼠肝纤维化作用比较研究[J].中国现代应用药学杂志,2006,23(2):102-104.
    [13]王宇光,杨明会,马增春,等.18β-甘草酸和18α-甘草酸对大鼠原代肝细胞CYP3A酶表达的影响[J].中国中药杂志,2009,34(3):307-311.
    [14]Amagaya S, Sugishita E, Ogihara Y, et al. Comparative studies of the stereoisomers of glycyrrhetinic acid on anti-inflammatory activities[J]. J Pharmacobiodyn,1984,7(12):923-928.
    [15]Sugishita E, Amagaya S, Ogihara Y. Structure-activity studies of some oleanane triterpenoid glycosides and their related compounds from the leaves of Tetrapanax papyriferum on anti-inflammatory activities [J]. J Pharmacobiodyn,1982,5(6):379-387.
    [16]李文,沙沂,陈丽霞.甘草酸二铵18位差向异构体的核磁共振研究[J].沈阳药科大学学报,2005,22(4):273-278.
    [17]Sabbioni C, Ferranti A, Bugamelli F, et al. Simultaneous HPLC analysis, with isocratic elution, of glycyrrhizin and glycyrrhetic acid in liquorice roots and confectionery products [J]. Phytochem Anal,2006,17(1):25-31.
    [18]Sabbioni C, Mandrioli R, Ferranti A, et al. Separation and analysis of glycyrrhizin,18beta-glycyrrhetic acid and 18alpha-glycyrrhetic acid in liquorice roots by means of capillary zone electrophoresis[J]. J Chromatogr A, 2005,1081(1):65-71.
    [19]Hennell JR, Lee S, Khoo CS, et al. The determination of glycyrrhizic acid in Glycyrrhiza uralensis Fisch. ex DC. (Zhi Gan Cao) root and the dried aqueous extract by LC-DAD[J]. J Pharm Biomed Anal,2008,47(3):494-500.
    [20]黄薇.α体甘草酸与β体甘草酸的比较研究[N].健康报,2004,23(11):8.
    [21]郭薇,陈晓辉,景春杰.RP-HPLC法测定甘草中甘草酸差向异构体的含量[J].沈阳药科大学学报,2008,25(11):892.
    [22]Ignatov DV, Prokofev Iu I, Ipatova OM, et al. [A simple method for preparation of 18alpha-glycyrretinic acid ant its derivatives][J]. Bioorg Khim, 2003,29(4):429-433.
    [23]木合布力·阿布力孜,闵杰,热娜·卡西莫夫,等.18α-甘草次酸及其甲酯的制备[J].西北药学杂志,2009,24(1).
    [24]Zou Q, Wei P, Li J, et al. Simultaneous determination of 18alpha-and 18beta-glycyrrhetic acid in human plasma by LC-ESI-MS and its application to pharmacokinetics[J]. Biomed Chromatogr,2009,23(1):54-62.
    [25]Koga K, Ohmachi K, Kawashima S, et al. Determination of 18alpha-glycyrrhizin and 18beta-glycyrrhizin in dog plasma by high-performance liquid chromatography[J]. J Chromatogr B Biomed Sci Appl,2000,738(1):165-168.
    [26]范益,丁建花,刘苏怡,等.α-与β-甘草酸在小鼠体内分布的研究[J].中国临床药理学与治疗学,2004,9(6):619-620.
    [27]李晖,卢定强,戴燕,等.反相高效液相色谱法手性拆分甘草酸异构体的研究.第十五次全国色谱学术报告会.郑州,2005:583-584.
    [28]曾春香,杨晴,胡琴.异甘草酸镁与复方甘草酸苷在大鼠体内分布和代谢的比较研究[J].中国药房,2006,17(20):1543-1545.
    [29]刘金城,杭清,张定善.高效液相色谱法对甘利欣注射液中18 α-甘草酸和18β-甘草酸的含量测定[J].中华中医药学刊,2008,26(11):2512-2514.
    [30]陈威.气相色谱法测定甘草酸α体、β体及其苷元的人血浆蛋白结合率[J].海峡药学,2005,17(4).
    [31]吕坚,吴锡铭.气相色谱法测定大鼠血浆中18-H甘草酸差向异构体含量[J].中国药学杂志,1993,28(9):552-553.
    [32]Kerstens MN, Guillaume CP, Wolthers BG, et al. Gas chromatographic-mass spectrometric analysis of urinary glycyrrhetinic acid:an aid in diagnosing liquorice abuse[J]. J Intern Med,1999,246(6):539-547.
    [33]Vampa G, Benvenuti S, Rossi T. Determination of glycyrrhizin and 18 alpha-, 18 beta-glycyrrhetinic acid in rat plasma by high-performance thin-layer chromatography[J]. Farmaco,1992,47(5 Suppl):825-832.
    [34]谢辉.18β-甘草次酸的研究进展[J].中成药,2002,24(9).
    [35]Lin JC, Cherng JM, Hung MS, et al. Inhibitory effects of some derivatives of glycyrrhizic acid against Epstein-Barr virus infection:structure-activity relationships[J]. Antiviral Res,2008,79(1):6-11.
    [36]Nose M, Ito M, Kamimura K, et al. A comparison of the antihepatotoxic activity between glycyrrhizin and glycyrrhetinic acid[J]. Planta Med,1994, 60(2):136-139.
    [37]Classen-Houben D, Schuster D, Da Cunha T, et al. Selective inhibition of 11beta-hydroxysteroid dehydrogenase 1 by 18alpha-glycyrrhetinic acid but not 18beta-glycyrrhetinic acid[J]. J Steroid Biochem Mol Biol,2009, 113(3-5):248-252.
    [38]Chaytor AT, Marsh WL, Hutcheson IR, et al. Comparison of glycyrrhetinic acid isoforms and carbenoxolone as inhibitors of EDHF-type relaxations mediated via gap junctions [J]. Endothelium,2000,7(4):265-278.
    [39]茹仁萍,赵灏,陈晓瑾.18α-甘草酸、18β-甘草酸及其不同配比物的抗炎作用研究.第十二届全国感染药学学术会议暨第二届肝病治疗进展与临床药学学术研讨会论文集.2008.
    [40]严俊,茹仁萍,尤琳雅.18α、18β-甘草酸不同配比物对大鼠CCl4急性肝损伤保护作用的研究[J].中国中医药科技,2009,16(3).
    [41]Takeda S, Ishthara K, Wakui Y, et al. Bioavailability study of glycyrrhetic acid after oral administration of glycyrrhizin in rats; relevance to the intestinal bacterial hydrolysis[J]. J Pharm Pharmacol,1996,48(9):902-905.
    [42]Hattori M, Sakamoto T, Kobashi K, et al. Metabolism of glycyrrhizin by human intestinal flora[J]. Planta Med,1983,48(5):38-42.
    [43]Hattori M, Sakamoto T, Yamagishi T, et al. Metabolism of glycyrrhizin by human intestinal flora. Ⅱ. Isolation and characterization of human intestinal bacteria capable of metabolizing glycyrrhizin and related compounds[J]. Chem Pharm Bull (Tokyo),1985,33(1):210-217.
    [44]张明发,张军.甘草酸药动学研究进展[J].临床药物治疗杂志,2009,7(2).
    [45]杨静,彭仁琇.18α-甘草酸二铵对大鼠肝脏细胞色素P450和Ⅱ相酶的影响[J].药学学报2001,36(5):321-324.
    [46]杨静,彭仁琇.18α-甘草酸下调“胶原蛋白凝胶三明治”培养的大鼠肝细胞P450酶活性及mRNA表达[J].中国药理学与毒理学杂志,2001,15(2):155-158.
    [47]Lin JH. Drug-drug interaction mediated by inhibition and induction of P-glycoprotein[J]. Adv Drug Deliv Rev,2003,55(1):53-81.
    [48]Pal D, Mitra AK. MDR-and CYP3A4-mediated drug-herbal interactions [J]. Life Sci,2006,78(18):2131-2145.
    [49]Tateishi T, Nakura H, Asoh M, et al. Multiple cytochrome P-450 subfamilies are co-induced with P-glycoprotein by both phenothiazine and 2-acetylaminofluorene in rats[J]. Cancer Lett,1999,138(1-2):73-79.
    [50]Takara K, Horibe S, Obata Y, et al. Effects of 19 herbal extracts on the sensitivity to paclitaxel or 5-fluorouracil in HeLa cells[J]. Biol Pharm Bull, 2005,28(1):138-142.
    [51]何丹,颜苗,李焕德,等.甘草提取物及其主要成分对Caco-2细胞膜上P-gp功能和表达的影响[J].中国药学杂志,2010,45(10):38-42.
    [52]徐强胜.异甘草酸镁联合苦参素治疗慢性乙型肝炎疗效观察[J].抗感染药学,2008,5(1).
    [53]薛育政.异甘草酸镁联合丹参治疗慢性乙型肝炎的临床研究[J].中国中西医结合消化杂志,2008,16(2).
    [54]周建芳.异甘草酸镁联合苦黄治疗病毒性肝炎高胆红素血症18例.第十六次全国中西医结合肝病学术会议论文集.2007.
    [55]庄开赞.异甘草酸镁联合茵栀黄治疗慢性乙型病毒性肝炎40例[J].中国药业,2009,18(7).
    [56]杨杰.异甘草酸镁联合伐昔洛韦治疗带状疱疹临床疗效观察[J].山东医药,2008,48(46).
    [57]宋方闻,白永敏,陈玉祥,等.美能(β-甘草酸复方制剂)的分子构型及临床疗效[J].中国药房,2003,14(5).
    [58]张喜全,夏春光,万顺之.天晴甘美[J].中国新药杂志,2006,15(16).
    [59]曹阳,唐小平,宋方闻.β体甘草酸与α体甘草酸治疗慢性乙型肝炎临床疗效比较[J].中国现代医学杂志,2002,12(7).
    [60]李开龙,何娅妮,王惠明,等.甘草酸18α体对缺血再灌注损伤后肾小管上皮细胞p21蛋白表达的影响[J].重庆医学,2008,37(22).
    [61]李婷,陈黎,郭册.α-体甘草酸与β-体甘草酸治疗病毒性肝炎的临床疗效比较[J].中国现代药物应用,2009,3(18).
    [62]胡健.异甘草酸镁注射液治疗慢性乙型肝炎的疗效[J].西部医学,2009,21(4).
    [63]郑中伟.天晴甘美治疗甘利欣、强力宁无效的慢性乙型肝炎60例观察[J].实用临床医药杂志,2008,12(1):85-86.
    [64]茅益民,曾民德,陈勇,等.异甘草酸镁治疗ALT升高的慢性肝病的多中心、随机、双盲、多剂量、阳性药物平行对照临床研究[J].中华肝脏病杂志,2009,17(11).
    [65]张群,刘加群,孙华丽,等.复方甘草酸单铵和异甘草酸镁对化学损伤人肝细胞的保护作用[J].世界华人消化杂志,2009,17(29).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700